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Abstract. Let u be a monotone (in the sense of Lebesgue) function on the unit ball B of
Rn satisfying ∫

B

|∇u(x)|p(1− |x|)α dx <∞,

where ∇ denotes the gradient, 1 < p < ∞ and −1 < α < p − 1 . Then u has a boundary limit
f(ξ) for almost every ξ ∈ ∂B , and u may be considered as a Dirichlet solution for the boundary
function f . Our aim in this paper is to deal with growth properties of the spherical means

Sq(ur − f) ≡
(∫

∂B

|u(rξ)− f(ξ)|q dS(ξ)

)1/q

.

In fact, we prove that
lim

r→1−0
(1− r)−ωSq(ur − f) = 0

when p5 q 5∞ and ω = (n− 1)/q − (n− p+ α)/p > 0 .

1. Introduction

If f is a pth summable function on the boundary S of the unit ball B in
Rn , then we can find a (weak) Dirichlet solution u which is harmonic in B and

(1) lim
r→1−0

Sp(ur − f) = 0,

where 1 5 p <∞ , ur(z) = u(rz) for z ∈ S and

Sp(v) =

(
1

σn

∫

S

|v(z)|p dS(z)

)1/p

with σn denoting the surface area of S . Furthermore, for functions f in some
Lipschitz spaces Λp,pβ (S) (see Stein [16]), we can find Dirichlet solutions u in BLD
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(Beppo Levi and Deny) spaces for which (1) is satisfied. Conversely, if u is a
harmonic function on B satisfying

(2)

∫

B

|∇u(x)|p(1− |x|)α dx <∞,

where 1 < p < ∞ and −1 < α < p − 1, then it is well known that u has
nontangential limits f(ξ) at many boundary points ξ ∈ S and f belongs to a
certain Lipschitz space (see Stein [16] and the first author [9], [10]). Of course, u
is a Dirichlet solution for f .

In this paper, we are concerned with weighted limits of Sq(ur − f) for mono-
tone BLD functions u on B with boundary values f . We say that a continuous
function u is monotone in an open set G , in the sense of Lebesgue, if both

max
D

u(x) = max
∂D

u(x) and min
D

u(x) = min
∂D

u(x)

hold for every relatively compact open set D with the closure D ⊂ G (see [5]).
Clearly, harmonic functions are monotone, and more generally, solutions of elliptic
partial differential equations of second order and weak solutions for variational
problems may be monotone. For these facts, see Gilbarg–Trudinger [2], Heinonen–
Kilpeläinen–Martio [3], Reshetnyak [13], Serrin [14] and Vuorinen [17] and [18].

Our starting point is a result of Gardiner [1, Theorem 2] which states that if
u is a Green potential in the unit ball B , then

lim inf
r→1−0

(1− r)(n−1)(1−1/q)Sq(ur) = 0

when (n− 3)/(n− 1) < 1/q 5 (n− 2)/(n− 1) and q > 0.
Our first aim in this paper is to show the following result.

Theorem 1. Let u be a monotone function on B satisfying (2) with n−1 <
p 5 n+ α . If p 5 q <∞ and

ω =
n− 1

q
− n− p+ α

p
> 0,

then
lim

r→1−0
(1− r)−ωSq(Ur) = 0,

where Ur(ξ) = u(rξ)− u(ξ) for ξ ∈ S .

The sharpness of the exponent will be discussed in the final section. We also
find a BLD function u satisfying (2) and

lim sup
r→1−0

(1− r)−ωSq(Ur) =∞,

when α < 0.
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Corollary 1. Let u be a coordinate function of a quasiregular mapping on B
satisfying (2). If n−1 < p 5 n+α , p 5 q <∞ and ω = (n−1)/q−(n−p+α)/p >
0 , then

lim
r→1−0

(1− r)−ωSq(Ur) = 0.

For the definition and basic properties of quasiregular mappings, we refer
to [3], [13], and [17]. In particular, a coordinate function u = fi of a quasiregu-
lar mapping f = (f1, . . . , fn): B → Rn is A -harmonic (see [3, Theorem 14.39]
and [13]) and monotone in B , so that Theorem 1 gives the present corollary.

It is well known that the coordinate functions of a bounded quasiconformal
mapping on B have finite n -Dirichlet integral (see Vuorinen [18]), so that Corol-
lary 1 gives the following result.

Corollary 2. Let u be a coordinate function of a bounded quasiconformal
mapping on B . If n 5 q <∞ , then

lim
r→1−0

(1− r)−(n−1)/qSq(Ur) = 0.

Next we are concerned with the case q =∞ . In order to give a general result,
we consider a nondecreasing positive function ϕ on the interval [0,∞) such that
ϕ is of log-type, that is, there exists a positive constant M satisfying

ϕ(r2) 5Mϕ(r) for all r = 0.

Set Φp(r) = rpϕ(r) for p > 1. Our next aim is to study the boundary behavior
of monotone BLD functions u on B , which satisfy the weighted condition

(4)

∫

B

Φp(|∇u(x)|)(1− |x|)α dx <∞.

Consider the function

κ(r) =

[∫ r

0

(
tn−p+αϕ(t−1)

)−1/(p−1)
dt

t

]1−1/p

for r > 0. We see (cf. [15, Lemma 2.4]) that if n− p+ α < 0, then

κ(r) ∼
[
rn−p+αϕ(r−1)

]−1/p
as r → 0

and if n− p+ α = 0 and ϕ(r) =
(
log(e+ r)

)σ
with σ > p− 1, then

κ(r) ∼
[
log(1/r)

](p−1−σ)/p
as r → 0.

Theorem 2. Let u be a monotone function on B satisfying (4) with −1 <
α 5 p− n . If κ(1) <∞ , then

lim
r→1−0

[
κ(1− r)

]−1
S∞(Ur) = 0,

where Ur(ξ) = u(rξ)− u(ξ) for ξ ∈ S .



460 Yoshihiro Mizuta and Tetsu Shimomura

Corollary 3. Let u be a coordinate function of a quasiregular mapping on
B satisfying (4) with −1 < α 5 p− n . If κ(1) <∞ , then

lim
r→1−0

[
κ(1− r)

]−1
S∞(Ur) = 0.

For related results, we also refer to Herron–Koskela [4], the first author [8],
[11] and the authors [12].

Finally we wish to express our deepest appreciation to the referee for his useful
suggestions.

2. Proof of Theorem 1

Throughout this paper, let M denote various constants independent of the
variables in question.

For a proof of Theorem 1, we need the following result, which gives an essential
tool in treating monotone functions.

Lemma 1 (cf. [4], [6], [10]). Let p > n−1 . If u is a monotone BLD function
on B(x0, 2r) , then

(5) |u(x)− u(y)|p 5Mrp−n
∫

B(x0,2r)

|∇u(z)|p dz whenever x, y ∈ B(x0, r) .

Lemma 1 is a consequence of Sobolev’s theorem, so that the restriction p >
n − 1 is needed; for a proof of Lemma 1, see for example [4, Lemma 7.1] or [10,
Theorem 5.2, Chapter 8].

Now we are ready to prove Theorem 1, along the same lines as in the proof
of [12, Theorem 2].

Proof of Theorem 1. Let u be a monotone function on B satisfying (2) with
n− 1 < p 5 n+ α . If |s− t| 5 r < 1

2 (1− t) , then Lemma 1 gives

|Sq(us − ut)| =
(

1

σn

∫

S

|u(sξ)− u(tξ)|q dS(ξ)

)1/q

5Mr(p−n)/p

(∫

S

(∫

B(tξ,2r)

|∇u(z)|p dz
)q/p

dS(ξ)

)1/q

,

so that Minkowski’s inequality for integrals yields

|Sq(us − ut)| 5Mr(p−n)/p

(∫

B(0,t+2r)−B(0,t−2r)

|∇u(z)|p

×
(∫

{ξ∈S:|ξ−z/t|<2r/t}
dS(ξ)

)p/q
dz

)1/p

5Mr(p−n)/p(2r/t)(n−1)/q

(∫

B(0,t+2r)−B(0,t−2r)

|∇u(z)|p dz
)1/p

.
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Let rj = 2−j−1 , tj = 1−rj−1 and Aj = B(0, 1−rj)−B(0, 1−3rj) for j = 1, 2, . . . .
For simplicity, set

ω = −(n− p+ α)/p+ (n− 1)/q > 0.

Then we find

|Sq(utj − ur)| 5Mrωj+1

(∫

Aj

|∇u(z)|p(1− |z|)α dz
)1/p

for tj 5 r < tj + rj+1 ,

|Sq(ur − us)| 5Mrωj+2

(∫

Aj

|∇u(z)|p(1− |z|)α dz
)1/p

for tj + rj+1 5 r < s < tj + rj+1 + rj+2 , and

|Sq(us − utj+1)| 5Mrωj+2

(∫

Aj+1

|∇u(z)|p(1− |z|)α dz
)1/p

for tj + rj+1 + rj+2 5 s < tj+1 . Collecting these results, we have

|Sq(utj − ur)| 5Mrωj

(∫

Aj

|∇u(z)|p(1− |z|)α dz
)1/p

+Mrωj+1

(∫

Aj+1

|∇u(z)|p(1− |z|)α dz
)1/p

for tj 5 r < tj+1 . Hence it follows that

|Sq(ur − utj+m)| 5M
j+m∑

l=j

rωl

(∫

Al

|∇u(z)|p(1− |z|)α dz
)1/p

for tj 5 r < tj+m . Since Al ∩Ak = ∅ for l = k + 2, Hölder’s inequality gives

|Sq(ur − utj+m)| 5M
(j+m∑

l=j

rp
′ω
l

)1/p′(j+m∑

l=j

∫

Al

|∇u(z)|p(1− |z|)α dz
)1/p

5Mrωj

(∫

B(0,1−rj+m)−B(0,1−3rj)

|∇u(z)|p(1− |z|)α dz
)1/p

for tj 5 r < tj+m , where 1/p+ 1/p′ = 1. Now, letting m→∞ , we establish

|Sq(Ur)| 5M(1− r)ω
(∫

B−B(0,1−3rj)

|∇u(z)|p(1− |z|)α dz
)1/p

for tj 5 r < tj+1 , which implies that

lim
r→1

(1− r)−ωSq(Ur) = 0,

as required.
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3. Proof of Theorem 2

If B(x, 2r) ⊂ B , then, applying Lemma 1 and dividing the domain of inte-
gration into two parts

E1 = {z ∈ B(x, 2r) : |∇u(z)| > r−δ},
E2 = B(x, 2r)− E1,

we have

(6) |u(x)− u(y)|p 5Mr(1−δ)p +Mrp−n
[
ϕ(r−1)

]−1
∫

B(x,2r)

Φp(|∇u(z)|) dz

for y ∈ B(x, r) , where M may depend on δ , 0 < δ < 1.
Let rj = 2−j−1 , j = 0, 1, . . . . For x ∈ B , let xj = (1−2rj)ξ with ξ = x/|x| .

Then we find

|u(xj)− u(x)| 5Mr1−δ
j +Mr

(p−n)/p
j

[
ϕ(r−1

j )
]−1/p

(∫

B(xj ,rj)

Φp(|∇u(z)|) dz
)1/p

when 3
2rj < %(x) < 5

2rj , where %(x) =
∣∣1− |x|

∣∣ . Hölder’s inequality gives

|u(xj+m)− u(xj)| 5M
j+m∑

l=j

r1−δ
l +

j+m∑

l=j

rωl
[
ϕ(r−1

l )
]−1/p

×
(∫

B(xl,rl)

Φp(|∇u(z)|)%(z)α dz

)1/p

5Mr1−δ
j +M

(j+m∑

l=j

rp
′ω
l

[
ϕ(r−1

l )
]−p′/p

)1/p′

×
(j+m∑

l=j

∫

B(xl,rl)

Φp(|∇u(z)|)%(z)α dz

)1/p

5Mr1−δ
j +Mκ(rj)

(∫

B−B(0,1−3rj)

Φp(|∇u(z)|)%(z)α dz

)1/p

,

where ω = (p−n−α)/p . Since limr→0 κ(r) = 0, we see that {u(xj)} is a Cauchy
sequence. Thus (6) implies that limr→1 u(rξ) exists and is finite for every ξ ∈ S .
Now, letting m→∞ , we have

|U(xj)| = |u(xj)− u(ξ)|

5Mr1−δ
j +Mκ(rj)

(∫

B−B(0,1−3rj)

Φp(|∇u(z)|)%(z)α dz

)1/p

.
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Hence we establish

|U(x)| 5M%(x)1−δ +Mκ
(
%(x)

)(∫

B−B(0,1−3%(x))

Φp(|∇u(z)|)%(z)α dz

)1/p

.

Note that

κ(r) =
[∫ r

r/2

(
tn−p+αϕ(t−1)

)−1/(p−1) dt

t

]1−1/p

=
[
rn−p+αϕ(r−1)

]−1/p
.

If we take δ so that (n− p+ α)/p+ 1 > δ > 0, then

lim
r→0

[
κ(r)

]−1
r1−δ = 0.

Now it follows that
lim sup
|x|→1

[
κ(%(x))

]−1|U(x)| = 0,

as required.

The above proof also shows the following (see [7] and [9]).

Proposition 1. Let u be a monotone function on B satisfying (4) with
−1 < α 5 p − n . If κ(1) < ∞ , then u has a finite nontangential limit at every
ξ ∈ S .

Proposition 2. Let u be a monotone function on B satisfying (4) with
n− 1 < p 5 n+ α . If κ(1) =∞ , then

lim
r→1

(1− r)−ω
[
ϕ
(
(1− r)−1

)]1/p
Sq(Ur) = 0

whenever p 5 q <∞ and ω = (n− 1)/q − (n− p+ α)/p > 0 .

4. Sharpness

1. The sharpness of the exponent −ω . Let −1 < α < p − 1. For δ > 0,
consider the function u on B defined by

u(x) = (1− |x|)1+a|x− e|−b,

where a = δ − (α+ 1)/p , b = (n− 1)/p and e = (1, 0, . . . , 0). Then the function
u is monotone on B . To show this, let D be a relatively compact open set with
the closure D ⊂ B , and suppose u attains a maximum on D at an interior point
c ∈ D , and set

E = {x ∈ B : (1− |x|)1+a = u(c)|x− e|b}.
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Since e ∈ E ,
max
D

u(x) = max
∂D

u(x)

holds. We also see that u attains a minimum on D at a boundary point. Hence
u is monotone on B . Further we have

∫

B

|∇u(x)|p%(x)α dx <∞.

If k(x) = |x− e|−b , then

Sq(ur) = M(1− r)1+aSq(kr) =M(1− r)1+a+(1/q−1/p)(n−1) = M(1− r)ω+δ.

This implies that the exponent −ω is sharp in Theorem 1.

2. The limits for BLD functions. Theorem 1 fails to hold for BLD functions,
when α < 0 and (n− p+ α)/p < (n− 1)/q < (n− p)/p .

For 0 < rj < 1 and γ > 1, set

Cj = {x : |x− rje| 5 (1− rj)γ},

where |e| = 1. We take {rj} such that {Cj} are mutually disjoint. For ϕ ∈
C∞0

(
B(0, 1)

)
such that ϕ = 1 on B

(
0, 1

2

)
, define

uj(x) = ϕ(|x− rje|/(1− rj)γ)|x− rje|−a,

where

(7) (n− p+ α)/p < a < (n− p+ α/γ)/p.

Then ∫

B

|∇uj(x)|p(1− |x|)α dx 5M(1− rj)α+γ(n−(a+1)p).

Note further that
Sq
(
(uj)rj

)
= c(1− rj)γ(−a+(n−1)/q)

with a positive constant c > 0, when a < (n− 1)/q . If we set u =
∑
j uj , then

lim
j→∞

(1− rj)−ωSq(urj ) =∞,

when a and γ are chosen so that

(8) (n− p+ α/γ)/p+ (1− γ−1){(n− 1)/q − (n− p)/p} < a < (n− 1)/q.
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Now we suppose that a satisfies (7) and (8). Then, since α+γ
(
n− (a+ 1)p

)
> 0,

we can take {rj} so that
∫

B

|∇u(x)|p(1− |x|)α dx <∞.

Thus u satisfies (2) and

lim sup
r→1

(1− r)−ωSq(Ur) =∞.
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[5] Lebesgue, H.: Sur le probléme de Dirichlet. - Rend. Circ. Mat. Palermo 24, 1907, 371–402.

[6] Manfredi, J.J., and E. Villamor: Traces of monotone Sobolev functions. - J. Geom.
Anal. 6, 1996, 433–444.

[7] Matsumoto, S., and Y. Mizuta: On the existence of tangential limits of monotone BLD
functions. - Hiroshima Math. J. 26, 1996, 323–339.

[8] Mizuta, Y.: Spherical means of Beppo Levi functions. - Math. Nachr. 158, 1992, 241–262.

[9] Mizuta, Y.: Tangential limits of monotone Sobolev functions. - Ann. Acad. Sci. Fenn.
Math. 20, 1995, 315–326.

[10] Mizuta, Y.: Potential Theory in Euclidean Spaces. - Gakkōtosho, Tokyo, 1996.
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