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Abstract. A compact Klein surface X is a compact surface with a dianalytic structure.
Such a surface is said to be elliptic-hyperelliptic if it admits an involution φ , that is an order two
automorphism, such that X/〈φ〉 has algebraic genus 1 . Klein surfaces can be seen as quotients of
the hyperbolic plane by the action of NEC groups, and their automorphism groups as quotients
of NEC groups. Using this, we determine the full automorphism groups of orientable elliptic-
hyperelliptic Klein surfaces of algebraic genus p > 5 .

1. Introduction

Klein surfaces, introduced from a modern point of view by Alling and Green-
leaf [1], are surfaces endowed with a dianalytic structure. A compact Klein surface
is said to be elliptic-hyperelliptic if it admits an involution φ , that is an order two
automorphism, such that X/〈φ〉 has algebraic genus 1.

Non-Euclidean crystallographic groups (NEC groups in short) where intro-
duced by Wilkie and Macbeath, and they are an important tool in the study of
Klein surfaces since the results of Preston and May. Klein surfaces can be seen as
quotients of the hyperbolic plane under the action of an NEC group, and the auto-
morphism groups of such surfaces as quotients of NEC groups; hence the relevance
of the work about normal subgroups of NEC groups in [2], [3] and [9].

In [6] elliptic-hyperelliptic Klein surfaces (EHKS in short) were characterized
by means of NEC groups. In this paper we determine all groups that are the auto-
morphism group of an orientable EHKS of algebraic genus p > 5. Similar studies
have been made for hyperelliptic and cyclic-trigonal Klein surfaces (see [5], [8]).

2. Preliminaries on NEC groups

Let D denote the hyperbolic plane and G its group of isometries. A non-
Euclidean crystallographic group Γ, is a discrete subgroup of G with compact quo-
tient X = D/Γ. NEC groups were introduced by Wilkie [14], and Macbeath [10]
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associated to each NEC group a signature that determines its algebraic structure
and has the following form:

(2.1) σ(Γ) =
(
g,±, [m1, . . . ,mr], {(ni1, . . . , nisi), i = 1, . . . , k}

)
,

where g,mi, nij are integers verifying g ≥ 0, mi ≥ 2, nij ≥ 2; g is the topological
genus of X . The sign determines the orientability of X . The numbers mi are the
proper periods corresponding to cone points in X . The brackets (ni1, . . . , nisi)
are the period-cycles. The number k of period-cycles is equal to the number
of boundary components of X . Numbers nij are the periods of the period-cycle
(ni1, . . . , nisi) also called link-periods, corresponding to corner points in the bound-
ary of X . The number p = αg + k − 1, where α = 1 or 2 if the sign of σ(Γ) is
− or +, respectively, is called the algebraic genus of X .

An NEC group Γ with signature (2.1) has the following presentation [10]:
Generators:

xi, i = 1, . . . , r;

ei, i = 1, . . . , k;

cij , i = 1, . . . , k, j = 0, . . . , si;

ai, bi, i = 1, . . . , g, (if σ has the sign +);

di, i = 1, . . . , g (if σ has the sign −).

Relations:

xi
mi , i = 1, . . . , r;

cij−1
2 = cij

2 = (cij−1cij)
nij , i = 1, . . . , k; j = 1, . . . , si;

ei
−1ci0eicisi = 1, i = 1, . . . , k;

x1 · · ·xre1 · · · eka1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g = 1 (if σ has the sign +);

x1 · · ·xre1 · · · ekd2
1 · · · d2

g = 1 (if σ has the sign −).

By [10] cyclic permutations of periods in period-cycles or arbitrary permutations
of proper periods in the signature of an NEC group Γ, lead to a signature σ ′

corresponding to an NEC group isomorphic to Γ. Every NEC group Γ with
signature (2.1) has associated to it a fundamental region whose area µ(Γ), called
the area of the group (see [13]), is

(2.2) µ(Γ) = 2π

(
αg + k − 2 +

r∑

i=1

(
1− 1

mi

)
+

1

2

k∑

i=1

si∑

j=1

(
1− 1

nij

))
.

An NEC group with signature (2.1) actually exists if and only if the right-hand
side of (2.2) is greater than 0 (see [15]). If Γ is a subgroup of an NEC group Γ′ of
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finite index N , then also Γ is an NEC group and the following Riemann–Hurwitz
formula holds

(2.3) µ(Γ) = Nµ(Γ′).

Let X be a Klein surface of topological genus g having k boundary compo-
nents. Then, by [12], there exists an NEC group Γ with signature

(2.4)
(
g;±; [−], {(−), k. . ., (−)}),

such that X = D/Γ, where the sign is “+” if X is orientable and “−” if not. An
NEC group with signature (2.4) is called a surface group.

May [11] proved that if G is a group of automorphisms of a surface X = D/Γ
of algebraic genus p ≥ 2, then G can be presented as a quotient Γ′/Γ for some
NEC group Γ′ . The full group of automorphisms of X is Aut(X) = NG (Γ)/Γ,
where NG (Γ) is the normalizer of Γ in the group G of isometries of D .

In order to decide if a group G of automorphisms of a Klein surface X equals
Aut(X) , the concept of maximality we are going to expose now is very useful.

An NEC group is said to be maximal if there does not exist another NEC
group containing it properly. In particular if Γ′ is maximal (following the notation
above) then G = Aut(X) .

An NEC signature τ is said to be maximal if for any NEC group Γ with
signature τ and for every NEC group Γ′ containing Γ, the equality d(Γ) = d(Γ′)
(dimensions of the associated Teichmüller spaces [8]) implies Γ = Γ′ .

Let σ and σ′ be NEC signatures of two NEC groups Γ and Γ′ , respectively.
We will say that (σ , σ′ ) is a normal pair, and we write σ / σ′ , if Γ / Γ′ and
d(Γ) = d(Γ′) . The pair is said to be proper if σ′ has period-cycles. The list of
normal proper pairs can be seen in [4].

The following results from [8] will be very useful.

Theorem 2.1. Given a maximal NEC signature τ there exists a maximal
NEC group Γ with signature τ .

Theorem 2.2. Let Λ be an NEC group containing a surface group Γ as
a normal subgroup. If σ(Λ+) is maximal, the topological surface D/Γ can be
endowed with a structure of a Klein surface such that Aut(D/Γ) = Λ/Γ , where
Λ+ is the normal subgroup of Λ of orientation preserving transformations.

3. Characterization of EHKS in terms of NEC groups

Definition 3.1. Let X be a Klein surface of algebraic genus p ≥ 2. We
say that X is an elliptic-hyperelliptic Klein surface (EHKS in short) if it admits
an involution φ (an automorphism of order 2), such that X/〈φ〉 has algebraic
genus 1.

In the sequel Klein surface will mean compact bordered Klein surface. Now
we give some results about EHKS and NEC groups obtained in [6].
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Proposition 3.2. Let X = D/Γ be a bordered Klein surface of algebraic
genus p ≥ 2 . X is an EHKS if and only if there exists an NEC group Γ1 of
algebraic genus 1 such that [Γ1 : Γ] = 2 .

The group Γ1 is called the group of the EH character of X , and Γ1/Γ = 〈φ〉
the group generated by φ .

Proposition 3.3. If X is an EHKS of algebraic genus p > 5 , φ is unique and
central in the full group of automorphisms of X . We will call it the EH-involution.

Theorem 3.4. Let X = D/Γ be an orientable bordered EHKS of topological
genus g and k boundary components (p ≥ 2), and let Γ1 be the group of the EH
character of X . Then Γ1 has one of the following signatures:

(i) If g = 0,
(
0; +; [−],

{
(2, 2k−4. . . , 2), (−)

})
.

(ii) If g = 1 , (0; +; [−],
{

(2, k−2. . . , 2), (−)
}

) or
(
0; +; [−],

{
(2, s. . ., 2), (2, 2k−s. . . , 2)

})
,

s > 0 , s even, or
(
0; +; [−],

{
(2, 2k. . ., 2)

})
.

(iii) If g ≥ 0 , 2 ≤ k ≤ 4 , (0; +; [2, p−1. . . , 2],
{

(−), (−)
})

.

Corollary 3.5. An orientable EHKS must have one of the following topologi-
cal types: topological genus 0 and more than 2 boundary components, topological
genus 1 and at least 1 boundary component or topological genus greater than 2
and 2 , 3 or 4 boundary components.

Remark 3.6. In [6] it was also proved that if X is an orientable EHKS of
algebraic genus p > 5, then |Aut(X)| ≤ 4(p− 1), except for two special cases:

σ(Γ) =
(

1
2 (p− 3),+, [−], (−)

4)
, Aut(D/Γ) = (Dp−1 × Z2) ∝ Z2;

σ(Γ) =
(

1
2 (p− 1),+, [−], (−)

2)
, Aut(D/Γ) = D2(p−1) ∝ Z2.

4. Signatures associated to automorphism groups of EHKS

Let X = D/Γ be an orientable EHKS of topological genus g , k boundary
components and algebraic genus p > 5; this condition gives unicity and centrality
properties for the EH-involution. Let Γ1 be the group of the EH character. If G
is an automorphism group of X containing φ (the EH-involution), then G = Γ′/Γ
for a certain NEC group Γ′ such that Γ/Γ1/Γ′ . Let us suppose that N = [Γ′ : Γ1] ,
then the following three propositions determine a finite set of possible signatures
of Γ′ , for each topological type:

Proposition 4.1. If X has topological genus 0 then the signature of Γ′ is
one of the following :

τ1 =
(
0,+, [−],

{
(2, 2(p−1)/N. . . , 2), (−)

})
, N some divisor of 2(p− 1);

τ2 = (0,+, [−],
{(

2, (2(p−1)/N)+4. . . , 2)
})
, N some even divisor of 2(p− 1).
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Proof. Let Γ′ be an NEC group of signature of the general form

(4.1.1) σ(Γ′) =
(
g′,±, [m1, . . . ,mr], {(ni1, . . . , nisi), i = 1, . . . , k′}

)

and let θ1: Γ′ → Γ′/Γ1 be the canonical epimorphism such that Ker(θ1) = Γ1 .
Let G1 = Γ′/Γ1 and

li the order of θ1(ei) in G1 for i = 1, . . . , k′;

pi the order of θ1(xi) in G1 for i = 1, . . . , r;

qij the order of θ1(cij−1cij) in G1 for i = 1, . . . , k′, j = 1, . . . , si;

nl(i, j) the order of θ1(cli−1clj+1) in G1 for i = 1, . . . , sl, j = 1, . . . , sl − 1, i ≤ j.
Firstly we are looking for signatures for Γ′ such that µ(Γ′) = Nµ(Γ1) , where
σ
(
Γ1) = (0; +; [−], {(22k−4), (−)}

)
(see 3.4), and then we will try to obtain θ1 .

By the Riemann–Hurwitz formula

(4.1.2) N

(
αg′ + k′ − 2 +

r∑

i=1

(
1− 1

mi

)
+

1

2

k′∑

i=1

si∑

j=1

(
1− 1

nij

))
=
k − 2

2
.

Period-cycles of Γ1 come from those of Γ′ having some reflection in Γ1 . Two
possibilities appear ([2], [9]):

(i) If the two period-cycles of Γ1 come from different period-cycles of Γ′ ,
namely C1 and C2 , then Ci = (2, si. . ., 2), i = 1, 2. Let us suppose that all
reflections of C1 and C2 are in Γ1 , then Ns1 = 2k− 4, s2 = 0, l1 = l2 = N and
from (4.1.2)

N

(
αg′ + k′ − 2 +

r∑

i=1

(
1− 1

mi

)
+

1

4

(
2k − 4

N

)
+

1

2

k′∑

i=3

si∑

j=1

(
1− 1

nij

))
=
k − 2

2
;

hence g′ = 0, k′ = 2, r = 0 and σ(Γ′) =
(
0,+, [−],

{
(2(2(p−1))/N ), (−)

})
. The

epimorphism θ1 is defined by

θ1(e1) = x, θ1(e2) = x−1, θ1(cij) = 1, for all i, j, where G1 = 〈x : xN = 1〉.
When not all reflections of C1 or C2 are in Γ1 , the area of Γ′ increases and does
not satisfy (4.1.2).

(ii) If the period-cycles of Γ1 come from the same period-cycle of Γ′ , namely
C1 , then by [9], N is even and C1 = (2, s1. . ., 2), where

s1 ≥
(

2k − 4

N

)
+ 4,

n1

(
1,

(
2k − 4

N

)
+ 1

)
= n1

(
2k − 4

N
+ 2,

2k − 4

N
+ 4

)
=
N

2
,

2(p− 1)

N
≥ 2.
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Thus, from (4.1.2) we have

N

(
αg′ + k′ − 2 +

r∑

i=1

(
1− 1

mi

)
+

1

4

(
2k − 4

N
+ 4

)

+
1

2

s1∑

j=(2k−4)/N+5

(
1− 1

n1j

)
+

1

2

k′∑

i=2

si∑

j=1

(
1− 1

nij

))
=
k − 2

2
,

and therefore g′ = 0, k′ = 1, r = 0 and σ(Γ′) =
(
0,+, [−],

{
(2, (2(p−1)/N)+4. . . , 2)}) .

The epimorphism θ1 is defined by θ1(e1) = 1, θ1(c10) = θ1(c1,((2k−4)/N)+4) = x ,
θ1(c1,((2k−4)/N)+2) = y , θ1(c1j) = 1 for the remaining reflections, with G1 =

〈x, y : x2 = y2 = (xy)
N/2

= 1〉 ' DN/2 .

Proposition 4.2. If X has topological genus 1 then the signature of Γ′ is
one of the following, with N some divisor of 2k :

If σ(Γ1) =
(
0,+, [−],

{
(2, 2k. . ., 2), (−)

})
;

τ3 =
(
0,+, [−],

{
(2, 2k/N. . . , 2), (−)

})
;

τ4 =
(
0,+, [−],

{
(2, (2k/N)+4. . . 2)

})
, N even.

If σ(Γ1) =
(
0,+, [−],

{
(2, s. . ., 2), (2, 2k−s. . . , 2)

})
, 0 < s < 2k, s even,

τ5 =
(
0,+, [−],

{
(2, (2k−s)/N. . . , 2), (2, s/N. . . , 2)

})
, N |2k − s and N |s;

τ6 =
(
0,+, [−],

{
(2, 2k/N. . . , 2), (−)

})
, s = k;

τ7 =
(
0,+, [2, 2],

{
(2, 2k/N. . . , 2)

})
, s = k;

τ8 =
(
1,−, [−],

{
(2, 2k/N. . . , 2)

})
, s = k;

τ9 =
(
0,+, [2],

{
(2, (2k/N)+2. . . , 2)

})
, s = k, N ≡ 0 (mod 4);

τ10 =
(
0,+, [−],

{
(2, (2k/N)+4. . . , 2)

})
, N even.

If σ(Γ1) =
(
1,−, [−],

{
(2, 2k. . ., 2)

})

τ11 =
(
0,+, [−],

{
(2, 2k/N. . . , 2), (−)}), N even,

τ12 =
(
1,−, [−],

{
(2, 2k/N. . . , 2)

})
,

τ13 =
(
0,+, [2],

{
(2, 2k/N. . . , 2)

})
, N ≡ 2 (mod 4),

τ14 =
(
0,+, [−],

{
(2, (2k/N)+4. . . , 2)

})
, N ≡ 0 (mod 4).

Proof. We will use the notation of the proof of Proposition 4.1.
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Case 1. If σ(Γ1) =
(
0,+, [−],

{
(2, 2k. . ., 2), (−)

})
. Then σ(Γ′) can have signa-

ture τ3 or τ4 . These cases are completely analogous to τ1 and τ2 (in Proposi-
tion 4.1), respectively. The epimorphisms are:

– for τ3 , θ1(e1) = x1 , θ1(e2) = x1
−1 , θ1(c2,0) = 1, θ1(c1,j) = 1, for j =

1, . . . , s1 ; with G1 = 〈x : xN = 1〉 ;
– for τ4 , we have θ1(e1) = 1, θ1(c2,0) = 1, θ1(c1,0) = θ1(c1,(2k/N)+4) = x ,

θ1(c1,(2k/N)+1) = y , θ1(c1,j) = 1 for the rest of reflections in C1 ; with G1 = 〈x :
xN = 1〉 .

Case 2. If σ(Γ1) =
(
0,+, [−],

{
(2, s. . ., 2), (2, 2k−s. . . , 2)

})
, 0 < s < k , s even, by

the Riemann–Hurwitz formula we have

(4.2.1) αg′ + k′ − 2 +
r∑

i=1

(
1− 1

mi

)
+

1

2

k′∑

i=1

si∑

j=1

(
1− 1

nij

)
=

k

2N
,

and we must consider the following cases:

(i) If the two period-cycles of Γ1 come from different period-cycles C1 , C2

in Γ′ , as in 4.1(i), all reflections of those period-cycles must be in Γ1 , and then

C1 = (2, s/N. . . , 2) and C2 = (2, (2k−s)/N. . . , 2), l1 = l2 = N . This, together with (4.2.1)

forces g′ = 0, k′ = 2 having σ(Γ′) = τ5 =
(
0,+, [−],

{
(2, s/N. . . , 2), (2, (2k−s)/N. . . , 2)

})
.

The epimorphism θ1 is defined by θ1(e1) = x1 , θ1(e2) = x1
−1 , θ1(ci,j) = 1,

for i = 1, 2, j = 1, . . . , s1 , where G1 = 〈x : xN = 1〉 .
(ii) If the period-cycles of Γ1 come from the same period-cycle of Γ′ , namely

C1 , then N even (see [9]) and we have to consider s = k or s 6= k .
When s = k and all reflections in C1 are in Γ1 then Ci = (2, si. . ., 2), l1 = 1

2N ,
1
2Ns1 = k , and (4.1.2) becomes

(4.2.2) αg′ + k′ − 2 +
r∑

i=1

(
1− 1

mi

)
+

1

4

(
2k

N

)
+

1

2

k′∑

i=2

si∑

j=1

(
1− 1

nij

)
=

k

2N
.

Then Γ′ can have one or two boundary components:

– If k′ = 2, then r′ = 0, g′ = 0, s2 = 0, and we have σ(Γ′) = τ6 =(
0,+, [−],

{
(2, 2k/N. . . , 2), (−)

})
. Here θ1 is defined as

θ1(e1) = x1, θ1(e2) = x1
−1, θ1(c1,j) = 1, for j = 1, . . . , s1, θ1(c2,0) = y;

with G1 = 〈x1, y1 : x1
N/2 = y1

2 = [x1, y1] = 1〉 . (The relation [x1, y1] = 1 comes
from e2c2,0e2

−1 = c2,0 in Γ′ .)
– If k′ = 1, then g′ = 0 or 1.
If g′ = 0, then by (4.2.2) r′ = 2, m1 = 2, m2 = 2, p1 = 2, p2 = 2,

and σ(Γ′) = τ7 =
(
0,+, [2, 2],

{
(2, 2k/N. . . , 2)

})
, with θ1(x1) = x1 , θ1(x2) = y1 ,



446 Beatriz Estrada

θ1(e1) = y1x1 , θ1(c1,j) = 1, for j = 1, . . . , s1 ; and G1 = 〈x1, y1 : x1
2 = y1

2 =

(y1x1)
N/2

= 1〉 . (The choice of θ1(e1) comes from the relation x1x2e1 = 1 in Γ′ ).
If g′ = 1, by (4.2.2), r′ = 0 and σ(Γ′) = τ8 =

(
1,−, [−],

{
(2, 2k/N. . . , 2)

})
. Here

θ1(d1) = x1θ1(e1) = x1
N−2, θ1(c1,j) = 1, for j = 1, . . . , s1 ;

and G1 = 〈x1 : x1
N = 1〉 . (The choice of θ1(e1) comes from the relation d1

2e1 = 1
in Γ′ .)

Now, when k = s and not all reflections in C1 are in Γ1 , we can obtain the
two equal period-cycles of Γ1 in two different ways:

(a) From the same “piece” of C1 = (2, . . . ,
i
2(2k/N)+2. . . ,

j+1

2 , . . . , 2), such that
ci, . . . , cj ∈ Γ1 , ci−1 , cj+1 /∈ Γ1 and n1(i, j) = 1

4N . Hence (4.2.1) becomes

(4.2.3)

αg′ + k′ − 2 +
r∑

i=1

(
1− 1

mi

)
+

1

4

(
2k

N + 2

)

+
1

2

∑

l/∈{i,...,j+1}

(
1− 1

n1,l

)
+

1

2

k′∑

i=2

si∑

j=1

(
1− 1

nij

)
=

k

2N
.

Then g′ = 0, k′ = 1 and

(4.2.4)
r∑

i=1

(
1− 1

mi

)
+

1

2

∑

l/∈i,...,j+1

(
1− 1

n1,l

)
=

1

2
.

– If r′ = 1, we have by (4.2.4), m1 = 2, p1 = 2 and σ(Γ′) = τ9 =(
0,+, [2],

{
(2, (2k/N)+2. . . , 2)

})
; θ1 and G1 are defined as

θ1(x1) = x1
−1, θ1(e1) = x1, θ1(c1,0) = y1, θ1(c1,(2k/N)+2) = z1

θ1(c1,j) = 1, for j = 1, . . . ,
2k

N
+ 1;

G1 =
〈
x1, y1 : y1

2 = z1
2 = (y1z1)

N/4
= 1, x1y1 = z1x1

〉
.

Firstly, the order of x1 is not fixed by the epimorphism, but since G1 has car-
dinality N , the order of x1 equals 2. This group is isomorphic to a semidirect
product of type DN/4 ∝ Z2 .

– If r′ = 0, also by (4.2.4), σ(Γ′) = τ10 = (0,+, [−],
{(

2, (2k/N)+4. . . , 2)}) . Here
θ1 and G1 are defined by

θ1(e1) = 1, θ1(c1,0) = θ1(c1,(2k/N)+4) = x1,

θ1(c1,(2k/N)+2) = y1, θ1(c1,(2k/N)+3) = z1,

θ1(c1,j) = 1, for j = 1, . . . , (2k/N) + 1;

G1 =
〈
x1, y1, z1 : x1

2 = y1
2 = z1

2 = (y1x1)
N/4

= (y1z1)
2

= (z1y1)
2

= 1
〉
.
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Note that ord(y1x1) = ord(y1z1) = 2 is necessary for Ker(θ1) to have no proper
periods.

(b) From different “pieces” of C1 (also works for k 6= s). Then C1 =

(2, (2k/N)+4. . . , 2), c1,0 , c1,(2k/N)+2 , c1,(2k/N)+4 /∈ Γ1 , c1j ∈ Γ1 for the remaining

reflections, and n1
(
1, (2k/N) + 1

)
= n1

(
(2k/N) + 3, (2k/N) + 3

)
= 1

2N . Hence
(4.2.1) becomes

(4.2.5) αg′+ k′− 2 +

r∑

i=1

(
1− 1

mi

)
+

1

4

(
2k

N
+ 4

)
+

1

2

k′∑

i=2

si∑

j=1

(
1− 1

nij

)
=

k

2N
.

Then g′ = 0, k′ = 1, r′ = 0 and σ(Γ′) = τ10 =
(
0,+, [−],

{
(2, (2k/N)+4. . . , 2)

})
. We

have obtained the same signature as before but a different epimorphism:

θ1(e1) = 1, θ1(c1,0) = θ1(c1,(2k/N)+4) = x1, θ1(c1,(2k/N)+2) = y1,

θ1(c1,j) = 1 for the remaining reflections;

G1 =
〈
x1, y1 : x1

2 = y1
2 = (y1x1)

N/2〉
.

Case 3. If σ(Γ1) =
(
1,−, [−],

{
(2, 2k. . ., 2)

})
, we proceed in a similar way to

obtain the signatures of Γ′ .

Proposition 4.3. If X has topological genus g ≥ 2 and 2 ≤ k ≤ 4 , then
the signature of Γ′ is one of the following :

τ15 =
(
0,+, [2, l+1. . ., 2, 4, ],

{
(−)
})
, l ≥ 0, N =

2(p− 1)

2l + 1
;

τ16 =
(
0,+, [2, l. . ., 2, 4, 4],

{
(−)
})
, l ≥ 0, N =

p− 1

l + 1
;

τ17 =
(
0,+, [2, l1. . ., 2, 4],

{
(2, l2+2. . . , 2)

})
, l1, l2 ≥ 0, N =

2(p− 1)

2l1 + l2 + 2
;

τ18 =
(
0,+, [−],

{
(2, l+4. . ., 2)

})
, l > 0, N =

2(p− 1)

l
;

τ19 =
(
0,+, [−],

{
(2, l+2. . ., 2, 4, 4)

})
, l ≥ 0, N =

2(p− 1)

l + 1
;

τ20 =
(
0,+, [−],

{
(2, l+3. . ., 2, 4)

})
, l ≥ 0, N =

4(p− 1)

2l + 1
;

The proof of this proposition is analogous to the previous one.
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5. The automorphism group of EHKS

Let X = D/Γ be an orientable EHKS of topological genus g , k boundary
components and algebraic genus p > 5. Remember that p > 5 makes the EH-
involution unique and central in Aut(X) . Let Γ1 be the group of the EH character.
If G is an automorphism group of X containing φ (the EH-involution), then
G = Γ′/Γ for a certain NEC group Γ′ with signature of one of the types described
in Section 4. Let us suppose that |G| = 2N and denote by θ: Γ′ → G and
π: G→ G/〈φ〉 the canonical epimorphisms such that θ1 = πθ .

The method to obtain θ (and then G) is to use the epimorphism θ1 already
defined in Section 4 and consider the diagram

θ1: Γ′
θ−→G

π−→G1 = G/〈φ〉.

Elements in G1 will be denoted by letters like x1 , y1 , z1 , t1 , . . . ; and those
in G , like x, y, z, t, . . . , subject to π(x) = x1 , π(y) = y1, . . . .

The study of automorphism groups of orientable EHKS splits into three parts
corresponding to the three propositions in Section 4.

Theorem 5.1. Let X be an orientable EHKS of algebraic genus p > 5 ,
topological genus 0 and k boundary components. Then G ' ZN×Z2 or DN/2×Z2

for some integer N (even in the last case). Moreover,

(i) There exists such an EHKS having ZN×Z2 as the full group of automorphisms
if and only if N is a proper divisor of p− 1 .

(ii) There exists such an EHKS having DN/2 × Z2 as the full group of automor-
phisms if and only if N is an even divisor of 2(p− 1) .

Proof. By Theorem 3.4, σ(Γ1) =
(
0; +; [−],

{
(2, 2(p−1). . . , 2), (−)

})
and there

are two possibilities for the signature of Γ′ namely τ1 and τ2 described in 4.1.

We begin with τ1 =
(
0,+, [−],

{
(2, 2(p−1)/N. . . , 2), (−)

})
. The epimorphism θ1

is defined as

θ1(e1) = x1, θ1(e2) = x1
−1, θ1(cij) = 1 for all reflections in Γ′

with G1 = 〈x1 : x1
N = 1〉 . Let θ(e1) = x , now as ord(x1) = N and θ1 = πθ then

ord(x′) = N or 2N :
(i) If ord(x) = 2N , then G ' Z2N and we will show there exists no epimor-

phism θ: Γ′→Z2N verifying Ker(θ) = Γ. Empty period-cycles of Γ come from
consecutive pairs of period-cycles with associated reflections

cij−1, cij , cij+1 : cij−1, cij+1 /∈ Γ, cij ∈ Γ;

from each of these pairs we obtain N/ord
(
θ(cij−1, cij+1)

)
period-cycles in Ker(θ) .

Then we will have as maximum p − 1 = k − 2 from the non empty period-cycle
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of Γ′ . The other two will come from the empty period-cycle of Γ′ , but since
ord(x) = 2N , we only can obtain 2N/ord

(
θ(e2)

)
= 1.

(ii) If ord(x) = N , let us consider the EH-involution φ , we can see that
〈x〉 ∩ 〈α〉 = 1, otherwise, since φ has order 2 in G , we have φ = xN/2 and
consequently π(φ) = π(xN/2) = x1

N/2 = 1, a contradiction with the order of x1

in G1 . Furthermore, since φ is central in Aut(X) , then G ' ZN × Z2 and θ is
defined by

(5.1.1)

θ(e1) = x, θ(e2) = x−1, θ(c2,0) = 1,

θ(c1,2j) = y, j = 0, . . . ,
p− 1

N
;

θ(c1,2j+1) = 1, j = 0, . . . ,
p− 1

N
− 1 (π(y) = 1).

In this case 2(p− 1)/N is necessarily even, implying that N divides p − 1. If
2(p− 1)/N is odd the epimorphism would be impossible.

If the signature of Γ′ is τ2 =
(
0,+, [−],

{
(2, (2(p−1)/N)+4. . . , 2)

})
, θ1 is defined

as

θ1(e1) = 1, θ1(c10) = θ1(c1,((2k−4)/N)+4) = x1, θ1(c1,((2k−4)/N)+2) = y1,

θ1(c1j) = 1 for the remaining reflections;

with G1 = 〈x1, y1 : x1
2 = y1

2 = (x1y1)
N/2

= 1〉 ' DN/2.

Considering θ1 = πθ , since ord(x1y1) = 1
2N then ord(xy) = 1

2N or N . If
ord(xy) = N , then G = DN and as in the previous case, there is no epimorphism
θ: Γ′→DN satisfying Ker(θ) = Γ. Let l = 2(p− 1)/N ; the way to obtain a max-
imal number of empty period-cycles in Ker(θ) , having in mind that consecutive
reflections cannot be in Ker(θ) , is to define

θ(c1,l+3) = 1 having one period-cycle from cl+2 , cl+3 , cl+4 (see [9]), and
θ(c1,2j+1) = z for j = 0, . . . , 1

2 (l − 2), θ(c1,2j) = 1 for j = 1, . . . , 1
2 (l − 2),

where z2 = 1 and π(z) = 1. From here we obtain k − 2−N more period-cycles.
There remain N + 1 period-cycles to be obtained by playing with the values of
θ(cl) , and θ(cl+1) . In any case we have

N

ord
(
θ(ci,l−1, ci,l+1)

) or
N

ord
(
θ(ci,l, ci,l+2)

)

depending on θ(c1,l) = 1 or θ(c1,l+1) = 1, respectively. In the two cases we have
at most k − 1 empty period-cycles in Ker(θ) . Then ord(xy) = 1

2N .
Let us consider φ , the EH-involution. We can see that 〈x, y〉∩〈φ〉 = 1 because

otherwise, since φ has order 2 in G , then φ = (xy)
N/4

or φ = (xy)
k
x , for some k

in {0, . . . , 1
2N} . The first possibility contradicts the order of x1y1 in G1 , because
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π(φ) = π
(
(xy)

N/4)
= x1y1

N/4 = 1. The second implies π
(
(xy)

k
x
)

= 1, or

equivalently (c1,l+2c1,l+4)
k
cl+2 ∈ Γ1 and since Γ1 /Γ′ , cl+4 ∈ Γ1 , a contradiction.

Thus, since |G| = 2N , x , y , φ generate G , and since φ is central in G the
epimorphism is defined by

(5.1.2)

If l even:

θ(e1) = 1, θ(c1,0) = θ(c1,l+4) = x θ(c1,l+2) = y, θ(c1,l+3) = 1;

θ(c1,2j+1) = z for j = 0, . . . , 1
2 l, θ(c1,2j) = 1 for j = 1, . . . , 1

2 l.

(5.1.3)

If l odd:

θ(e1) = 1, θ(c1,0) = θ(c1,l+4) = x, θ(c1,l+2) = y, θ(c1,l+3) = 1,

θ(c1,2j+1) = z for j = 0, . . . , 1
2 (l − 1),

θ(c1,2j) = 1 for j = 1, . . . , 1
2 (l + 1).

In any case G = 〈x, y, z : x2 = y2 = z2 = (xy)
N/2

= (xz)
2

= (yz)
2

= 1〉 '
DN/2 × Z2 , φ = z .

This proves the first part of the theorem. For the second, let X be an EHKS
in the conditions of the theorem:

(i) If Aut(X) ' ZN × Z2 , then Γ′ must have signature τ1 and N | p − 1,
as we saw before. Let N be a proper divisor of p− 1 and consider the signature
τ1 . If N divides p− 1 properly, τ1

+ is maximal (see Section 2), and there exists
a maximal NEC group Γ′ with signature τ1 . Considering the epimorphism θ
(5.1.1), the surface X = D/Ker(θ) is elliptic-hyperelliptic, φ = y being the EH-
involution and Aut(X) ' ZN × Z2 . Now if N = p − 1 we consider Γ′ , θ , X as
before. If τ1 is not maximal, we will see that whenever Zp−1 × Z2 is a group of
automorphisms of X , so is Dp−1×Z2 . To do it let us consider Theorem 4.1 in [7]
and the following normal proper pair

(τ1, τ2), τ2 =
(
0,+, [−],

{
(2, 2, 2, 2, 2)

})
.

We only need to argue that the epimorphism θ: Γ′→ZN × Z2 is unique up to
automorphisms of Γ′ and ZN × Z2 .

(ii) If Aut(X) = DN/2 × Z2 (N even), then Γ′ must have signature τ2 and
N | 2(p − 1), this last condition makes τ2 maximal. Let N be an even divisor
of 2(p − 1) and consider the signature τ2 . Since τ2

+ is maximal (see Section 2)
there exists a maximal NEC group Γ′ with signature τ2 ; and considering the
epimorphism θ (5.1.2), the surface X = D/Ker(θ) is elliptic-hyperelliptic. The

EH-involution φ is (xy)
N/4

and Aut(X) ' DN/2 × Z2 .
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Theorem 5.2. Let X be an orientable EHKS of algebraic genus p > 5 ,
topological genus 1 and k boundary components. Then Aut(X) is isomorphic to
one of the following groups: ZN×Z2 , ZN/2×Z2×Z2 , DN/2×Z2 , (DN/4×Z2)×Z2

or a semidirect product of type (DN/4 ∝ Z2)×Z2 for some even integer N , N ≡ 0

(mod 4) in the last two cases.

Moreover, in all cases there exists such an EHKS having full group of auto-
morphisms isomorphic to

– ZN × Z2 if and only if N is a proper divisor of k ;

– ZN/2 × Z2 × Z2 if and only if N is an even proper divisor of k ;

– DN/2 × Z2 if and only if N is an even divisor of 2k ;

– DN/4 × Z2 × Z2 if and only if N is a divisor of 2k , N ≡ 0 (mod 4);

– (DN/4 ∝ Z2)× Z2 if and only if N is a divisor of 2k , N ≡ 0 (mod 4) .

Proof. Let G be an automorphism group of X as described at the beginning
of this section. Since X has topological genus 1, by Proposition 4.2, the group of
the EH character can be of three different types:

1. If σ(Γ1) =
(
0,+, [−],

{
(2, 2k. . ., 2), (−)

})
, we have two possibilities for σ(Γ′) ,

to consider, τ3 and τ4 . The study is completely analogous that of τ1 and τ2 ,
respectively, in the previous theorem. We only show the epimorphisms for each
case.

For τ3 , G = 〈x, y : xN = y2 = [x, y] = 1〉 ' ZN × Z2 , and θ is defined by

θ(e1) = x, θ(e2) = x−1, θ(c2,0) = θ(c1,2j) = 1 for j = 0, . . . ,
k

N
;

θ(c1,2j+1) = y for j = 0, . . . ,
k

N
− 1 (π(y) = 1).

For τ4 , G = 〈x, y, z : x2 = y2 = z2 = (xy)
N/2

= (xz)
2

= (yz)
2

= 1〉 '
DN/2 × Z2 and θ is defined by

θ(e1) = 1, θ(c1,0) = θ(c1,l+4) = x, l =
2k

N
, θ(c1,l+2) = y, θ(c1,l+3) = 1,

θ(c1,2j+1) = z for j = 0, . . . , 1
2 l, θ(c1,2j) = 1 for j = 1, . . . , 1

2 l, l even.

2. If σ(Γ1) =
(
0,+, [−],

{
(2, s. . ., 2), (2, 2k−2. . . , 2)

})
, 0 < s < 2k , s even. By

Proposition 4.2 we have six possibilities for the signature of σ(Γ′) : τ5, . . . , τ10 .
The following table shows the results obtained for each one.
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σ(Γ′) Γ′/Γ

τ5 = (0,+, [−], {(2, (2k−s)/N. . . , 2), (2, s/N. . . , 2)}) , N | k ZN × Z2

τ6 = (0,+, [−], {(2, 2k/N. . . , 2), (−)}) ZN/2 × Z2 × Z2

N | k ZN × Z2 , s = k

τ7 = (0,+, [2, 2], {(2, 2k/N. . . , 2)}) , N | k DN/2 × Z2 , s = k

τ8 = (1,−, [−], {(2, 2k/N. . . , 2)}) , N | k ZN × Z2 , s = k

τ9 = (0,+, [2], {(2, 2k/N. . . , 2)}) , 4|N |2k (DN/4 ∝ Z2)× Z2 , s = k

τ10 = (0,+, [−], {(2, (2k/N)+4. . . , 2)}) DN/2 × Z2

N | k (DN/4 × Z2)× Z2 , s = k , 4 | N

For the sake of brevity we only show the complete proof for τ9 . The remaining
cases are obtained in a similar way.

Let us consider τ9 =
(
0,+, [2],

{
(2, 2k/N. . . , 2)

})
. Here θ1 was defined as

θ1(x1) = x1
−1, θ1(e1) = x1, θ1(c1,0) = y1, θ1(c1,2k/N+2) = z1,

θ1(c1,j) = 1, for j = 1, . . . ,
2k

N
+ 1,

where G1 =
〈
x1, y1, z1 : x1

2 = y1
2 = z1

2 = (y1z1)
N/4

= 1, x1y1 = z1x1

〉
'

DN/4 ∝ Z2 .
To obtain θ let us define θ(x1) = x−1 , θ(e1) = x , θ(c1,0) = y , θ(c1,2k/N+2) =

z , θ(c1,2l) = 1, θ(c1,2l+1) = t , 2l , 2l+ 1 ∈ {1, . . . , (2k/N) + 1} . Here x, y, z, t are
order two elements of G , that must verify, for Ker(θ) to be a surface group, and

θ to be an epimorphism, (yt)
2

= (tz)
2

= 1, xyx−1 = z .
Moreover, since we want θ1 = πθ and the order of π(xy) = x1y1 is 1

4N , then
the order of xy has to be 1

4N or 1
2N . If the order is 1

2N , we will have Ker(θ) non

orientable because (c1,0c1,(2k/N)+2)N/4c1,1 would belong to it. Then the order of

xy is 1
4N . Now, since π(t) = 1 (in other words t〈φ〉 = 〈φ〉), we have t = φ , and

since φ is central in G the following presentation holds:

G =
〈
x, y, z, t : x2 = y2 = z2 = t2 = (yz)

N/4
= (yt)

2
= (zt)

2
= (xt)

2
= 1, xyx = z

〉
.

We can see that this group is isomorphic to a semidirect product (DN/4∝ϕZ2)×Z2 ,
ϕ being the automorphism

ϕ: Z2 = 〈a : a2〉 −→ Aut(DN/4), DN/4 = 〈b, c : b2 = c2 = (bc)
N/4

= (bd)
2〉

1 −→ IdDN/4

a −→ ψ: DN/4 −→ DN/4, b −→ c, c −→ b.

3. If σ(Γ1) =
(
1,−, [−],

{
(2, 2k. . ., 2)

})
, the following table shows, for each
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signature of Γ′ , the obtained quotient G = Γ′/Γ

σ(Γ′) Γ′/Γ

τ11 ZN × Z2, N even divisor of k

τ12 There is no epimorphism with Ker θ = Γ

τ13 DN/2 × Z2, N divides 2k, N ≡ 2 (mod 4)

τ14 DN/2 × Z2, N divides 2k, N ≡ 0 (mod 4).

This proves the first part of the theorem.

For the second part, let us suppose that Aut(X) = ZN × Z2 , N even, then
Aut(X) = Γ′/Γ were Γ′ has signature τ3 , τ5 , τ8 or τ11 . In any case N divides
k , as we saw in the first part of the theorem. Now, if N is a proper even divisor
k we can consider the signature τ5 . Since τ5

+ is maximal (see Section 2) there
exist a maximal NEC group Γ′ with signature τ5 . Define θ as follows:

θ(e1) = x, θ(e2) = x−1, θ(ci,j) = y for i = 1, 2, j even,

θ(ci,j) = 1 for i = 1, 2, j odd,

where the EH-involution φ = y and Γ′/Γ = 〈x, y : xN = y2 = (xy)
2

= 1〉 . Then,
the surface X = D/Ker(θ) is elliptic-hyperelliptic and Aut(X) ' ZN × Z2 .

If N = k , we have no maximality conditions for the signatures of Γ′ , and we
can prove that Zk ×Z2 can be extended to Dk ×Z2 as an automorphism group.

The remaining cases are proved in a similar way.

For the sequel, we set the following group notation:

UN =
〈
x, y, z : x4 = y2 = zN = xyz = 1, x2 = zN/2

〉
,

VN =
〈
x, y, z : x4 = y4 = zN = xyz = 1, y2 = x2 = zN/2

〉
,

WN =
〈
x, y, z : x4 = y4 = zN/2 = xyz = 1, y2 = x2

〉
,

QN =
〈
x, y, z : x2 = y2 = z4 = (xy)

N/2
= 1, zxz−1 = y, (xy)

N/4
= z2

〉
.

Theorem 5.3. Let X be an orientable EHKS of algebraic genus p > 5 ,
topological genus g ≥ 2 and k boundary components, 2 ≤ k ≤ 4 . Then, Aut(X)
is isomorphic in one of the following groups:

(i) UN , QN , N =
(
2(p− 1)

)
/(2l + 1) and l > 0 , or VN , N = (p− 1)/(l + 1)

and l > 0 , or DN/2 ∝ Z2 , N =
(
2(p− 1)

)
/(2l + 1) and l ≥ 0 if k = 2 .

(ii) WN , N = (p− 1)/(l + 1) and l > 0 , 4 ,
or DN/4 ∝ Z4 , N =

(
2(p− 1)

)
/(2l + 1) and l > 0 ,

or (DN/4 × Z2) ∝ Z2 , N =
(
4(p− 1)

)
/(2l + 1) and l ≥ 0 if k = 4 .

(iii) Z2 if k = 3 .
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Proof. Let G be an automorphism group of X containing the EH involution
φ , such that |G| = 2N . Then G = Γ′/Γ for a certain NEC group Γ′ with signature
of one of the types described in Proposition 4.3: τ15, . . . , τ20 . The following table
summarizes the groups obtained in each case:

σ(Γ′) k G = Γ′/Γ

(0,+, [2, l+1. . ., 2, 4], {(−)}) 2 UN

N =
2(p− 1)

2l + 1
even 4 D4 , l = 1

4 (p− 3)

(0,+, [2, l. . ., 2, 4, 4], {(−)}) 2 VN

N =
p− 1

l + 1
even 4 WN

(0,+, [2, l. . ., 2, 4], {(2, 2)}) 2 QN

N =
2(p− 1)

2l + 1
≡ 0 (mod 4) 4 DN/4 ∝ Z4

(0,+, [−], {(2, 2, 4, 4)}) 2 DN/2 ∝ Z2

N =
2(p− 1)

l + 1
≡ 0 (mod 4) 4 (DN/4 × Z2) ∝ Z4

(0,+, [−], {(2, 2, 2, 4)}) 2 DN/2 ∝ Z2

N =
4(p− 1)

2l + 1
≡ 0 (mod 4) 4 (DN/4 × Z2) ∝ Z2

Remark. It is easy to see that there exists no epimorphism from Γ′ , with
signature τ18 , onto G , such that Ker(θ) is a surface group. The same occurs for
τ19 and τ20 if l > 0.

When k = 2 and l = 0, we can see that whenever UN , VN , QN or Dp−1 ∝ Z2

is a group of automorphisms of an EHKS in the conditions of the theorem, it can
be extended to D2(p−1) ∝ Z2 . When k = 4 and l = 0, the automorphism groups
WN , Dp−1 ∝ Z4 or (Dp−1×Z2) ∝ Z2 can be extended to (Dp−1×Z2) ∝ Z2 . To
do it, we consider Theorem 4.1 in [7] and the following normal proper pairs (see
Section 1):

(τ15, τ20), (τ16, τ20), (τ17, τ20), where l = 0, and (τ19, τ20).

In each case we only need to prove that the epimorphism θ: Γ′ → G , having kernel
Γ, is unique up to automorphisms of Γ′ and G . This situation occurs when Γ′

has signature τ15 , τ16 , τ17 (with l = 0) or τ16 . We show the epimorphisms for
each one:

– if σ(Γ′) = τ12 , G = UN , then θ(x1) = x , θ(x2) = y , θ(e1) = z , θ(c1,0) = 1;

– if σ(Γ′) = τ13 , G = VN or WN , then θ(x1) = x , θ(x2) = y , θ(e1) = z ,
θ(c1,0) = 1;
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– if σ(Γ′) = τ14 , G = QN or Dp−1 ∝ Z4 = 〈x, y, z : x2 = y2 = z4 =

(xy)
N/2

= 1, zxz−1 = y〉 , then θ(x1) = z , θ(e1) = z−1 , θ(c1,0) = x , θ(c1,1) = 1,
θ(c1,2) = y ;

– if σ(Γ′) = τ16 , G has one of the following presentations

Dp−1 ∝ Z2 =
〈
x, y, z : x2 = y2 = z2 = (xy)

p−1

= (yz)
4

= (zx)
4

= 1, (xy)
(p−1)/2

= (yz)
2

= (zx)
2〉
, k = 2,

or

(Dp−1×Z2) ∝ Z2 =
〈
x, y, z : x2 = y2 = z2

= (xy)
(p−1)/2

= (yz)
4

= (zx)
4

= 1, (yz)
2

= (zx)
2〉
, k = 4.

The epimorphism is

θ(e1) = 1; θ(c1,0) = x; θ(c1,1) = 1; θ(c1,2) = y; θ(c1,3) = z; θ(c1,4) = x.

Corollary. Let X be an orientable EHKS with algebraic genus p > 5 and
topological genus g ≥ 2 . If X has a non trivial automophism different from the
EH-involution, then it has 2 or 4 boundary components.
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eĺıpticas. - Memorias de la Real Academia de Ciencias, Tomo XIX, 1985.

[7] Bujalance, E., J.J. Etayo, and J.M. Gamboa: Groups of automorphisms of hyperel-
liptic Klein surfaces of genus three. - Michigan Math. J. 33, 1986, 55–74.

[8] Bujalance, E., J.J. Etayo, J.M. Gamboa, and G. Gromadzki: A Combinatorial
Approach to Automorphisms Groups of Compact Bordered Klein Surfaces. - Lecture
Notes in Math. 1439, Springer-Verlag, New York–Berlin, 1990.

[9] Bujalance, J.A.: Normal subgroups of even index in an NEC group. - Arch. Math.
(Basel) 49, 1987, 470–478.



456 Beatriz Estrada

[10] Macbeath, A.M.: The classification of non-Euclidean crystallographic groups. - Canad.
J. Math. 6, 1967, 1192–1205.

[11] May, C.L.: Large automorphism groups of compact Klein surfaces with boundary. - Glas-
gow Math. J. 18, 1977, 1–10.

[12] Preston, R.: Projective structures and fundamental domains on compact Klein surfaces.
- Ph.D. Thesis, University of Texas, 1975.

[13] Singerman, D.: On the structure of non-euclidean crystallographic groups. - Proc. Cam-
bridge Phil. Soc. 76, 1974, 233–240.

[14] Wilkie, H.C.: On non-Euclidean crystallographic groups. - Math. Z. 91, 1966, 87–102.

[15] Zieschang, H., E. Vogt, and H.D. Coldewey: Surfaces and Planar Discontinuous
Groups. - Lecture Notes in Math. 835, Springer-Verlag, New York–Berlin, 1980.

Received 12 February 1999


