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Abstract. A set A ⊂ R2 is called invisible, if its orthogonal projection is of measure 0
in almost every direction; A is visible, if it is not invisible. We say that A is invisible from a
point, if almost all lines through that point do not hit the set, except possibly for this point itself.
P. Mattila raised the question whether the set of points from which an invisible set is visible is
invisible. We answer this question in the negative.

Let D denote the set of the directions, i.e., the set of the lines through the
origin with the usual topology.

A set A ⊂ R2 is called invisible, if its orthogonal projection is of measure
0 in almost every direction; A is visible, if it is not invisible. We say that A is
invisible from a point, if almost all lines through that point do not hit the set,
except possibly for this point itself. By a theorem of A.S. Besicovitch (see [2]) for
sets with finite length invisibility is equivalent to pure unrectifiability; the latter
means that it intersects every rectifiable curve in a set of length 0.

In 1954 J.M. Marstrand proved that the set of the points of the plane from
which a given purely unrectifiable set of finite length is visible has Hausdorff di-
mension at most 1. He also gave an example that it can be 1 (see [4]).

P. Mattila in [5] proved that for an arbitrary invisible set (without assuming
finite length) the set of the points from which this set is visible must be purely
unrectifiable and it has capacity 0 related to the kernel 1/‖x‖ . He raised the
question whether the set of points from which an invisible set is visible is invisible.
We answer this question in the negative by proving the following theorem:

Theorem 1. For every closed subset of directions F ⊂ D there exist a
compact set K ⊂ R2 and a closed set L ⊂ R2 such that

(A) for every e ∈ F the projection of K in the direction e is of positive measure;
(B) for every e /∈ F the projection of K in the direction e is of measure 0;
(C) the projection of L is of measure 0 in every direction;
(D) for every point P ∈ K the set of the directions of lines connecting P and L

is exactly D \ F .
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Hence, if both F and D \ F have positive measure then K is visible, L is
invisible, and L is visible from every point of K .

The proof of the theorem is based on the so-called ‘venetian blind’ construc-
tion: for a given parallelogram T we can put narrow parallel parallelograms inside
such that the measure of the projection of the union of these narrow parallelograms
is small in some directions but it is the same as the projection of T in many other
directions. (In this note ‘parallelogram’ always means a non-degenerate parallelo-
gram or a point, it cannot be a segment.)
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Figure 1. First step

By this method M. Talagrand proved in [8] that for every u.s.c. function f on
D there exists a compact set K ⊂ R2 such that the measure of the projection of K
in direction e is f(e) for every e ∈ D . The first part of our theorem (Corollary 1)
is a special case of this theorem.

Similar parallelogram constructions were used by A.S. Besicovitch, P. Mattila
and in higher dimensions by K.J. Falconer (see [1], [3], [6] and [7]).

Let A1A2A3A4 be a non-degenerate parallelogram, and let the midpoints of
its edges be B1, B2, B3, B4 , as in Figure 1. Let C denote the midpoint of the
parallelogram. We consider the parallelograms A1CB3B4 and B1B2A3C , and we
do the same for these parallelograms and iterate the process (see Figure 2).
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Figure 2. First three steps
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Let e1, e2 denote the directions of the edges, and let d1, d2, . . . be the direction
of the diagonals A1A3 , A1B3 , etc. It is clear that dn → e2 . Let the set of
directions of lines through A4 which intersect A1A3 be I, the set between e1 and
d1 be II, the set between d1 and d2 be III, etc; (see Figure 3).

Now, every line of a direction in I which intersects A1A2A3A4 must intersect
the diagonal A1A3 , thus it intersects one of the parallelograms A1CB3B4 and
B1B2A3C . Notice that the measure of the (non-orthogonal) projection of each
parallelogram to the line A1A4 is at most |A1A4| in every direction in II, thus
the measure of the projection of the union of the two shaded parallelograms is at
most 2 · |A1A4| .

Similarly, every line of a direction in I or II which intersects A1CB3B4 or
B1B2A3C must intersect one of the 4 parallelograms we get in the second step,
and the measure of the projection of the union of these 4 parallelograms to the
line A1A4 in the directions in III is at most 4 · |A1B4| = 2 · |A1A4| .

In the nth step, lines of directions in the first n sets will intersect the union of
the small parallelograms whenever they intersect one of the parallelograms in the
previous step, and the measure of the (non-orthogonal) projection of the union of
the small parallelograms to the line A1A4 is at most 2 · |A1A4| in every direction
in the (n+ 1)th set.

�
�
�
�
�
�
�

�
�

�
�

�
�

�

!!!!!!!!!

!!!!!!!!!

#
#

#
#

#
#

#

#
#

#
#

#
#

#

I

I
II

II

III

III

IV

IV...

...

e1

d1

d2

e2

e1

d1

d2

e2

BB B
BB

B
B

BB

B
B
B

BB

B
B

B
B

BB

B
B

B
B

B
BB

BBB
BB

B
B
BB

B
B
B
BB

B
B
B
B
BB

B
B
B
B
B
BB

Figure 3. Directions

After these remarks it is easy to prove the following lemma:

Lemma 1. Let I = {I1, I2, . . . , Im} be a finite set of pairwise disjoint
intervals in D , and let J = {J1, J2, . . . , Jm} be a set of strict subintervals (i.e.,
cl (Jj) ⊂ int Ij for every j ). Then for every parallelogram T and ε > 0 there
exist non-overlapping parallelograms T1, T2, . . . ⊂ T such that

(i) U
def
=
⋃∞
n=1 Tn is compact;

(ii) for every e ∈ ∪J the orthogonal projection of U in direction e is of measure
less than ε ;
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(iii) for every line l of direction e /∈ ∪I , if l intersects T then l intersects U , as
well.

Proof. We can assume that m = 1, i.e., we have only one interval I and a
subinterval J . If T is a point, then the lemma is trivial. If T is a non-degenerate
parallelogram, then we choose an interval (a, b) for which cl (J) ⊂ (a, b) ⊂ [a, b] ⊂
int I . Then it is possible to choose vertices of T and sequences of pairwise disjoint
non-degenerate parallelograms in T (see Figure 4) such that

(i) the directions of the edges of all the sub-parallelograms are a and b ;
(ii) every line of direction in D \ I which intersects T intersects some of our

(degenerate or non-degenerate) sub-parallelograms, as well;
(iii) the sum of the edges of direction a is less than 1

2δ , where δ is a fixed small
positive number.
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Figure 4. Sub-parallelograms

Then we apply our ‘venetian blind’ procedure in every sub-parallelogram. The
result is a new system of sub-parallelograms, and the measure of the (non-orthog-
onal) projection of the union of these sub-parallelograms to a line of direction a
in every direction from J is less than 2 · 1

2δ = δ . Thus if δ is small enough then
the measure of the orthogonal projection in every direction in J is less than ε . It
is easy to see that it satisfies the other requirements, too.

Now, the following two corollaries prove our theorem:

Corollary 1. For every closed subset F ⊂ D there exists a compact set
K ⊂ R2 satisfying assumptions (A) and (B).

Proof. We choose a sequence of positive numbers {εn} and sequences of finite

families of intervals In = {I1
n, I

2
n, . . . , I

m(n)
n } , Jn = {J1

n, J
2
n, . . . , J

m(n)
n } in D ,

for which εn → 0, ∪Jn → F c , Ijn∩F = ∅ and cl (J jn) ⊂ int Ijn for every j and n .
We apply our lemma for an arbitrary parallelogram T and ε1 , I1 , J1 . Then we
apply our lemma for the sub-parallelograms with 1

2ε2,
1
4ε2, . . . and I2 , J2 ; then

we apply the lemma for the sub-parallelograms with 1
2ε3,

1
4ε3, . . . and I3 , J3 ;

etc.
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Corollary 2. Let F be a closed subset in D , and let K be a compact
set satisfying assumptions (A) and (B). Then there exists a closed set L ⊂ R2

satisfying assumptions (C) and (D).

Proof. We construct L by induction.
Let {εn} be a sequence of positive numbers for which εn → 0. In the 0th

step we choose countably many pairwise disjoint non-degenerate parallelograms
far away from K , such that for every point P ∈ K the set of the directions of the
lines connecting P and the parallelograms is exactly D \ F .

In the nth step we divide all parallelograms we constructed in the previous
step to finitely many parallelograms of diameter at most εn arbitrarily, let these
small parallelograms be T1, T2, . . . . Let Ek be the closed set of the directions
of the lines connecting K and Tk , and let the εn neighbourhood of Ek in D
be E∗k . Then the complement of E∗k is the union of finitely many intervals, say

J1
k , J

2
k , . . . , J

m(k)
k . We choose pairwise disjoint intervals Ijk for every 1 ≤ j ≤ m(k)

for which cl (J jk) ⊂ int Ijk and Ijk ∩Ek = ∅ . Then we apply our lemma for every k

with Tk , Ik = {I1
k , I

2
k , . . . , I

m(k)
k } , Jk = {J1

k , J
2
k , . . . , J

m(k)
k } and εn/2

k .
Let Un be the union of the parallelograms defined in the nth step, then it

is immediate that L
def
=
⋂
n Un satisfies (D). For a given direction e let L∗ denote

the set of the points of L for which the line through the point in direction e does
not hit K (thus if e ∈ F then L∗ = L). It is clear from the construction that
the projection of L∗ in direction e is of measure 0, thus if e ∈ F then we are
done. If e /∈ F then the projection of K in direction e is of measure 0, hence the
projection of L \ L∗ is also of measure 0, as required.
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