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Abstract. Let φ be an analytic map of the unit disk D such that φ(D) ⊂ D . By Schwarz’s
lemma, the map φ has at most one fixed point in D (except for φ(z) = z ). On the other hand,
there might be many boundary fixed points, i.e. points ζ ∈ ∂D where φ has non-tangential limit
ζ and where the derivative of φ has a finite non-tangential limit, which we write as φ′(ζ) . One
fixed point of φ plays a special role: the Denjoy–Wolff point. It is the unique fixed point ω of φ
where |φ′(ω)| ≤ 1 . If φ does have a fixed point in D , that point is ω , otherwise ω ∈ ∂D .

Since the 1880’s, until as recently as the 1980’s, various conjugations have been introduced to
study the iteration of φ near ω . In this paper, we produce conjugations to study φ near boundary
fixed points ζ different from ω . Our method uses some results of Cowen and Pommerenke on
inequalities for multipliers at boundary fixed points.

1. Introduction

Let φ be an analytic map of the disk such that φ(D) ⊂ D . If z ∈ D is a fixed
point for φ , we call φ′(z) the multiplier at z . Note that if z ∈ ∂D , then φ(z) and
φ′(z) are defined as non-tangential limits, i.e. we do not require any smoothness
across the boundary.

Since φ is a self-map of the disk, multipliers at boundary fixed points are al-
ways positive. Aside for the case when φ is an elliptic automorphism, the following
holds.

Theorem 1.1 (Denjoy–Wolff). There exist a unique point ω ∈ D such that
the iterates φn converge to ω uniformly on compact subsets of the disk. Moreover,
ω is the only fixed point of φ satisfying |φ′(ω)| ≤ 1 .

The special point ω is called the Denjoy–Wolff point of φ . By Schwarz’s
lemma, φ has at most one fixed point in D and if so, such a fixed point must be
the Denjoy–Wolff point. Hence, every fixed point ζ which is different from ω must
lie on ∂D , and if its multiplier φ′(ζ) is finite, then φ′(ζ) > 1. For this reason, we
call such points boundary repelling fixed points (BRFP).

Conjugations are a powerful tool to study the iterates of φ near ω . In 1884,
G. Kœnigs [Koe] proved that if ω ∈ D and φ′(ω) 6= 0, then there exists an analytic
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map σ defined on D such that σ ◦ φ = φ′(ω)σ . In 1904, L. Böttcher [Bo] showed
that if ω ∈ D and φ′(ω) = 0, then there exists an analytic map σ defined in a
small neighborhood of ω , such that σ ◦ φ = σn , where n is the smallest integer
such that φ(n)(ω) 6= 0. In 1931, G. Valiron [Va] studied the case when ω is on
the unit circle ∂D and the multiplier c at ω is strictly less than 1. In this case
there is an analytic map σ defined on D with Reσ(z) > 0 and σ ◦ φ = (1/c)σ .
More recently, Pommerenke [Po1], and Baker and Pommerenke [BP] showed that
when ω ∈ ∂D and c = 1 there is an analytic map σ defined on D such that
σ ◦ φ = σ + 1.

In this paper we prove the existence of conjugations, in order to better un-
derstand the dynamics near a BRFP.

Theorem 1.2 (Main theorem). Suppose φ is an analytic map of D such
that φ(D) ⊂ D . Assume that 1 is a BRFP for φ with multiplier 1 < A < ∞ .
Let a = (A− 1)/(A+ 1) and η(z) = (z − a)/(1− az) . Then there is an analytic
map ψ of D , with ψ(D) ⊂ D , which has non-tangential limit 1 at 1 , such that:

(1.1) ψ ◦ η(z) = φ ◦ ψ(z)

for every z ∈ D , and which is semi-conformal at 1 , i.e.,

(1.2) Arg
1− ψ(z)

1− z −→ 0

as z tends to 1 non-tangentially.
Moreover, ψ is unique up to precomposition with a Möbius transformation

M which commutes with η , i.e., M is ±(z − b)/(1− bz) for some b ∈ (−1, 1) .

Remark 1.3. Theorem 1.2 still holds if η is replaced by any other Möbius
transformation of the unit disk, which fixes 1 and whose derivative at 1 is equal
to A . Moreover, the term “semi-conformal” is not standard in the literature. For
instance [Po2] uses “isogonal”.

In the classical proofs, the conjugating maps are obtained by considering the
sequence of iterates {φn} followed by an appropriate normalization. For instance,
in the case when ω ∈ ∂D , [Po1] and [BP], the normalization is done with respect
to the sequence {φn(0)}∞n=0 , which by the Denjoy–Wolff theorem tends to ω .

To prove Theorem 1.2 we use the same approach. We consider the sequence
of iterates {φn} . However, now φn(z) tends to escape from the BRFP. So, the
normalization has to be done before the iteration. The main difficulty, which does
not arise in the classical contexts, is to first prove the existence of a backward
iteration sequence.

A backward iteration sequence for φ is a sequence {wn}∞n=0 ⊂ D such that
φ(wn) = wn−1 for n = 1, 2, 3, . . . . In general, backward iteration sequences may
not exist, e.g. φ(z) = 1

2z has none.
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Lemma 1.4 (Main lemma). Suppose that φ is an analytic map of D such
that φ(D) ⊂ D , and assume that 1 is a BRFP for φ , with multiplier 1 < A <∞ .
Let a = (A−1)/(A+1) . Then there exists a backward iteration sequence {wn}∞n=0

tending to 1 , and such that

(1.3)

∣∣∣∣
wn+1 − wn
1− wnwn+1

∣∣∣∣ ≤ a

for all n .

This lemma will be proved in Section 3. In Sections 2 and 4, we will deduce
the existence part of Theorem 1.2 from Lemma 1.4. In Section 5 we prove the
uniqueness part of Theorem 1.2. Finally, in Section 6 we formulate some questions
for future investigations.

Although the proof of Theorem 1.2 revolves around the construction of a
backward iteration sequence, once the theorem is proved we find that there are
many such sequences.

Corollary 1.5. Suppose φ is an analytic map of the disk such that φ(D) ⊂
D , and assume that 1 is a BRFP for φ . Then, given any angle θ ∈ (− 1

2π,
1
2π) ,

there is a backward iteration sequence which tends to 1 and is asymptotically
tangent to the segment [1, 1− eiθ] .

Proof. Let zn = Ane−iθ for n = 0, 1, 2, 3, . . . . Then cn = (zn− 1)/(zn+ 1) is
a backward iteration sequence for η in D , which converges to 1 and is tangent to
the segment [1, 1− eiθ] . By Theorem 1.2, ψ(cn) is a backward iteration sequence
for φ , which also converges to 1 and is tangent to the segment [1, 1−eiθ] , because
ψ is semi-conformal at 1.

Remark 1.6. A consequence of Corollary 1.5 is that the hypothesis of
smoothness across ∂D can be removed in Theorem 7.23 of [CM].

Remark 1.7. Note that, in Theorem 1.2, φ is precomposed with the conju-
gation, while in the classical results mentioned above it is the conjugating function
which is precomposed with φ . D. Bargmann pointed out that these conjugating
functions are known as Poincaré maps in the complex dynamics literature; see for
instance [Al, p. 118].

Remark 1.8. As shown in Section 5. of [PC], one can construct examples
where the conjugation ψ does not have an angular derivative at 1, i.e., even
though (1.2) holds, |1− ψ(r)|/(1− r) tends to infinity as r tends to 1.
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2. Existence of conjugations

In the following, we let

Mw(z) =
z − w
1− wz .

Recall that the pseudo-hyperbolic distance between two points z, w ∈ D is defined
to be

δ(z, w) = |Mw(z)|.
Also, for k = 1, 2, 3, . . . , let

ak = (Ak − 1)/(Ak + 1)

where A = φ′(1), and set
ηk(z) = Mak(z).

Note that ηk is the k th iterate of η = η1 , and a = a1 .
In this section we will show that in order to obtain a conjugation for the BRFP

at 1 it is enough to construct a backward iteration sequence {wn}∞n=0 converging
to 1 and whose steps in the pseudo-hyperbolic distance are bounded by a , i.e.,
we assume Lemma 1.4. Condition (1.3) forces wn to tend to 1 asymptotically
radially and hence have pseudo-hyperbolic steps whose lengths tend to a .

Lemma 2.1. If {wn}∞n=0 is a backward iteration sequence for φ , which tends
to 1 , and which satisfies (1.3), then wn tends to 1 asymptotically radially, i.e.,

(2.1) lim
n→∞

1− |wn|
|1− wn|

= 1.

Corollary 2.2. If {wn}∞n=0 is as in Lemma 2.1, consider the Möbius trans-
formations τn(z) = M−wn(z) . Then,

(1) τ−1
n+k ◦τn −→ ηk , uniformly on compact sets of the disk, as n tends to infinity.

(2) τ−1
n+1 ◦ η−1 ◦ τn(z) −→ z , uniformly on compact sets of the disk, as n tends

to infinity.

The proof of Lemma 2.1 and Corollary 2.2 will be given later in Section 4.

Proof of Theorem 1.2 (existence). Consider the normal family {φn ◦ τn} and
let ψ be one of its normal limits. Fix z ∈ D , then

(2.2) δ
(
φn ◦ τn(z), φn+1 ◦ τn+1(z)

)
→ 0

as n tends to infinity. In fact, by Schwarz’s lemma,

δ
(
φn ◦ τn(z), φn+1 ◦ τn+1(z)

)
≤ δ
(
τn(z), φ ◦ τn+1(z)

)
.
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Also, the right-hand side is less than

δ
(
τn(z), φ ◦ η−1 ◦ τn(z)

)
+ δ
(
η−1 ◦ τn(z), τn+1(z)

)
.

As n tends to infinity the first term tends to zero, because τn(z) tends to 1 non-
tangentially and φ ◦ η−1 has angular derivative equal to one at 1. The second
term also tends to zero, by the second statement of Corollary 2.2.

It follows from (2.2) that if a subsequence φnk ◦τnk converges to ψ uniformly
on compact subsets of the disk, then φnk+1 ◦ τnk+1 also converges to ψ . But

φnk+1 ◦ τnk+1 = φ ◦ φnk ◦ τnk ◦ τ−1
nk
◦ τnk+1.

Hence, by the first statement of Corollary 2.2,

(2.3) ψ = φ ◦ ψ ◦ η−1.

We are left to show that ψ fixes 1 and is semi-conformal there. Note that at
each point ak the sequence φn ◦ τn actually converges to wk , since

δ
(
φn ◦ τn(ak), wk

)
= δ
(
φn ◦ τn(ak), φn(wk+n)

)
≤ δ
(
ak, τ

−1
n ◦ τn+k(0)

)

= δ
(
η−1
k (0), τ−1

n ◦ τn+k(0)
)
→ 0

as n tends to infinity, by the first statement of Corollary 2.2. Thus

ψ(ak) = wk for k = 1, 2, 3, . . . .

It follows that the sequence

(2.4) gn(z) = τ−1
n ◦ ψ ◦ η−1

n (z)

converges to z uniformly on compact subsets of the disk. In fact, gn(0) = 0 for
n = 1, 2, 3, . . . . On the other hand,

gn(a1) = τ−1
n (wn+1) = τ−1

n

(
τn+1(0)

)
→ η1(0) = a1

as n tends to infinity. Hence any normal limit of the gn ’s must be a self-map of
the disk which fixes 0 and a1 , i.e., it is the identity map.

We deduce that ψ([ak, ak+1]) = τk
(
gk([0, a])

)
is a curve joining wk to wk+1

which looks more and more like a hyperbolic geodesic. Hence, ψ has radial (and
therefore also non-tangential) limit 1 at 1.

More generally, fix a compact set K in D . Then the hyperbolic distance be-
tween gn(z) and z tends to zero uniformly on K , and therefore so does the
hyperbolic distance between ψ

(
η−1
n (z)

)
and τn(z) . It follows from this that
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Arg
(
1 − ψ

(
η−1
n (z)

))
− Arg

(
1 − τn(z)

)
also tends to zero uniformly in K . A

calculation using the fact that wn tends to 1 asymptotically radially shows that
both Arg

(
1 − τn(z)

)
and Arg

(
1 − η−1

n (z)
)

tend to Arg[(1 − z)/(1 + z)] . Thus

Arg
[(

1 − ψ
(
η−1
n (z)

))
/
(
1 − η−1

n (z)
)]

tends to zero uniformly in K , i.e., (1.2) is
proved.

Alternatively, we could have differentiated gn and found that the argument
of ψ′ has non-tangential limit 0 at 1. This is always equivalent to (1.2), see for
instance Theorem 2 of [Ya] (the author of [Ya] uses the words semi-conformal and
conformal differently from us).

Finally, one might ask whether the sequence {φn ◦ τn} is actually convergent.
This is indeed the case. Let ψ be one of its normal limits as above. Then, using
(2.3), Schwarz’s lemma, and (2.4), we obtain

δ
(
φn ◦ τn(z), ψ(z)

)
= δ
(
φn ◦ τn(z), ψ ◦ ηn ◦ η−1

n (z)
)

= δ
(
φn ◦ τn(z), φn ◦ ψ ◦ η−1

n (z)
)

≤ δ
(
τn(z), ψ ◦ η−1

n (z)
)

= δ
(
z, gn(z)

)
→ 0

as n tends to infinity.

3. Main construction

In this section we construct a backward iteration sequence converging to 1.
First we need to recall results of Julia and Carathéodory.

Theorem 3.1 (Julia–Carathéodory). Suppose φ is an analytic map of the
disk with φ(D) ⊂ D , and ζ, ξ ∈ ∂D . If there is a sequence {pn} ⊂ D such that
pn → ζ , φ(pn)→ ξ , and

(3.1)
1− |φ(pn)|

1− |pn|
→ A <∞,

then

(a) A > 0 .
(b) For every horodisk H at ζ , i.e., H is a disk internally tangent to ∂D at

ζ , and if M(z) = ξζ(z − aζ)/(1 − aζz) , with a = (A− 1)/(A+ 1) , we have
φ(H) ⊂M(H) .

(c) φ(z)→ ξ as z → ζ non-tangentially.
(d) φ′(z)→ φ′(ζ) as z → ζ non-tangentially, and |φ′(ζ)| ≤ A .

For a proof of Theorem 3.1 see [Sh, Chapter 4].

Corollary 3.2. Suppose that φ is an analytic map of D with φ(D) ⊂ D , and
ζ ∈ ∂D is not the Denjoy–Wolff point. Suppose further that there is a sequence
{pn} ⊂ D such that

(1) pn → ζ ,
(2) limn→∞ δ

(
pn, φ(pn)

)
≤ a < 1 .

Then ζ is a BRFP with multiplier φ′(ζ) ≤ (1 + a)/(1− a) = A .
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Proof. Condition (2) implies that φ(pn) tends to ζ as well. Let ∆ be the
closed hyperbolic disk centered at pn of radius δn = δ

(
pn, φ(pn)

)
. The point in

∆ which is closest to the origin has modulus (|pn| − δn)/(1 − |pn|δn) . So, since
φ(pn) ∈ ∆,

1− |φ(pn)| ≤ 1 + δn
1− |pn|δn

(1− |pn|).

Hence, a subsequence of {pn} satisfies (3.1). Corollary 3.2 then follows from (c)
and (d) in Theorem 3.1.

Before starting our construction, we need to recall one more result. For con-
venience, below we reproduce Theorem 4.1 of [CP].

Theorem 3.3 (Cowen–Pommerenke). Let φ be analytic with φ(D) ⊂ D .
Let ω be the Denjoy–Wolff point and z1, z2, . . . , zn be BRFP’s. Then,

(1) If ω ∈ D ,
n∑

j=1

1

φ′(zj)− 1
≤ Re

(
1 + φ′(ω)

1− φ′(ω)

)
.

(2) If ω ∈ ∂D and 0 < φ′(ω) < 1 ,

n∑

j=1

1

φ′(zj)− 1
≤ φ′(ω)

1− φ′(ω)
.

(3) If ω ∈ ∂D and φ′(ω) = 1 ,

n∑

j=1

|ω − zj |2
φ′(zj)− 1

≤ Re

(
ω

φ(0)
− 1

)
.

Proof of Lemma 1.4. Assume 1 is a BRFP for φ . Let D be a small closed disk
centered at 1 which does not contain the Denjoy–Wolff point of φ . It follows from
Theorem 3.3 that D contains at most finitely many BRFP’s of φ with multiplier
less or equal to A . Hence, by reducing the radius of D , if necessary, we can
assume without loss of generality that D does not contain any BRFP’s of φ with
multiplier less or equal to A , aside from 1.

Let n0 be the smallest integer for which an ∈ D and set rk = an0+k . Also
call J the arc ∂D ∩D . For each k , let γk be the straight segment connecting
rk and φ(rk) . By the Denjoy–Wolff theorem the sequence {φn(rk)}n converges
to the Denjoy–Wolff point ω and therefore eventually leaves the disk D . Since⋃n−1
j=0 φj(γk) is a path connecting rk to φn(rk) there is a smallest integer nk such

that φnk(γk) intersects the arc J .
Note that each rk determines a horodisk Hk at 1, i.e., the disk whose di-

ameter is [rk, 1] . Moreover, Theorem 3.1 implies that φ(Hk+1) ⊂ η(Hk+1) = Hk .
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Therefore, φj(γk) cannot intersect J for j = 1, 2, . . . , k . Hence, we conclude that
nk > k .

We claim that the sequence {φnk(rk)}k is compact in D . In fact, suppose
not. Then we can extract a subsequence {yk′} whose modulus tends to 1. Since
φ has finite angular derivative A at 1,

δ
(
rk, φ(rk)

)
−→ a =

A− 1

A+ 1
as k tends to infinity. By Schwarz’s lemma, and the way nk was chosen,

δ(yk′ , J) ≤ δ
(
rk′ , φ(rk′)

)
.

Hence, {yk′} can only accumulate at the end-points of J on ∂D . Suppose that b
is an end-point of J and that {yk′} tends to b . Then, by Schwarz’s lemma again,

lim inf
k′→∞

δ
(
yk′ , φ(yk′)

)
≤ lim δ

(
rk′ , φ(rk′)

)
= a

and Corollary 3.2 implies that b must be a BRFP of φ with multiplier less or
equal to A . This is a contradiction, by our choice of the disk D .

So there is an infinite set I0 of integers such that {φnk(rk)}k∈I0 converges
to a point w0 of D . Fix j ≥ 1 and suppose that we can extract an infinite
set of integers Ij from Ij−1 so that the sequence {φnk−j(rk)}k∈Ij converges to
a point wj . Consider the sequence S = {φnk−(j+1)(rk)}k∈Ij . Since nk tends to
infinity it is eventually greater than j+ 1 and so S is non-trivial. Moreover, since

δ
(
φnk−(j+1)(rk), φnk−j(rk)

)
≤ δ
(
rk, φ(rk)

)
→ a

as k tends to infinity, S is compact as well and we can extract an infinite set of
integers Ij+1 from Ij so that {φnk−(j+1)(rk)}k∈Ij+1 converges to a point wj+1 .
By induction, we form a sequence {wj}∞j=0 .

Since points of the form φnk−j(rk) with nk > j are always contained in D ,
we conclude that every wj is also contained in D . In addition,

lim
k∈Ij+1

φ
(
φnk−(j+1)(rk)

)
= wj .

So by continuity of φ , φ(wj+1) = wj . Finally,

δ(wj+1, wj) = lim
k∈Ij+1

δ
(
φnk−(j+1)(rk), φnk−j(rk)

)
≤ lim
k∈Ij+1

δ
(
rk, φ(rk)

)
= a.

That is to say, we constructed a backward iteration sequence which satisfies (1.3).
To finish the construction, we only need to show that the wj ’s converge to 1.

But assume that a subsequence wj′ converges to ζ 6= 1. First assume that ζ ∈ D .
Then K = {wj′} is compact in D . By the Denjoy–Wolff theorem, there is N
such that φn(K) ∩ K = ∅ , for every n ≥ N . But this yields a contradiction,
because wj′ is a subsequence of a backward iteration sequence. So assume that
ζ ∈ ∂D ∩ D \ {1} . Since δ

(
wj′ , φ(wj′)

)
is bounded by a , Corollary 3.2 implies

that ζ is a BRFP for φ with multiplier less than A . But this is a contradiction,
by our choice of D .
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4. Proof of technical lemmas

We start by proving Corollary 2.2.

Proof of Corollary 2.2. It follows from (2.1) that

(4.1)
1− wn
1− wn

−→ 1

as n→∞ . Also, for k = 1, 2, 3, . . . , φk has angular derivative equal to Ak , hence

(4.2)
1− wn

1− wn+k
−→ Ak

as n tends to infinity. Using (4.1) and (4.2), one sees that

(4.3) cn =
1− wnwn+k

1− wn+kwn
−→ 1

and

(4.4) bn =
wn+k − wn
1− wnwn+k

−→ ak

as n tends to ∞ . Now, a computation shows that

τ−1
n+k ◦ τn(z) = cnMbn(z).

Thus by (4.3) and (4.4), the first statement of Corollary 2.2 holds.
To see the second statement, write τ−1

n+1 ◦ η−1 ◦ τn(z) as

1− awn+1

1− awn+1

1− η(wn+1)wn

1− η(wn+1)wn
Mτ−1

n ◦η(wn+1)(z).

Then, by (4.3) and (4.4),

1− awn+1

1− awn+1

1− η(wn+1)wn

1− η(wn+1)wn
→ 1

and

τ−1
n ◦ η(wn+1)→ 0

as n tends to infinity.
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Proof of Lemma 2.1. First recall that, since wk tends to 1 and φ has angular
derivative A at 1, by Theorem 3.1,

lim inf
k→∞

1− |wk|
1− |wk+1|

≥ A.

On the other hand, because of (1.3), by the same argument as in the proof of
Corollary 3.2

1− |wk|
1− |wk+1|

≤ 1 + a

1− |wk+1|a
.

Taking the limsup of both sides, we obtain:

(4.5)
1− |wk|

1− |wk+1|
−→ A as k →∞ .

By (1.3), after some rewriting,

A

(A+ 1)2
≤ (1− |wk|)(1− |wk+1|)

|1− wkwk+1|2
.

Using (1.3) again to majorize the right-hand side and then dividing both sides by

(|wk+1| − |wk|)2

(1− |wk|)(1− |wk+1|)
,

we obtain after some algebra,

A

(A− 1)2

(
1− 1− |wk+1|

1− |wk|

)(
1− |wk|

1− |wk+1|
− 1

)
≤
( |wk+1| − |wk|
|wk+1 − wk|

)2

.

Taking square roots and then the liminf of both sides using (4.5), we obtain

lim inf
k→∞

|wk+1| − |wk|
|wk+1 − wk|

≥ 1,

i.e., for every ε > 0 there is n0 such that for k ≥ n0 :

|wk+1| − |wk| ≥ (1− ε)|wk+1 − wk|.
Thus for m > n > n0 :

|wm| − |wn| =
m−1∑

k=n

(|wk+1| − |wk|) ≥ (1− ε)
m−1∑

k=n

|wk+1 − wk|

≥ (1− ε)
∣∣∣∣
m−1∑

k=n

(wk+1 − wk)

∣∣∣∣ = (1− ε)|wm − wn|.

Letting m tend to infinity, we see that

1− |wn| ≥ (1− ε)|1− wn|
for all n > n0 , i.e.,

lim
n→∞

1− |wn|
|1− wn|

= 1

which says that wn tends to 1 asymptotically radially.
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5. Uniqueness of conjugations

We follow a line of reasoning similar to [CM, p. 70]. Given a simply connected
region Ω ⊂ D , we say that Ω has an inner tangent at 1, if for every angular
opening θ ∈ (0, 1

2π) and there is r > 0 such that the cone

Γ(θ, r) = {z ∈ D : | arg(1− z)| < θ, |z − 1| < r}

is contained in Ω.

Lemma 5.1. Suppose ψ is analytic in D , has non-tangential limit 1 at 1
and is semi-conformal at 1 , i.e., (1.2) holds. Then, there is a simply connected
region Ω ⊂ D with an inner tangent at 1 , such that ψ is one-to-one on Ω and
ψ(Ω) also has an inner tangent at 1 .

Assume Lemma 5.1 for the moment (the proof is given below).

Proof of Theorem 1.2 (uniqueness). Suppose that ψ1 and ψ2 are two conju-
gations satisfying (1.1) and (1.2). Let Ω1 and Ω2 be the corresponding sets given
by Lemma 5.1. Given z ∈ D and a small disk z ∈ ∆ ⊂ ∆ ⊂ D there is N = N(z)
such that for all n ≥ N , η−1

n (∆) ∈ Ω1 , and ψ1

(
η−1
n (∆)

)
∈ ψ2(Ω2) . Thus we

can define β(z) = ηn ◦ ψ−1
2 ◦ ψ1 ◦ η−1

n (z) . One checks that this definition does
not depend on n ≥ N , hence it yields an analytic one-to-one function near z .
Then β can be analytically continued along any path in D , and it gives rise to a
one-to-one analytic function on D . Finally, β is also onto D , so β is a Möbius
transformation. Moreover, β ◦ η−1 equals ηn ◦ ψ−1

2 ◦ ψ1 ◦ η−1
n ◦ η−1 for some n ,

and this equals η−1 ◦ β . So β commutes with η . Finally ψ1 = ψ2 ◦ β , hence the
uniqueness part of Theorem 1.2 is proved.

Proof of Lemma 5.1. By Theorem 2 of [Ya], the argument of ψ′ has non-
tangential limit 0 at 1. Choose a sequence θn ↓ 0, and for each n find rn so that
| arg

(
ψ′(z)

)
| < 1 for every z ∈ Γ(θn, rn) . Also the rn ’s can be chosen small enough

so that the convex hull Ω determined by the points {∂Γ(θn, rn)∩∂Γ(θn+1, rn+1)}n
is a convex domain with an inner tangent at 1 and | arg

(
ψ′(z)

)
| < 1 for every

z ∈ Ω. Then by Proposition 1.10 of [Po2], ψ is one-to-one on Ω. Finally, to
see that ψ(Ω) has an inner tangent at 1, use that fact that the image of the ray
[1, 1− eiθ] for a given θ ∈ (− 1

2π,
1
2π) , is asymptotic to the same ray [1, 1− eiθ] .

6. Question on the growth of Kœnigs maps

Here we assume that the Denjoy–Wolff point is at the origin and the multiplier
λ = φ′(0) is not zero. Then Kœnigs produces an analytic map σ defined on D
such that σ ◦ φ = λσ . The growth of the map σ is of interest because σ is a
formal eigenfunction of the composition operator Cφ(f) = f ◦ φ . The following
result can also be deduced from a sharper theorem in [Bou].
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Proposition 6.1. Suppose φ , λ and σ are as above. If φ has a BRFP with
multiplier A , then for p > (logA)/ log(1/|λ|) ,

sup
|z|=r

|σ(z)|p(1− r)→∞

as r ↑ 1 .

Proof. Let an = (An − 1)/(An + 1), let ψ be a conjugation satisfying (1.1),
and set wn = ψ(an) . Then {wn}∞n=0 is a backward iteration sequence for φ .
Moreover, ψ can be chosen so that σ(w0) 6= 0 (precompose ψ with a Möbius
transformation which commutes with η ). Then,

σ(w0) = σ
(
φn(wn)

)
= λnσ(wn).

Also, since ψ(D) ⊂ D , by Schwarz’s lemma and some rewriting, we always have

lim inf
n→∞

1− |wn|
1− |an|

≥ 1 + |ψ(0)|
1− |ψ(0)| .

Thus,

|σ(wn)|p(1− |wn|) = |σ(w0)|p|λ|−np(1− |an|)
1− |wn|
1− |an|

≥ C exp

(
n log

1

|λ|

(
p− logA

log(1/|λ|)

))

for some constant C > 0. So Proposition 6.1 is proved.

Under the extra hypothesis that φ is one-to-one, it follows from Corollary 3.4
of [PC] that a converse of Proposition 6.1 holds. Namely,

(6.1) sup
|z|=r

|σ(z)|p(1− r)→∞, for some p > 0,

if and only if some iterate φN of φ has a BRFP.

Question 6.2. Is this true without the assumption of univalence?

P. Bourdon showed in [Bou] that (6.1) is always equivalent to the fact that
there exists a sequence ζn ∈ ∂D , for which |φn(ζn)| = 1 and |φ′n(ζn)| ≤ Mn

for some constant M > 1. It follows, for instance, that if φ is a finite Blaschke
product, then (6.1) holds. On the other hand, in this case the set of BRFP’s of
the iterates is actually dense in ∂D . It would be interesting to characterize those
inner functions for which the set of BRFP’s of the iterates is dense in ∂D .

Question 6.3. Suppose φ is inner. Is (6.1) equivalent to the fact that the
set of BRFP’s of the iterates of φ is dense in ∂D?
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[Bo] Böttcher, L.E.: The principal laws of convergence of iterates and their applications to
analysis. - Izv. Kazan. Fiz.-Mat. Obshch. 14, 1904, 155–234 (Russian).

[Bou] Bourdon, P.: Essential angular derivatives and maximal growth of Kœnigs eigenfunc-
tions. - Preprint.

[CM] Cowen, C., and B. MacCluer: Composition operators on spaces of analytic functions.
- CRC Press, 1995.

[CP] Cowen, C., and Ch. Pommerenke: Inequalities for the angular derivative of an analytic
function in the unit disk. - J. London Math. Soc. (2) 26, 1982, 271–289.
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