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Abstract. For 0 < p < 1, @, is the space of those functions f which are analytic in the
unit disc A = {z € C:|z| < 1} and satisfy sup, <1 [\ [f'(2)[*(9(2,a)P dx dy < oo, where g(-,-)
is the Green function of A. In this paper we obtain a new characterization of (),-functions in
terms of pseudoanalytic extension and, as a corollary, we prove that @, has the K -property of
Havin. The latter means that, for any ¢ € H*>, the Toeplitz operator TE maps ), into itself.

This in turn implies (as usual) that @, also enjoys the f-property, i.e., division by inner factors
preserves membership in Q.

1. Introduction and statement of results

We denote by A the unit disc {z € C: |z| < 1} and by H? (0 < p < o0)
the classical Hardy spaces of analytic functions in A (see [8] and [13]).

For a € A, let ¢, denote the Mobius transformation defined by ¢,(z) =
(z—a)/(1 —az), z € C, and the Green function g(-,-) of A is given by

1
9(z,a) = log ——, a,z € A,
|pa(2)]
For p > 0, we set
Qp:{f:fisanalyticinAand sup// )29 (2,a) dA(z) < }
a€EA
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Here and throughout, dA is the Lebesgue measure in C. The @, spaces arose
in [2] in connection with Bloch and normal functions and have been studied by
several authors (see e.g. [2], [3], [4], [12] and [17]). Observe that Q) is the Dirichlet
space 2, while Q1 = BMOA, the space of functions f € H' whose boundary
values have bounded mean oscillation on A (see [5] and [13]). Further, Aulaskari
and Lappan proved in [2] that for all p € (1,00), the spaces @), are the same and
equal to the Bloch space

B = {f . f is analytic in A and sup(1 — |z|*)|f/(2)] < oo}.
zZEA

On the other hand Aulaskari, Xiao and Zhao showed in [4] that if 0 <p < ¢ <1
then Q, & Q4. In particular, we have

2 C @, C BMOA, 0<p<l.

The results of [3] (see also [23] and [26] for the case 1 < p < 0o ) show that if
0 <p<oo and f is an analytic function in A then

W seq = sw [ FEPI-leGR) aAE) <.

la|<1

Our main result, stated as Theorem 1 below, is a new characterization of Q-
spaces (0 < p < 1) in terms of pseudoanalytic continuation. We refer to Dyn’kin’s
paper [11] for similar descriptions of classical smoothness spaces, as well as for
other important applications of the pseudoanalytic extension method.

In what follows, A_ denotes the region C\ A, and we write

sz 2eC)\{o).

Finally, we need the Cauchy—-Riemann operator

E—Qdifl Q—HQ 2=+
“ 9z 2\az " 'oy) T

Theorem 1. If 0 <p <1 and f € (Vg .o, HY, then the following condi-
tions are equivalent.

(1) fe@p. )
(i) supjaj<1 [la [/ (2)P((1/10a(2)?) — 1)" dA(2) < co.
(iii) There exists a function F € C1(A_) satisfying

(2) F(z) =0(1), as z — 00,
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(3)  lim F(re®?) = f(e'), a.e. and in L([—m,x]) for all q € [1,00),

r—1t

and

(4) sup // 0F (2)*(Jpa(2)]? — 1)" dA(z) < o0.

lal<1

We remark that our proof of Theorem 1 will show that the equivalence (i)
<= (ii) holds for an arbitrary holomorphic function f (without the a-priori
assumption that f € (g, H7)

To describe some consequences of Theorem 1, we have to introduce further
terminology. We recall first that, given a function v € L*°(JA), the associated
Toeplitz operator T, is defined by

T = o [ 1,

1
~ i )y C—z ¢ (feH', z€ A).

Definition 1. A subspace X of H! is said to have the K-property if

T;(X) C X for any o € H*.

Definition 2. A subspace X of H! is said to have the f-property if h/I € X
whenever h € X and I is an inner function with h/I € H*.

These notions were introduced by Havin in [14]. It was also pointed out in
[14] that the K -property implies the f-property: indeed, if h € H', I is inner
and h/I € H' then h/I = Tsh.

Our next result is

Theorem 2. For 0 < p <1, the space ), has the K -property.
In view of the above discussion, this immediately yields
Corollary 1. For 0 < p < 1, the space ), has the f-property.

Since, as we have mentioned above, the @, spaces (0 < p < 1) are inter-
mediate spaces between the Dirichlet class ¥ and BMOA, we wish to remark
that both of these endpoint spaces do have the K -property (and hence also the
f-property). The case of Z is covered by results in [14]; see also [9], [15], [16] and
[18] for various extensions dealing with Dirichlet-type spaces. The K -property of
BMOA can be established along the lines of [14]: given ¢ € H*°, the multipli-
cation map T acts boundedly on H 1 whence the adjoint operator TE must act
boundedly on BMOA..

Since, for p > 1, Q, = % and % is not contained in H', it does not make
sense to ask for this range of p’s whether or not @), has the K- (or f-)property.
However, let us mention that H> N %, fails to possess the f-property (here, %,
is the subspace of % defined by the corresponding “little oh” condition). This
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result, due to Anderson [1], can be also deduced from the fact that %, contains an
infinite Blaschke product (see [19]). Some other “Bloch-type” subclasses of H*°
without the f-property have been exhibited by Vinogradov in [25] (see also [7]).

For further examples of spaces with or without the K- (or f-)property, the
reader is referred to [20], [21] and the bibliography therein.

2. Proofs of the results

We begin by showing how Theorem 2 follows from Theorem 1. The proof of
Theorem 1 will be presented afterwards.

Proof of Theorem 2. Let 0 <p <1, f €@, and ¥ € H*. We have to
show that gdéfTE f is necessarily in Q. B
Since g is the orthogonal projection of fi) onto H?, one has
fo=g+h
for some h € HZ. (Actually, both g and h lie in ﬂ0<q<oo H?. To see why,

recall that f € BMO, ¢ € L* and use the boundedness properties of the Riesz
projection.) Thus,

(5) g=fy—h a.e. on OA.

Now, since f € Q,, Theorem 1 says that there is a function F € C'(A_)
satisfying (2), (3) and (4). Further, we set, for z € A_,

def——— def——

U(z)=y(z*),  H(z)=h(z")

and finally

This done, we claim that

(6) Gloa =g

(the boundary values are again taken in the sense of radial convergence a.e. on
OA and in each LY with ¢ < 00) and

(7) 0G(2)| < [[Wll=|0F(2)],  z€A_.
Indeed, (6) follows from (5) and the facts that
Floa=f,  Ploa=1%,  Hloa =h,

while (7) holds because ¥ and H are holomorphic in A_, and so 0G = ¥ - OF
on A_.

Since G is obviously C''-smooth in A_ and bounded at oo, we now conclude
from (6) and (7) that the analogues of (2), (3) and (4) hold true with G and g in
place of F' and f. Another application of Theorem 1 yields g € @, as desired. o
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Now it remains to prove Theorem 1. Before doing so, let us recall that if h
is an analytic function in A then, as usual, we set
1/2

1 [7 '
Msy(r,h) = (%/ |h(7“619)|2d¢9) , 0<r<l.

Proof of Theorem 1. (i) <= (ii) Let us borrow the argument used in the
proof of Theorem 2.2 of [3]. By (1), it suffices to prove that there exist positive
constants A, and B, such that

4, //A|f’(2)!2(m—l) 22 [[ @RI eGP dAe)
<5y // PO (e 1) e

for all @ € A and any f. By a change of variables argument, it is enough to check
(8) for a = 0. This is equivalent to

/Mg <——1) rdr</ My(r 1—T)p7“d7“

1 p
< Bp/ Mz(ﬁf’)2<—2 - 1) rdr,
0 r
that is, to

1 1
Ap/ Ma(r, f)*(1 = r?)Pri =20 dr < / My(r, f)2(1 = r?)Prdr
0 0

1
< Bp/ My (r, f)?(1 — r?)Pri=2P dr,
0

This follows easily, since 0 < p < 1 and My(r, f’) is an increasing function of r. o

Of course, the second inequality in (8) actually holds with B, = 1. It is the
first inequality that we were mainly concerned with.

(i) = (ili) Let 0<p <1 and f € @Q,. Set
F(z) = f(z), zeA_.

It is clear that F is C'-smooth and satisfies (2) and (3). Now let a € A; making
the change of variables z = w* in the integral which appears in (4) and noting
that |0F(2)| = |f'(2*)||2*|?, we obtain

J[. BFORGe @R ~ 17 dac) = [[ 17 @Rl - 17 daw)
Z//A'f'W)'Z(W”)p“W)'

Then, since (i) <= (ii), (4) follows. o
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The proof of the remaining implication (iii) = (ii) makes use of Calderén—
Zygmund operators and Muckenhoupt weights. We refer to [22] and [24] for the
notion of a Calderén—Zygmund operator, as well as for the basic terminology and
facts listed below.

If ¢ > 1 and w is a positive measurable function on C, then w is said to be
an A,-weight if

Aq(@défsgp{ﬁ //Qw(z) dA@)] {ﬁ //Q(w(z))_q//q dA(z)]q/ql < .

Here @ ranges over the discs in C, |@Q| denotes the area of @, and ¢’ = ¢/(¢—1).
The As-condition has a simpler appearance:

AQ(w)dgfsgp{ ﬁ //Qw(z) dA(z)] {I%QI //Q(w(z))_ldA(z)] < .

Now if w is an Aj-weight with As(w) < a and if T is a Calderén—Zygmund
operator, then we have the weighted inequality

/ Tg(2) e dA<><BTa/ 19(2)Pw(z) dA(z), for all g € L2(w),

where the constant Br, depends only on « and ||T||p2_ 2, the norm of T in
the unweighted LZ2-space.

We are now in a position to complete the proof of Theorem 1.

(iii) = (ii) Suppose (iii) holds. We shall argue as in the proof of Lemma 7 on
p. 154 of [10]. Fix z € A and R > 1. In view of (3), the Cauchy—Green formula
applied to the function that equals f in A and F' in A_ gives

1
(10) fz) = 2mi €= Rf—Z N _//1<|§|<R §—z dA(g)'

Differentiating (10) and noticing that the arising contour integral is O(1/R), as
R — oo, we obtain

(1) rer =2 [ emhaac

Put

(12) ®(z) = {EF(Z), %f zeA_,



On Q, spaces and pseudoanalytic extension 483

Let S be the Calderén—Zygmund operator defined by

(13) Sg(z) = p.v. / /C ( ég_(%Q dA(€).

Using (11), (12) and (13), we see that
1
(14) f)= —=(5B)(2),  zeA
Given a € A, define

1
|ea(2)[?

We shall prove the following result.

P (1= lal)P[le? - 1]

= a2 , z € C.

(15) Ua(2) = '1

Proposition 1. There exists a positive constant « such that, for every
a€ A, U, is an As-weight with

(16) As(U,) < a, for all a € A.

Once Proposition 1 is established, we can proceed as follows. Taking (12)-
(15) into account and using inequality (9), with suitable replacements and in
conjunction with (16), we get

//A ‘f,(z)|2(y%(1z)|2 - 1)pdA(Z> = //A |/ (2)|?Ua(2) dA(2)

- = [[ 15DEPU.E aa)

<[] Is9@PULG 4
(17) <c [[ 1@¢)Pu.e) aae

—c || prePU.e e

<c // BF () (Jpa(2) 2 — 1) dA(2),

where C > 0 is a constant independent of a € A. To verify the last step, note
that |pq(2)] > 1 for z € A_. The resulting inequality from (17) shows that (ii)
follows from (4). Consequently, it only remains to prove Proposition 1.
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Proof of Proposition 1. Given a € A, set

P -1)
(18) Va(Z) = m, z € C.
It is clear that
(19) As(U,) = A2(V,), for all a € A.

We can write

where
1

|z —al|?P’

W(z) = ||z|2 — 1}p, Yo (2) =

It is well known (see e.g. [22, p. 218]) that, since 0 < p < 1, the weight Wy(z) =
|z|_2p satisfies the A -condition for all s > 1. Since the Y, are translates of Wy,
it follows that for every s > 1 there exists a constant ag > 0 such that

(20) As(Ya) < as, forall a € A.

Take and fix € (1,1/p), and let @@ be any disc. Then, for every a € A, we have

BN [ v 0| [ | v 16| = | [ weme 14|
Jall, w;df‘@]
(21) < e H// o
iy
U/ Ya(2)” !Q!)T/T'

Now it can be easily proved by direct calculation that there exists a positive
constant C' such that

1/r
o)l [ wmae] =0 wme
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Then (21) implies that, for every disc @ and every a € A,

o o] g [ v )

<clg [, rewe) g v >}W.

Next, we set
1
s=1+—

Y
,r./

(so that s/s’" = 1/r") and rewrite (22) a

@ [ e aae) [|@\

6]

<C|g ], vt } Lém I s aac)] "

Together with (20) this yields

{|Q|//V Je H|Q|// A }<0as,

for every disc ) and every a € A. Hence

As(V,) < Cag, for every a € A.

In view of (19), this gives (16) and finishes the proof. o

485

After this work had been completed, Professor Jie Xiao kindly informed us of

his (unpublished) proof of Corollary 1, based on ideas different from ours.
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