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Abstract. Several forms of the Dunford–Pettis property are studied, each related to a dif-
ferent mode of sequential convergence, and a different class of weakly compact functions. The
relationship between these Dunford–Pettis properties is investigated, and the appearance of previ-
ously studied Dunford–Pettis properties is pointed out, giving a unifying approach to the subject.

Introduction

In recent years several forms of the Dunford–Pettis property have been studied
(see [6], [2], [12], [16]) which conform more or less to the following scheme: if τ
is some type of sequential convergence in a Banach space X , and A is a class
of functions (linear, polynomial, holomorphic) defined on X , one can define a
Dunford–Pettis property on X by requiring

“For all Y , all weakly compact F ∈ A (X,Y ) , and all τ -null sequences (xn)
in X , F (xn) converges in norm to F (0).”

Clearly, the stronger the convergence τ is, the weaker the corresponding prop-
erty will be; and larger classes of functions A will result in stronger properties.
Our aim in this paper is to clarify the relationships between some of these prop-
erties and give a unified approach to the matter.

We find that—for any fixed type of convergence τ—taking A to be the
class of linear operators, k -homogeneous polynomials, or holomorphic functions
of bounded type produces the same Dunford–Pettis property. On the other hand,
if one takes A to be the class of all holomorphic functions, a strictly stronger
property may be obtained. We give conditions under which this happens. Finally,
we concentrate on τ = H (holomorphic sequential convergence) and find that in
this case even the strongest form of Dunford–Pettis property—when A is the class
of all holomorphic functions—holds for any Banach space.
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Throughout, X will be a Banach space. If Y is another Banach space,
L(X,Y ) will denote the space of continuous linear operators from X to Y . A con-
tinuous k -homogeneous polynomial P : X −→ Y is given by P (x) = A(x, . . . , x) ,
where A is a continuous k -linear function. P determines a unique A if we require
it to be symmetric. The space of all such polynomials will be denoted by P k(X,Y )
(or simply P k(X) if Y is the scalar field) and is a Banach space when endowed
with the norm

‖P‖ = sup{‖P (x)‖ : ‖x‖ ≤ 1}.
A function f : X −→ Y is holomorphic if it can be locally expressed as a uni-
formly convergent power series. We will denote the space of all such functions by
H(X,Y ) , and by Hb(X,Y ) the subspace of those functions which are bounded on
the bounded subsets of X (i.e., the holomorphic functions of bounded type). These
spaces will be denoted by H(X) and Hb(X) in the scalar-valued case, respectively.
Hb(X) is a Fréchet space when endowed with the topology τb of uniform conver-
gence over bounded subsets of X . Note that P k(X) with the norm defined above
is a closed subspace of Hb(X) . We consider H(X) with the Nachbin topology τω
(see [10, 3.14]). We will say that a mapping is weakly compact if it sends some
neighborhood of the origin onto a relatively weakly compact set.

For more on polynomials and holomorphic functions see [10], and for an ex-
tensive survey on the Dunford–Pettis property see [8].

We will use several different forms of sequential convergence in X . Dudley
[11] defines a sequential convergence τ in X as a relation “→τ ” between sequences
and elements of X such that:

(i) If xn = x for all n , then xn →τ x .
(ii) If xn →τ x and (xnk) is a subsequence of (xn) , then xnk →τ x .
For our purposes, we add the following two conditions:

(iii) If xn →τ 0 then (xn) is weakly null.
(iv) xn →τ x if and only if xn − x→τ 0.

Many topologies and sequential convergences have appeared in the literature
in accordance with our definition. Among them:

(1) Weak convergence τ = ω .
(2) The convergence τs introduced by PeÃlczyński [14]. A sequence (xn) is said

to be τs -null for s ∈ [0, 1) if there exists a constant c > 0 such that for any k ∈ N
and any collection of distinct natural numbers n1, . . . , nk , ‖θ1xn1 + · · ·+θkxnk‖ ≤
cks whenever |θi| = 1.

(3) Weak p -summability τ = ωp . The sequence (xn) is said to be ωp -null if(
x′(xn)

)
∈ lp for each x′ ∈ X ′ .

(4) The convergence τ = P (≤kX) [12]. In this case (xn) is considered τ -
convergent to x if P (xn) converges to P (x) for any continuous scalar-valued
polynomial P of degree ≤ k .

(5) Polynomial convergence. The sequence (xn) is polynomially convergent
to x if P (xn) converges to P (x) for any continuous scalar-valued polynomial P .
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Note that this is equivalent to f(xn) converging to f(x) for any holomorphic
scalar-valued function of bounded type f .

(6) Holomorphic convergence [15]. Here (xn) is H -convergent to x when
f(xn) converges to f(x) for any holomorphic scalar-valued function f .

τ -Dunford–Pettis properties

We begin by proving that for any fixed τ , the classes A of linear, polyno-
mial, or bounded type holomorphic functions give rise to the same Dunford–Pettis
property. We will use the following lemma.

Lemma 1. If for every τ -null sequence (xn) in X and for every k and every
weakly null sequence (Pn) in P k(X) , Pn(xn) → 0 , then all scalar-valued poly-
nomials are τ -sequentially continuous. Consequently, the same holds for scalar-
valued holomorphic functions of bounded type.

Proof. We need only check the conclusion for homogeneous polynomials.
This we do by induction on the degree k of a homogeneous polynomial Q . For
k = 1 this is clear because τ -convergence implies weak convergence. Suppose
then that the result holds for (k − 1)-homogeneous polynomials, and consider a
τ -null sequence (xn) and a k -homogeneous scalar-valued polynomial Q . Define
TQ: X −→ P k−1(X) by TQ(x) = A(x, · , . . . , · ) where A is the symmetric k -linear
form associated to Q . TQ is a continuous linear operator, so for all γ ∈ P k−1(X)′ ,
γ
(
TQ(xn)

)
→ 0, thus

(
TQ(xn)

)
is a weakly null sequence of (k− 1)-homogeneous

polynomials, and by our inductive hypothesis Q(xn) = TQ(xn)(xn)→ 0.
If f ∈ Hb(X) , its Taylor series converges uniformly over bounded sets such

as (xn) . Thus, f is also τ -sequentially continuous.

Theorem 2. For any Banach space X , the following are equivalent.
(a) For all Y , all weakly compact T ∈ L(X,Y ) , and all τ -null sequences (xn) in

X , T (xn)→ 0 in norm.
(a ′ ) For all weakly null sequences (γn) ⊂ X ′ and all τ -null sequences (xn) in X ,

γn(xn)→ 0 .
(b) For all Y , all weakly compact P ∈ P k(X,Y ) (k ≥ 1) , and all τ -null se-

quences (xn) in X , P (xn)→ 0 in norm.
(b ′ ) For all weakly null sequences (Pn) ⊂ P k(X) (k ≥ 1) , and all τ -null sequences

(xn) in X , Pn(xn)→ 0 .
(c) For all Y , all weakly compact F ∈ Hb(X,Y ) , and all τ -null sequences (xn)

in X , F (xn)→ F (0) in norm.
(c ′ ) For all weakly null sequences (fn) ⊂ Hb(X) and all τ -null sequences (xn) in

X , fn(xn)→ 0 .

Proof. We show first that (c) and (c ′ ) are equivalent. The equivalences (a)
⇔ (a ′ ) and (b) ⇔ (b ′ ) are analogous—and perhaps less technical—so we will
omit them.
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(c) implies (c ′ ): Let (fn) and (xn) be as in (c ′ ), and define F : X −→ c0 by
F (x) =

(
fn(x)

)
. Since (fn) is weakly null and point evaluations are continuous

linear forms over Hb(X) , F is well defined. Since (fn) is weakly bounded, it is τb -
bounded (both topologies produce the same dual space), and thus bounded for the
compact-open topology. Hence (fn) are uniformly bounded on compact subsets
of X , and so F is locally bounded. Thus, to see that F is holomorphic, we only
need to prove weak holomorphicity. Take then a ∈ l1 , and consider (a ◦ F )(x) =∑
n anfn(x) . Since a ◦ F is a uniform limit (over bounded sets) of holomorphic

functions of bounded type, a ◦ F ∈ Hb(X) for each a , and thus F ∈ Hb(X, c0) .
Now consider the transpose F t: l1 −→ Hb(X) given by F t(a) = a ◦ F . By [17,
3.4] if we see that F t is weakly compact, then F is also weakly compact. So take
a in the unit ball of l1 and note that F t(a) = a ◦ F is in the closed absolutely
convex hull of {fn : n ≥ 1} ∪ {0} . Since this set is weakly compact in the metric
space Hb(X) , so is its hull [18, IV.11.4]. Thus F t , and F , are weakly compact.
Since (xn) is τ -null, limn F (xn) = F (0) exists, and

|fn(xn)| ≤ |fn(xn)− fn(0)|+ |fn(0)| ≤ ‖F (xn)− F (0)‖+ |fn(0)|

so limn fn(xn) = 0, because limn fn(0) = 0.

(c ′ ) implies (c): Let F and (xn) be as in (c). We may suppose F (0) = 0, and
prove that limn F (xn) = 0. If this were not the case, take ε > 0 and a subsequence
(xnk) with ‖F (xnk)‖ > ε for all k . Consider (y′k) ⊂ Y ′ of norm one and such that
y′k
(
F (xnk)

)
= ‖F (xnk)‖ . Now consider the transpose of F , F t: Y ′ −→ Hb(X) .

This is a continuous linear operator, and is weakly compact because F is. Take
then a subsequence (y′kj ) with F t(y′kj ) converging weakly to g ∈ Hb(X) . Since

(xn) is τ -null and F t(y′kj )− g is weakly null, then
(
F t(y′kj )− g

)
(xnkj )→ 0. But

by Lemma 1 (note that the τb topology when restricted to P k(X) coincides with
the norm topology) g(xnkj )→ 0, a contradiction. Thus limn F (xn) = 0.

Clearly (c) implies (b) and (b) implies (a). Thus we will be done if we show
that (a) ⇒ (b ′ ) and (b) ⇒ (c).

(a) implies (b ′ ): We prove this by induction. The case of degree k = 1
is simply (a) ⇒ (a ′ ), so suppose the result true for (k − 1)-homogeneous poly-
nomials, and consider (Pn) and (xn) as in (b ′ ) above. Define a sequence of
polynomials (Qn) by setting Qn = An(xn, · , . . . , · ) where An is the symmetric
k -linear form associated to Pn . We need to show that this sequence is weakly
null. Define P : X −→ c0 by P (x) =

(
Pn(x)

)
. P is weakly compact, for its

transpose P t: l1 −→ P k(X) is weakly compact (P t(en) = Pn → 0 weakly). Thus
P tt: P k(X)′ −→ l∞ has image contained in c0 . For each L ∈ P k−1(X)′ define
L: X −→ P k(X)′ by L(x)(R) = L

(
B(x, · , . . . , · )

)
, where B is the symmetric

k -linear form associated to R . Now consider P tt ◦ L: X −→ c0 . This is a weakly
compact linear operator, and since (xn) is τ -null, we have, by (a), that P tt◦L(xn)
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tends to zero in norm, that is supj |(L(xn) ◦ P t)j | → 0 as n grows. In particular

|L(Qn)| =
∣∣L
(
An(xn, · , . . . , · )

)∣∣ = |L(xn)(Pn)| → 0.

Thus (Qn) is weakly null, and by our inductive hypothesis Pn(xn) = Qn(xn)→ 0.

(b) implies (c): Since τ -null sequences are bounded, the Taylor series of f
converges uniformly over (xn) . Also, each k -homogeneous polynomial in this
series is weakly compact, so (b) applies.

We are now in a position to define the τ -Dunford–Pettis property, given a
sequential convergence τ .

Definition. We will say that a Banach space X has the τ -Dunford–Pettis
property if one—and therefore all—of the conditions in Theorem 2 hold.

Note that the classical Dunford–Pettis property is obtained when τ is weak
convergence. Other forms of the Dunford–Pettis property have been studied which
conform to this scheme. Among them:

(1) τ = ωp produces the DPPp studied by Castillo and Sánchez [6].
(2) τ = P (≤kX) corresponds to the polynomial Dunford–Pettis property

studied by Farmer and Johnson [12].
(3) Polynomial convergence gives rise to the polynomial Dunford–Pettis prop-

erty as defined by Biström, Jaramillo and Lindström [2].
Next, we prove that in the definition of the τ -Dunford–Pettis property, the

class A of holomorphic functions of bounded type (or the space of k -homogeneous
polynomials, or that of linear functions) cannot be replaced by the class of all
holomorphic functions over X . Indeed, the resulting property is in general strictly
stronger than the τ -Dunford–Pettis property. We will use the following definition.

Definition. We will say a Banach space X has the ∗ -Dunford–Pettis prop-
erty if for all weakly null sequences (xn) in X and all weak-∗ null sequences (x′n)
in X ′ , x′n(xn) converges to 0.

This property implies the Dunford–Pettis property. Note that all Schur spaces
have the ∗ -Dunford–Pettis property. Also, if X has this property, all its comple-
mented subspaces have it. For a Grothendieck space this property is equivalent to
the classical Dunford–Pettis property, thus for instance l∞ has the ∗ -Dunford–
Pettis property [8], and so does H∞ (see Bourgain [4], [5]). The space l1

⊕
l∞ is

an example of a space having the ∗ -Dunford–Pettis property which is neither Schur
nor Grothendieck. It is easily seen that X has the ∗ -Dunford–Pettis property if
and only if every weakly relatively compact subset of X is limited.

On the other hand, it is not difficult to check that ∗ -Dunford–Pettis property
coincides with the DP∗ property introduced in [3], that is, the fact that weak∗
and Mackey convergence coincide sequentially in X ′ . We refer to [3] for further
information about this property and its connection with differentiability.
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A typical example of a space having the Dunford–Pettis property, but lacking
the ∗ -Dunford–Pettis property is c0 . In such a space although a weakly compact
holomorphic function F of bounded type will map weakly null sequences into
sequences converging in norm to F (0), the same will not be true of all weakly
compact holomorphic functions.

Theorem 3. If X has the Dunford–Pettis property but not the ∗ -Dunford–
Pettis property, there are scalar-valued holomorphic functions f on X which map
a weakly null sequence into a sequence not norm convergent to f(0) .

Proof. Take (xk) weakly null in X and (x′k) weak-∗ null in X ′ such that
x′k(xk) does not converge to 0. Passing to a subsequence and multiplying the xk ’s
by suitable (bounded) scalars, we may suppose that x′k(xk) = 1 for all k . Now let
0 < ε < 1. We will extract subsequences (xkj ) and (x′kj ) inductively. Set k1 = 1,

and having defined k1, . . . , kr−1 , define kr as follows: since (x′k) is weak-∗ null,
choose nr > kr−1 and such that

|x′k(xkr−1)| <
ε

2 + ε
, if k ≥ nr,

and since (xk) is weakly null, take mr > kr−1 and such that

∑

j<r

|x′kj (xk)|j <
ε

2
, if k ≥ mr.

Define kr = max{nr,mr} . Now construct f : X −→ C as f(x) =
∑∞
j=1 x

′
kj

(x)j .

Note that since (x′kj ) is weak-∗ null and 0 < lim supj ‖x′kj‖ <∞ this is an entire
function on X which is not of bounded type. Finally, for each r ∈ N we have

|f(xkr )− 1| ≤
∑

j<r

|x′kj (xkr )|j +
∑

j>r

|x′kj (xkr )|j <
ε

2
+

∞∑

j=1

(
ε

2 + ε

)j
= ε,

bearing in mind that kr ≥ mr and that for j > r , kj ≥ nr+1 . Thus |f(xkr )−1| <
ε < 1, and f(xkr ) cannot tend to 0 = f(0).

We show next that we can find spaces X without the ∗ -Dunford–Pettis prop-
erty in the following two situations: if X does not contain a copy of l1 ; and if X
is not Schur, and the unit ball of X ′ is weak-∗ sequentially compact.

Proposition 4. If X has the ∗ -Dunford–Pettis property, then X contains
a copy of l1 .

Proof. By the Josefson–Nissenzweig theorem [13] there is a weak-∗ null se-
quence (y′n) in the unit sphere of X ′ . Take a sequence (yn) in X with ‖yn‖ ≤ 2
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and y′n(yn) = 1 for all n . If X contains no copy of l1 , we may use the Rosenthal–
Dor theorem [9, p. 201] to extract from this last sequence a subsequence (which
we still call (yn)) which is weakly Cauchy. From this, we extract another subse-
quence inductively: set 0 < ε < 1, and n1 = 1; and having defined n1, . . . , nr−1 ,
choose nr > nr−1 such that |y′nr (ynr−1)| < ε . Since (yn) is weakly Cauchy,
xk = ynk − ynk−1

is weakly null. Setting x′k = y′nk we have (xk) weakly null and
(x′k) weak-∗ null such that

|x′k(xk)− 1| = |y′nk(ynk−1
)| < ε < 1.

Thus x′k(xk) cannot converge to zero.

The following result is obtained in [3]. Our proof is different and we include
it for the sake of completeness.

Proposition 5. If X has the ∗ -Dunford–Pettis property, and the unit ball
of X ′ is weak-∗ sequentially compact, then X is Schur.

Proof. We follow [15]. If X were not Schur, take a weakly null sequence
(yn) contained in the unit sphere of X . From (yn) we extract, by the Bessaga–
PeÃlczyński selection theorem [9, p. 42], a basic sequence, which we still call (yn) ,
and consider the coordinate functionals y′n: S −→ C where S is the closed linear
span of the yn ’s. These have norm not larger than twice the basis constant of (yn) .
Extend each y′n to all of X by Hahn–Banach, preserving the norms (we still call
them y′n ). Since this sequence is bounded and the unit ball of X ′ is weak-∗
sequentially compact, choose a weak-∗ convergent subsequence (y′nk) and call y′

its weak-∗ limit. Now set x′k = y′nk − y′ and xk = ynk . The sequence (xk) is
weakly null, (x′k) weak-∗ null, and for each k we have x′k(xk) = 1.

Note that if X is weakly compactly generated, the unit ball of X ′ is weak-∗
sequentially compact [9, p. 228]. For further information about spaces with weak-∗
sequentially compact dual balls, we refer to [9, Chapter 13] and references therein.
A hereditarily Dunford–Pettis space lacking the ∗ -Dunford–Pettis property will
contain a copy of c0 [7, Proposition 2], but we do not know if in this case one can
find a complemented copy.

Finally, we consider what happens when the convergence τ is holomorphic
convergence, that is: (xn) is H -convergent to x if f(xn) → f(x) for any f ∈
H(X) . In [15] Petunin and Savkin prove that holomorphic convergence implies
norm convergence in spaces which are weakly compactly generated. However,
there are spaces such as l∞ where holomorphic convergence does not imply norm
convergence [1]. In spite of this fact, as we see below, the “H -Dunford–Pettis
property” holds in all Banach spaces. We consider the strongest form of this
property, by taking A as the class of all holomorphic functions.
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Theorem 6. In any Banach space X , the following hold.
(i) For all Y , all weakly compact F ∈ H(X,Y ) , and all H -null sequences (xn) ,

F (xn)→ F (0) in norm.
(ii) For all weakly null sequences (fn) ∈ H(X) and all H -null sequences (xn) ,

fn(xn)→ 0 .

Proof. (i): Let F and (xn) be as above. By [17, 3.7], F factors through a
reflexive Banach space G , that is, there is a holomorphic function g: X −→ G
and a continuous linear operator T : G −→ Y such that F = T ◦ g . Since g
is holomorphic, the sequence g(xn) is H -null. But G is reflexive, so by [15]
g(xn) converges in norm to g(0). Thus F (xn) = T

(
g(xn)

)
is norm convergent to

T
(
g(0)

)
= F (0).

We now prove that (i) implies (ii). The proof is similar to (c) implies (c ′ )
above. We define F : X −→ c0 by F (x) =

(
fn(x)

)
. This function is holomorphic,

and once again F t: l1 −→ H(X) given by F t(a) = a ◦ F is weakly compact,
but in this case, the weak compactness of the closed absolutely convex hull of
{fn : n ∈ N} ∪ {0} is more involved. Consider the Nachbin–Coeuré topology τδ
on H(X) (see [10, 3.16] for definition). Note that τδ is bornological and coincides
with τω on bounded sets of H(X) (see [10, 3.19]). Thus, closed absolutely convex
hulls in both topologies are the same. Now Krein’s theorem [18, IV.11.4] assures
that this set is weakly compact (since it is complete for τδ , which is the Mackey
topology).
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