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Abstract. Let ω be the caloric measure on a domain bounded by a Weierstrass-type graph.
We prove that ω is a quasi-Bernoulli measure. Therefore, the multifractal formalism is available
for such a measure. We can then give necessary and sufficient conditions which ensure that ω
is supported by a set of small dimension and prove that this is the generic case. These results
improve and generalize an earlier work due to R. Kaufman and J.M. Wu.

Let f : R → R be a real function of class C1/2 (i.e., Hölder of exponent
1/2) and Ω = {(x, t) ∈ R2 : x > f(t)} . For every point M0 = (x0, t0) ∈ Ω,
let ωM0 be the harmonic measure at M0 with respect to the heat operator C =
∂/∂t−∂2/2∂x2 . This measure is called the caloric measure at M0 . It is supported
by the set of points (x, t) ∈ ∂Ω such that t ≤ t0 and may also be defined by

ωM0(E) = Px0

(
T < +∞ and (BT , t0 − T ) ∈ E

)
,

where Bt is a standard Brownian motion and

T = inf
(
{t > 0 : (Bt, t0 − t) ∈ R2 \ Ω}

)
.

We are interested in the geometric properties of the measure ωM0 . The domain
Ω can be seen as a Lipschitz domain related to the parabolic distance in R2

δ
(
(x, t), (y, s)

)
= sup(|x− y|, |t− s|1/2).

Because of the homogeneity properties of the heat operator, this distance is adapted
to our situation. It is then natural to ask whether the analogue of Dahlberg’s the-
orem ([Da]) holds for the heat equation in Ω. Of course, the graph of a function
of class C1/2 is in general not rectifiable. Nevertheless, following Taylor and Wat-
son ([TW]), we can introduce the Hausdorff measures related to the metric space
(R2, δ) . These are defined for α > 0 by

Λα(E) = lim
ε→0

(
inf

(∑

i

rαi , E ⊂
⋃
i

D(ai, ri) and ri ≤ ε
))

,
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where D(ai, ri) are balls for the distance δ . The related dimension is called the
parabolic dimension. In this context, the parabolic dimension of the graph ∂Ω is
equal to 2 and its Λ2 -measure is locally finite. Then, there is an analogy between
the measure Λ2 in graphs of C1/2 -functions and the length measure in Lipschitz
graphs.

In [KW], Robert Kaufman and Jang-Mei Wu proved that the equivalent of
Dahlberg’s theorem is false for the heat equation and constructed a function f
of class C1/2 such that the caloric measure is supported by a set of parabolic
dimension strictly less than 2. In other words, if ω̃M0 denotes the image of the
caloric measure ωM0 under the projection

(1) Π:
(
f(t), t

)
∈ ∂Ω 7−→ t ∈ R,

the measure ω̃M0 is supported by a set of Hausdorff dimension strictly less than 1.
On the other hand, for slightly more regular functions f , the measure ω̃M0

becomes equivalent to the Lebesgue measure dt . For example, in [LS], Lewis and
Silver proved that this is the case when the modulus of continuity ϕ of the function

f satisfies the Dini condition
∫ 1

0
ϕ2(t)/t2 dt < +∞ . Moreover, when f is of class

C(1+ε)/2 , we can prove that the relative densities between the measures ω̃M0 and
dt are locally bounded functions (see [H2, pp. 642–643]).

In this work, we want to give a more precise analysis of the caloric measure
on domains bounded by Weierstrass-type graphs. Let g be a Lipschitz function,
periodic with period 1, and l be an integer greater than 1. We are interested in
the caloric measure on the domain Ω bounded by the graph of the function

(2) f(t) =

+∞∑

k=0

l−k/2g(lkt).

Such a curve ∂Ω will be called a Weierstrass-type curve (see [F]) and the domain
Ω a Weierstrass domain. It is well known that when the function g is Lipschitz
with Lipschitz constant K̃ , the function f is of class C1/2 with Hölder constant
K = 2K̃/(1− l−1/2) . In other words, the map g 7→ f is continous from the space
of 1-periodic Lipschitz functions to the space of 1-periodic functions of class C1/2

when we endow these spaces with their natural norms.
The first result of this work (Theorem 3.1) states that for a Weierstrass domain

Ω and for suitable points M0 , the measure ω̃M0 is a quasi-Bernoulli measure
in [0, 1) (see (16)). To prove this theorem, we need a preliminary result which
is developed in Section 2. When ∂Ω2 is a Lipschitz perturbation of ∂Ω1 , we
establish in Theorem 2.1 that the associated caloric measures (more precisely their
projections on the real axis) are strongly equivalent.

Quasi-Bernoulli measures have been extensively studied in the literature ([C],
[MV], [BMP], [H5], [BH]) and we can use known results to describe the geometric
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properties of the measure ω̃M0 . Let Fn be the family of l -adic intervals of [0, 1) of
the nth generation and denote by In(t) the unique interval of Fn that contains t .
It is well known (see for example [C] or [H5]) that there exists a real d ≤ 1 such
that for almost every t ,

lim
n→+∞

log
(
ω̃M0

(
In(t)

))

−n log l
= d.

In particular, the measure ω̃M0 is supported by a set of dimension d and every set
of Hausdorff dimension < d is negligible (in this case, we say that the measure is
unidimensional and we call d = dim (ω̃M0) the dimension of the measure). In fact,
the number d can be calculated in the following way. Let λ = ω̃M0/ω̃M0

(
[0, 1)

)

be the normalized measure and define

(3) τn(x) =
1

n log l
log

( ∑

I∈Fn

λ(I)x
)

and τ(x) = lim
n→+∞

τn(x)

(the limit exists in such a situation). It is proved in [H5] that the function τ is
differentiable and satisfies

(4) dim(ω̃M0) = −τ ′(1) = lim
n→+∞

−1

n log l

∑

I∈Fn

λ(I) log
(
λ(I)

)
.

Then we can conclude (see Corollary 3.2) that either the measure ω̃M0 is equivalent
to the Lebesgue measure on its support with locally bounded densities, or it has
dimension d < 1.

Let us also remember that the multifractal formalism is available for such a
measure. Using the result of Brown–Michon–Peyriere ([BMP]) and the differen-
tiability of the function τ ([H5]), we have

dim (Eα) = τ∗(α) for all α ∈
(
−τ ′(+∞),−τ ′(−∞)

)
,

where τ∗ is the Legendre transform of the convex function τ and

Eα =

{
t ∈ [0, 1) : lim

r→0

log
(
ω̃M0([t− r, t+ r])

)

log r
= α

}
.

In particular, in the case where dim (ω̃M0) < 1, we obtain that the measure ω̃M0

is multifractal in the sense that the set Eα has a positive dimension for infinitely
many values of α .

In Section 4, we characterize those functions g for which the dimension of
the measure ω̃M0 is strictly less than 1. Of course this is not the case for every
Lipschitz function g . If there exists a Lipschitz function γ such that g(t) =
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γ(t) − l−1/2γ(lt) , then f = γ is Lipschitz and the measure ω̃M0 is equivalent
to the Lebesgue measure. In fact, this is exceptional. A careful study of the
functional equation f(t) = g(t) + f(lt)/

√
l allows us to prove that dim (ω̃M0) = 1

if and only if f is Lipschitz. In particular, the set of Lipschitz functions g such
that dim (ω̃M0) < 1 is an open dense subset of the space of Lipschitz functions.
Moreover, in Proposition 4.7, we introduce an explicit criterion to test whether
the function f is Lipschitz.

It is also interesting to give a lower bound for the dimension of the measure
ω̃M0 . It seems difficult to obtain an optimal lower bound. Using Taylor–Watson
results ([TW]), we know that, when f is of class C1/2 , every set of dimension
strictly less than 1/2 is negligible for ω̃M0 (its projection on the graph is polar
for the heat equation). In fact, in Section 5, we improve this result and establish
that there exists a constant ε = ε(K) such that every set of dimension strictly less
than 1

2 (1 + ε) is negligible for the measure ω̃M0 . A reasonable conjecture would
be that for every ε > 0, it is possible to construct a Weierstrass like function f
for which the dimension d of the measure ω̃M0 is lower than 1

2 (1 + ε) . However,
we do not know how to prove this result.

1. The boundary Harnack principle and some consequences

In this section, we introduce some notation and recall the boundary Harnack
principle for the heat equation. We also state two important consequences of this
principle. All of these results can be found in [H1] or in [H2] where they are
proved for general parabolic operators. The domains we are working with are not
necessarily of Weierstrass-type. Let f : R → R be a bounded function such that
for some K > 0

(5) |f(t)− f(t′)| ≤ K|t− t′|1/2 for all (t, t′) ∈ R2.

Put Ω = {(x, t) ∈ R2 : x > f(t)} . For every Q = (y, s) ∈ ∂Ω and r > 0 define

(6)

{
T (Q, r) = {(x, t) ∈ Ω : |t− s| < r, |x− y| < 10K

√
r },

∆(Q, r) = {(x, t) ∈ R2 : |t− s| < r, x = f(t)}.

The following comparison theorem is due to J.T. Kemper ([K]). A generaliza-
tion is given for parabolic operators in [H1] and [H2].

Theorem 1.1. There exists a strictly positive constant C = C(K) such that
for every non-negative caloric function u in Ω (i.e., satisfying Cu = 0) which
converges to 0 on ∂Ω \ ∆(Q, 1

2r) and which is dominated by a potential in a
neighbourhood of infinity, we have

(7) u(P ) ≤ Cu(Mr) for all P ∈ Ω \ T (Q, r),

where Mr = Q+ (10K
√
r , r) .



Caloric measure on domains bounded by Weierstrass-type graphs 505

Remarks. 1. Since the domain Ω is unbounded, we need a domination
hypothesis. This hypothesis allows us to use the maximum principle. It is auto-
matically satisfied when the function u can be written u(P ) =

∫
ψ(M) dωP (M)

with ψ a bounded function supported by ∆(Q, 1
2r) .

2. The conclusions of Theorem 1.1 remain true when u is caloric in Ω \
T (Q, 1

2r) .

The two following results describe comparison principles near the boundary
between two non-negative solutions of the heat equation and can be found in [H1]
and [H2].

Theorem 1.2 (Weak boundary Harnack principle). There exists a strictly
positive constant C = C(K) such that if u and v are two non-negative caloric
functions in T (Q, 4r) which are equal to 0 at every point of ∆(Q, 2r) , then

(8)
u(P )

u(Pr)
≤ C v(P )

v(P ∗r )
for all P ∈ T (Q, r),

where Pr = Q+ (10K
√
r , 2r) and P ∗r = Q+ (10K

√
r ,−2r) .

Theorem 1.3 (Strong boundary Harnack principle). There exists a strictly
positive constant C = C(K) such that if u and v are two non-negative caloric
functions in Ω \ T (Q, r) which are equal to 0 at every point of ∂Ω \∆(Q, r) and
which are dominated by a potential in a neighbourhood of infinity, then

(9)
u(Ps)

u(Pr)
≤ C v(Ps)

v(Pr)
for all s > r.

Remark. In [H1] and [H2], inequalities (8) and (9) are established for a large
class of parabolic operators and require respectively r ≤ 1 and s ≤ 1. Because of
the homogeneity of the heat operator C , these assumptions are not needed in the
present situation. In [H2], inequality (9) is established for bounded domains. The
general case can be found in [H1] and does not need additional ideas. Let us also
recall that an inequality similar to (9) is established in [Ny] for bounded domains
and for slightly more general operators, the constant C depending on diam (Ω).

An important consequence of the boundary Harnack principle is the doubling
property satisfied by the caloric measure. This principle was observed by many
authors (see for example [W], [FGS], [H1], [H4] or [Ny]). Let us remember what
it means.

Theorem 1.4 (Doubling property for the caloric measure). Let Q0 ∈ ∂Ω ,
r0 > 0 and put M0 = Q0+(10K

√
r0 , 2r0) . There exists a strictly positive constant

C = C(K) such that if ∆(Q, 2r) ⊂ ∆(Q0,
1
2r0) , then,

(10) ωM0
(
∆(Q, 2r)

)
≤ CωM0

(
∆(Q, r)

)
.
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We will end this section with another important consequence of the boundary
Harnack principle which gives comparisons between the caloric measure and the
Green function on Ω. These estimates were proved by Wu in [W] for the heat
equation and extended to parabolic operators in [H2].

Theorem 1.5. Let Q0 ∈ ∂Ω , r0 > 0 and put M0 = Q0 + (10K
√
r0 , 2r0) .

Denote by G(A, · ) the Green function of Ω related to the heat equation with
singularity at A . There exists a strictly positive constant C = C(K) such that if
∆(Q, s) ⊂ ∆(Q0,

1
2r0) , then

(11)
1

C
ωM0

(
∆(Q, s)

)
≤ √sG(Qs,M0) ≤ CωM0

(
∆(Q, s)

)
,

where Qs = Q+ (
√
s , 0) .

Notation. The important fact in (7), (8), (9), (10) and (11) is that the
constants C are independent of r and Q . We write A ∼< B when there exists
such a constant C for which the quantities A and B satisfy A ≤ CB . The
notation A ≈ B means that the relations A ∼< B and B ∼< A are true.

2. Behavior of the caloric measure under perturbations of ∂Ω

In this section, we establish a preliminary result which will be the key of the
proof of Theorem 3.1. Let f1 and f2 be two bounded functions satisfying (5),
a time t0 ∈ R and a real r > 0. For i = 1, 2, denote by Qi(t) =

(
fi(t), t

)
,

Mi = Qi(t0) + (20K
√
r , 8r) and ωMi

i the caloric measure related to the domain
Ωi = {x > fi(t)} and to the point Mi . We have the following result:

Theorem 2.1. Let h = f2 − f1 and suppose that for some K ′ > 0

(12) |h(t)− h(t′)| ≤ K ′√
r
|t− t′| for all t, t′ ∈ [t0 − r, t0 + r].

In other words, suppose that f2 is a Lipschitz perturbation of f1 in [t0−r, t0 +r] .
Let ω̃i be the image of the measure ωMi

i under the projection
(
fi(t), t

)
7→ t .

There exists a strictly positive constant C = C(K,K ′) such that for every Borel
set E ⊂ [t0 − r, t0 + r] , we have

(13)
1

C
ω̃2(E) ≤ ω̃1(E) ≤ Cω̃2(E).

Proof. Let us begin with some reductions of the problem. Because of the
regularity properties of the measures ω̃i , we may assume that E is an open set and
even an interval E = [s0−s, s0+s) of small length. Using the translation invariance
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of the heat equation, we may also assume that s0 = 0 and f1(s0) = f2(s0) = 0.
Let

Ui = Ωi ∩
(
{(x, t) ∈ R2 : |x| < 10K

√
r and |t| < r}

)

and

C ∗ = − ∂

∂t
− ∂2

2∂x2

the adjoint heat operator. Denote by ϕ∗i the C ∗ -harmonic measure of ∂Ui \ ∂Ωi
in Ui . If ∆i is the projection of E on ∂Ωi and if Gi(A, · ) is the Green function
of Ωi with singularity at A , we deduce from Theorem 1.5 and from the weak
boundary Harnack principle related to the adjoint heat operator that for small
values of s ,

ωPri (∆i) ≈
√
sGi

(
(
√
s , 0), Pr

)

∼<
√
s
ϕ∗i
(
(
√
s , 0)

)

ϕ∗i (Pr/4)
Gi(P

∗
r/4, Pr) ≈

√
s

r
ϕ∗i
(
(
√
s , 0)

)

where Pr = (10K
√
r , 2r) and P ∗r = (10K

√
r ,−2r) . Conversely, we have

√
sGi

(
(
√
s , 0), Pr

)
∼>
√
s
ϕ∗i
(
(
√
s , 0)

)

ϕ∗i (P
∗
r/4)

Gi(Pr/4, Pr) ≈
√
s

r
ϕ∗i
(
(
√
s , 0)

)

and we can conclude that

ωPri (∆i) ≈
√
s

r
ϕ∗i
(
(
√
s, 0)

)
.

On the other hand, Harnack inequalities and Theorem 1.1 give respectively{
ωPri (∆i) ∼< ωMi

i (∆i),

ωMi
i (∆i) ∼< ωPri (∆i)

and we obtain

(14) ω̃i(E) = ωMi
i (∆i) ≈

√
s

r
ϕ∗i
(
(
√
s , 0)

)
.

Finally, the proof of Theorem 2.1 will be complete if we establish that

(15) ϕ∗1
(
(
√
s, 0)

)
≈ ϕ∗2

(
(
√
s , 0)

)

for small values of s . This is an easy consequence of a result proved in [H2]. Let
us introduce the map H

H: (x, t) ∈ R2 7−→ (
√
r x, rt) ∈ R2.

The homogeneity properties of the operator C ∗ ensure that the function ϕ∗i ◦H
is the C ∗ -harmonic measure of H−1(∂Ui \ ∂Ωi) in H−1(Ui) . This domain is
delimited by the function f̃i(t) = fi(rt)/r

1/2 and we can deduce from (12) that

|f̃1(t)− f̃2(t)| ≤ 2K ′|t|.
Then, we can make use of [H2, Théorème 2.2] which is also true for the operator
C ∗ and obtain (15) for small values of s . This gives the conclusion of Theorem 2.1.
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3. The quasi-Bernoulli property for the caloric measure

In this section, we choose a Lipschitz function g with Lipschitz constant K̃ ,
periodic with period 1 and we define f using (2). As recalled in the introduction,

f is C1/2 with Hölder constant K = 2K̃/(1 − l−1/2) . Denote by M the set of
finite words constructed with the alphabet {0, . . . , l − 1} . If a = ε1 · · · εn ∈ M ,
define

ta =
n∑

i=1

εil
−i, Ia = [ta, ta + l−n), Ma =

(
f(ta), ta

)
+ (20Kl−n/2, 8l−n),

and let |a| = n denote the length of a . Take the convention that if a = ∅ , then
t∅ = 0 and |∅| = 0. Finally, let us write ab the concatenation of the words a
and b .

It is now possible to state the quasi-Bernoulli property for the caloric measure.

Theorem 3.1. Let ωM∅ be the caloric measure in Ω at M∅ and ω be
the image of ωM∅ under the projection

(
f(t), t

)
7→ t . The measure ω is a quasi-

Bernoulli measure in [0, 1) . In other words, there exists a strictly positive constant

C = C(K̃) , such that

(16)
1

C
ω(Ia)ω(Ib) ≤ ω(Iab) ≤ Cω(Ia)ω(Ib) for all a, b ∈M .

We can deduce the following corollary.

Corollary 3.2. There are only two possible cases, mutually exclusive.

(i) There exists a constant κ > 0 such that σ/κ ≤ ω ≤ κσ where σ is the
Lebesgue measure on [0, 1) . In particular dim (ω) = 1;

or
(ii) there exists a real d < 1 such that ω is supported by a subset of [0, 1) with

dimension d and such that every set of dimension < d is negligible for ω ; the
measure ω is unidimensional with dimension

dim (ω) = d < 1.

Moreover, in this second case, ω is a multifractal measure. That is, dim (Eα) > 0
for infinitely many α ∈ R , where

(17) Eα =

{
t ∈ [0, 1) : lim

r→0

logω([t− r, t+ r])

log r
= α

}
.

Remarks. 1. In the next section, we will prove that case (ii) is satisfied if
and only if the function f is not Lipschitz; this is the generic situation.
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2. We observe that self-similar curves for the caloric measure play the same
role as self-similar Cantor sets for the harmonic measure. Carleson proved that the
harmonic measure of a self-similar Cantor set is a quasi-Bernoulli measure ([C]).
In 1986, Makarov and Volberg stated that it is supported by a set of dimension
strictly less than the dimension of its support ([MV]). Let us also remember that
Batakis generalized Makarov–Volberg’s result to a large class of Cantor sets ([Ba]).

3.1. Proof of Theorem 3.1. Using the invariance of the heat equation
under translations, we can suppose that g(0) = 0. For every a ∈M , let ∆a be the

projection of Ia on the graph ∂Ω. Fix a ∈M and let M̃∅ =
(
f(ta), ta

)
+(20K, 8).

Using Harnack inequalities and Theorem 1.1, we first remark that

ωM̃∅(∆ab) ≈ ωM∅(∆ab) for all b ∈M .

Then, by the strong boundary Harnack principle, we obtain

ω(Iab)

ω(Ia)
=
ωM∅(∆ab)

ωM∅(∆a)
≈ ωM̃∅(∆ab)

ωM̃∅(∆a)
≈ ωMa(∆ab)

ωMa(∆a)
≈ ωMa(∆ab).

On the other hand, if n = |a| , we have

f(t) =

n−1∑

k=0

l−k/2g(lkt) + l−n/2f(lnt) = h(t) + l−n/2f(lnt),

where h is a Lipschitz function with Lipschitz constant

c ≈ ln/2 ≈ 1√
σ(Ia)

.

Let us write with a hat all quantities related to the function f̂(t) = l−n/2f(lnt)

and the domain Ω̂ = {(x, t) : x > f̂(t)} . Theorem 2.1 ensures that

ωMa(∆ab) ≈ ω̂M̂a(∆̂ab).

If we observe that the domain Ω is the image of Ω̂ under the application

H: (x, t) 7−→ (ln/2x, lnt),

the invariance of the heat operator under such a transformation ensures that

ω̂M̂a(∆̂ab) = ωH(M̂a)
(
H(∆̂ab)

)
.

Finally, observing that n0 = lnta is an integer such that

H(M̂a) = (0, n0) +M∅ and H(∆̂ab) = (0, n0) + ∆b,

and using the periodicity of the function f , we conclude that

ωH(M̂a)
(
H(∆̂ab)

)
= ωM∅(∆b) = ω(Ib).

This completes the proof of Theorem 3.1.
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3.2. Proof of Corollary 3.2. Corollary 3.2 is always true for quasi-Bernoulli
measures. Let us begin with some notation. Let Fn be the set of l -adic intervals
of the nth generation. If I = Ia and J = Ib are two intervals of

⋃
n Fn , let

IJ = Iab . Suppose first that there exists κ > 0 such that

(18)
1

κ
σ(I) ≤ ω(I) ≤ κσ(I) for all I ∈ ⋃

n≥0

Fn.

Since every open set of [0, 1) is a countable disjoint union of intervals of
⋃
n Fn ,

this inequality can be extended to any open set. By regularity of the measures σ
and ω , it is also true for every Borel set. Thus, (i) is satisfied.

If (18) is not satisfied, we can for example suppose that there exists an integer
n0 ≥ 0 and an interval I0 ∈ Fn0 such that

ω(I0) <
1

lC
σ(I0)

where C is the constant which appears in (16). It follows that for every I ∈⋃
n Fn ,

ω(II0)

ω(I)
≤ 1

l
σ(I0) = l−(n0+1).

The related mass of the subinterval II0 is then smaller than expected and we can
use the same idea as in [H3] and [H5] to prove that the dimension of the measure
ω is strictly less than 1. This idea was also previously used by Bourgain in [Bg]
and Batakis in [Ba]. For every I ∈ ⋃n Fn and for every x ∈ [0, 1), we have

∑

J∈Fn0

ω(IJ)x ≤ ω(II0)x + (ln0 − 1)

[
ω(I)− ω(II0)

ln0 − 1

]x

≤
(
l−(n0+1)x + (ln0 − 1)

[
1− l−(n0+1)

ln0 − 1

]x)
ω(I)x = β(x)ω(I)x.

If we sum over all intervals I of the same generation and iterate this inequality,
we obtain ∑

I∈Fpn0

ω(I)x ≤
(
β(x)

)p
ω
(
[0, 1)

)x
for all p ≥ 0.

Using definition (3), we conclude that

τpn0(x) ≤ 1

n0 log l
log β(x) and τ(x) ≤ 1

n0 log l
log β(x).

As recalled in the introduction, the function τ is differentiable and the dimension
of the measure is equal to −τ ′(1). Observing that β(1) = 1 and using the strict
convexity of the logarithm, it is easy to establish that

dim (ω) = −τ ′(1) ≤ − 1

n0 log l
β′(1) < 1.
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The case where ω(I0) > lCσ(I0) can be treated in a similar way.
The end of the proof of Corollary 3.2 is easy. The function τ satisfies

τ(0) = 1, τ(1) = 0 and − τ ′(1) = d < 1.

Using the convexity of τ we deduce that

−τ ′(0) = δ > d.

Let τ∗ be the Legendre transform of τ defined by

τ∗(α) = inf{αx+ τ(x) : x ∈ R}.

It is well known that the function τ ∗ is increasing in
(
−τ ′(+∞),−τ ′(0)

]
and

then decreasing in
[
−τ ′(0),−τ ′(−∞)

)
. On the other hand, if In(t) is the unique

interval I ∈ Fn such that t ∈ I and if Eα is defined as in (17), the doubling
property ensures that

Eα =

{
t ∈ [0, 1) : lim

n→+∞
ω
(
In(t)

)

−n log l
= α

}
.

Using [BMP] and the differentiability of the function τ , we get

dim (Eα) = τ∗(α) ≥ τ∗(d) = d for all α ∈ [d, δ].

The doubling property clearly implies that d > 0 (in fact we will see in Section 5
that d ≥ 1

2 (1 + ε)). Then, we can conclude that dim (Eα) is positive for infinitely
many values of the parameter α .

4. Characterization of the functions g such that dim (ω) < 1

In this section, we shall describe the set of Lipschitz functions g such that
dim (ω) < 1. In particular, we prove that its complement is closed and nowhere
dense in the set of Lipschitz functions. With the same notation as in Section 3,
we obtain the two following results.

Theorem 4.1. There are only two possible cases, mutually exclusive.

(i) f is Lipschitz with ‖f ′‖∞ ≤ ‖g′‖∞/
(√
l − 1

)
. In this case, ω is strongly

equivalent to the Lebesgue measure and dim (ω) = 1;
or
(ii) there exist two positive numbers a and b such that for every interval I of

length |I| ≤ 1 ,

(19) a|I|1/2 ≤ osc (f, I) ≤ b|I|1/2,

where osc (f, I) = maxI f −minI f . In this case, ω is singular with respect
to the Lebesgue measure and dim (ω) < 1 .
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Theorem 4.2. The set of Lipschitz functions g such that f is Lipschitz is a
closed vector subspace of infinite codimension of the space of 1 -periodic Lipschitz
functions (endowed with its natural topology). Consequently, its complement is
an open dense subset of the space of 1 -periodic Lipschitz functions.

Remarks. 1. Theorems 4.1 and 4.2 ensure that the case where dim (ω) < 1
is generic.

2. Conclusion (19) is often present in the literature (note that the right-hand
part of (19) simply means that f is of class C1/2 ). Falconer states that (19)
is sufficient to prove that the box-counting dimension of the graph ∂Ω is equal
to 3

2 (see [F]). In [PU], the authors find sufficient conditions on g which ensure
that (19) is satisfied. Finally, assuming some stronger regularity properties on g ,
Kaplan et al. [KMPY] prove a theorem similar to ours about the behaviour of f .

This section is organized as follows. In the first subsection, we obtain a
geometric condition (on the function f ) which ensures that dim (ω) < 1. In Sec-
tion 4.2, we describe the behaviour of the function f and prove Theorem 4.1. In
Section 4.3, we establish a necessary and sufficient condition for the functional
equation f(t) = g(t) + f(lt)/

√
l to have a Lipschitz solution and then prove The-

orem 4.2. Finally, in the last subsection, we give an example where f is not
Lipschitz and therefore dim (ω) < 1.

4.1. A geometric condition on f which implies that dim (ω) < 1

Proposition 4.3. Suppose that f is C1/2 (not necessarily of Weierstrass-
type). If we can find t0 ∈ [0, 1) and r > 0 such that

(20) f(t0 + h) ≥ f(t0) for all h ∈ [0, r) and lim sup
h→0+

f(t0 + h)− f(t0)

h1/2
> 0,

then

lim
s→0

ωM∅(∆s)

s
= 0,

where Q0 =
(
f(t0), t0

)
and ∆s = ∆(Q0, s) .

Proposition 4.3 is not specific to Weierstrass-type curves; it is true for any
function of class C1/2 , but does not imply dim (ω) < 1 in general. However, in the
case where f is a Weierstrass-type function, the existence of one point satisfying
(20) implies the existence of many other such points where the behaviour of the
measure is similar. The rigorous property behind this heuristic argument is the
quasi-Bernoulli property for the measure ω and, as a consequence of Corollary 3.2,
we have



Caloric measure on domains bounded by Weierstrass-type graphs 513

Corollary 4.4. Suppose that f is a Weierstrass-type function. Under con-
dition (20), we have

dim (ω) < 1.

Remark. The conclusion of Corollary 4.4 would also hold if we could find
t0 ∈ [0, 1) and r > 0 such that

(21) f(t0 + h) ≤ f(t0) for all h ∈ [0, r) and lim inf
h→0+

f(t0 + h)− f(t0)

h1/2
< 0.

In that case, we could prove that

lim
s→0

ωM∅(∆s)

s
= +∞.

Proof of Proposition 4.3. Let δs be the projection on the graph of [t0, t0 +s) .
We know that ωM∅(∆s) ≈ ωM∅(δs) . The maximum principle ensures that ωM∅(δs)
does not depend on the values of f(t) for t < t0 . So, we can suppose that

f(t) = f(t0) for every t < t0 . On the other hand, if M̃∅ = Q0 + (10Kr1/2, r) ,

we have previously remarked that ωM∅(∆s) ≈ ωM̃∅(∆s) when s → 0 (here, the

constants may depend on r ). Since ωM̃∅(∆s) does not depend on the values of
f(t) for t ≥ t0 + r , we can also suppose that f(t) = f(t0 + r) for every t ≥ t0 + r .
In other words, these two remarks say that we can suppose that t0 is a global
minimum for the function f .

Let Ω̂ = {(x, t) : x > f(t0)} . We have Ω ⊂ Ω̂ . Therefore, if G and Ĝ denote

the Green functions on Ω and Ω̂, we know that

(22) G(M,P ) = Ĝ(M,P )− R̂Ω̂\Ω
Ĝ(M,· )(P ),

where R̂
Ω̂\Ω
Ĝ(M,· ) is the smooth reduction of Ĝ(M, · ) on Ω̂ \ Ω (for more details

about reduction, we can refer to [Do]). Let ω̂M∅ be the caloric measure at M∅
related to Ω̂ and ∆̂s = {(f(t0), t) : t ∈ (t0− s, t0 + s)} . Using Theorem 1.5 we get

ωM∅(∆s)

s
≈ ωM∅(∆s)

ω̂M∅(∆̂s)
≈ G(Qs,M∅)

Ĝ(Qs,M∅)

where Qs = Q0 + (
√
s, 0).

To complete the proof of the proposition, we adapt to our situation an old
idea due to Näım ([Na]). We must be careful, because the heat operator is not self-
adjoint. According to [K] and [H2], let χ be the unique caloric minimal function
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in Ω̂ which tends to 0 at every point of ∂Ω̂ \ {Q0} and satisfies χ(M∅) = 1.
Following [H2, Part 4], we know that

χ(P ) = lim
s→0

Ĝ(Qs, P )

Ĝ(Qs,M∅)
.

On the other hand, the additivity and positivity of the map s 7→ R̂
Ω̂\Ω
s (M∅) ensure

the existence of a non-negative Radon measure µ such that for every non-negative
super-caloric function,

R̂
Ω̂\Ω
s (M∅) =

∫
s(ξ) dµ(ξ).

Using (22) and Fatou’s lemma, we get

lim sup
s→0

G(Qs,M∅)

Ĝ(Qs,M∅)
= 1− lim inf

s→0

∫
Ĝ(Qs, ξ)

Ĝ(Qs,M∅)
dµ(ξ)

≤ 1−
∫
χ(ξ) dµ(ξ) = 1− R̂Ω̂\Ω

χ (M∅).

According to [H2, Proposition 4.2], hypothesis (20) implies that the set Ω̂ \ Ω is
not thin in the minimal function χ . So,

R̂
Ω̂\Ω
χ (M∅) = χ(M∅) = 1.

This completes the proof.

4.2. Proof of Theorem 4.1. In this section, we identify 1-periodic func-
tions with functions defined on the torus R/Z . The usual distance on R/Z is
noted d . We begin with the following elementary lemma.

Lemma 4.5. Suppose that ‖g′‖∞ ≤ 1 . Let s, t ∈ R/Z such that d(t, s) ≤
1/2l (this is equivalent to d(lt, ls) = l d(t, s)) and suppose

|f(lt)− f(ls)|
d(lt, ls)

≥ 1√
l − 1

(1 + u) for some u ≥ 0.

Then
|f(t)− f(s)|

d(t, s)
≥ 1√

l − 1
(1 + u

√
l ).

The above lemma is an easy consequence of the functional equation between
f and g . We have

f(t)− f(s) = g(t)− g(s) +
1√
l

(
f(lt)− f(ls)

)
.
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Thus,

|f(t)− f(s)|
d(t, s)

≥
√
l
|f(lt)− f(ls)|

d(lt, ls)
− |g(t)− g(s)|

d(t, s)
≥
√
l
|f(lt)− f(ls)|

d(lt, ls)
− 1

which can be rewritten as

|f(t)− f(s)|
d(t, s)

− 1√
l − 1

≥
√
l

[ |f(lt)− f(ls)|
d(lt, ls)

− 1√
l − 1

]

and the lemma is proved.

Iterating Lemma 4.5, we obtain the following corollary.

Corollary 4.6. Suppose once again that ‖g′‖∞ ≤ 1 . Let s, t ∈ R/Z such
that d(t, s) ≤ 1/2ln (this is equivalent to d(lnt, lns) = ln d(t, s)) and suppose

|f(lnt)− f(lns)|
d(lnt, lns)

≥ 1√
l − 1

(1 + u) for some u ≥ 0.

Then
|f(t)− f(s)|

d(t, s)
≥ 1√

l − 1
(1 + uln/2).

Now we can prove Theorem 4.1. Let us assume, without loss of generality,
that the Lipschitz constant of g is equal to 1. If f is Lipschitz, it is known that the
measure ω is strongly equivalent to the Lebesgue measure (see [H2, pp. 642–643]).

On the other hand, suppose that f is not (
√
l − 1)−1 -Lipschitz. This means

that we can find two points s0, t0 ∈ R/Z such that




|f(t0)− f(s0)|
d(t0, s0)

=
1√
l − 1

(1 + v), v > 0,

t0 = s0 + α, 0 < α ≤ 1
2 .

Let I be a closed interval on the circle R/Z and let n be the unique integer ≥ 1
such that

l−n ≤ 1
2 |I| < l−n+1.

We can choose sn such that sn ∈ I , sn + l−n ∈ I and lnsn = s0 . Define
tn = sn + l−nα ; we have lntn = t0 and tn ∈ I . Using Corollary 4.6 we obtain

|f(tn)− f(sn)|
d(tn, sn)

≥ 1√
l − 1

(1 + vln/2) ≥ vln/2√
l − 1

.

We conclude that

osc (f, I) ≥ v d(t0, s0)√
l − 1

l−n/2 ≥ a|I|1/2

with a = v d(t0, s0)/(
√
l − 1)(2l)1/2 .

This inequality ensures that (20) is satisfied if t0 is the minimum of f . Then,
Corollary 4.4 allows us to conclude that dim (ω) < 1.
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4.3. Proof of Theorem 4.2. We know that, when g is Lipschitz, the
following functional equation

(23) f(t) = g(t) +
1√
l
f(lt) for all t ∈ R/Z,

(qua equation in f ) has a unique solution in C0(R/Z,R) , defined by

f(t) =
∞∑

n=0

l−n/2g(lnt).

We would like to know if f is Lipschitz or, equivalently, if (23) has a solution
in Lip (R/Z,R) .

Proposition 4.7. Let g ∈ Lip (R/Z,R) and f ∈ C0(R/Z,R) satisfy-
ing (23). Define the linear operator Al from Lip (R/Z,R) into itself by

Al(ϕ) = ψ with ψ(t) =
1

l

∑

ls=t

ϕ(s)

and put Ul = −(Id−
√
l Al)

−1(
√
l Al) (the operator Id−

√
l Al is invertible). Then,

f is Lipschitz if and only if f = Ul(g) . Equivalently, f is Lipschitz if and only if

(24) Ul(g)(t) = g(t) +
1√
l
Ul(g)(lt) for all t ∈ R/Z.

This is a closed, linear condition, of infinite codimension in Lip (R/Z,R) .

Proof. Note that equation (23) implies the following (a priori weaker) condi-
tion

(25) Al(f − g) =
1√
l
f.

We claim that (25), qua equation in f , has a unique solution in Lip (R/Z,R) .
Therefore, (23) will have a solution in Lip (R/Z,R) if and only if the Lipschitz
solution of (25) also verifies (23).

Equation (25) can be rewritten as

(Id−
√
l Al)f = −

√
l Alg.

To prove our claim, we have to establish that the operator Id−
√
l Al is invertible

on Lip (R/Z,R) . This will imply that (25) has a unique solution, namely

Ul(g) = −(Id−
√
l Al)

−1(
√
l Al)(g)
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and will give the first part of Proposition 4.7.
To prove that Id−

√
l Al is invertible, let us denote by 1 the constant function

equal to 1 and let

Lip0(R/Z,R) =

{
g ∈ Lip (R/Z,R) :

∫

R/Z

g(t) dt = 0

}
.

We have the decomposition

Lip (R/Z,R) = Lip0(R/Z,R)⊕R1

which is preserved by
√
l Al . The operator Id−

√
l Al is obviously invertible on

R1 , so we simply have to prove invertibility on Lip0(R/Z,R) . But,
√
l Al is

a contraction on Lip0(R/Z,R) (endowed with norm ‖g′‖∞ ). So, Id−
√
l Al is

invertible in this space and its inverse is given by
∑
k≥0(
√
l Al)

k . Moreover, we

have ‖(Id−
√
l Al)

−1‖ ≤ 1/(1− l−1/2) on Lip0(R/Z,R) . Therefore, Id−
√
l Al is

indeed invertible on the whole space Lip (R/Z,R) . This proves the claim.
To finish the proof of Proposition 4.7, we observe that condition (24), which

states that Ul(g) verifies (23), is closed and linear. Moreover, it is easy to construct
a lot of functions g which do not verify (24). An elementary calculation gives

Ul(1) =
1

1− l−1/2
and Ul(e

2iπnt) = −
∑

k≥1, lk|n
lk/2e2iπ(n/lk)t if n 6= 0.

In particular, when g is a nonzero trigonometric polynomial whose frequencies are
in Z \ lZ , condition (24) is not verified and the Weierstrass-like function f is not
Lipschitz.

More generally, when g is Lipschitz, we can compute the Fourier coefficients
of Ul(g) and we obtain that g satisfies (24) if and only if, for every n ∈ Z ,

(26) l 6 |n =⇒
+∞∑

k=0

lk/2ĝ(lkn) = 0.

These formulas have been already established by Kaplan et al. ([KMPY]) under
more restrictive hypotheses on g .

All these remarks allow us to construct an infinite-dimensional space of func-
tions g which do not verify condition (24), except the null function. In other
words, the space of functions g such that f is Lipschitz has infinite codimension.

To conclude, note that the estimate

‖(Id−
√
l Al)

−1‖ ≤ 1

1− l−1/2
on Lip0(R/Z,R)
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implies that for every g ∈ Lip (R/Z,R) ,

‖Ul(g)′‖∞ ≤
1√
l − 1

‖g′‖∞.

If f is Lipschitz (that is if f = Ul(g)), this gives another proof of the inequality

‖f ′‖∞ ≤
1√
l − 1

‖g′‖∞.

4.4. An example. To finish this section, we give a simple sufficient condition
on g and l which guarantees dim (ω) < 1.

Proposition 4.8. Suppose that g is not constant. If l is sufficiently large,
then

dim (ω) < 1.

In fact, it happens as soon as

√
l

√
l − 1√
l + 1

>
‖g′‖∞

2osc (g,R)
.

Proof. Assume f and g are both Lipschitz. Then,

(27)

{
f(t) = g(t) + f(lt)/

√
l,

f ′(t) = g′(t) +
√
lf ′(lt) almost everywhere.

We can easily deduce that

(28)





osc (g,R) ≤
[
1 +

1√
l

]
osc (f,R),

‖f ′‖∞ ≤
‖g′‖∞√
l − 1

(the second inequality is not new; we have already proved it, by two different
methods in the previous sections).

Observing that osc (f,R) ≤ 1
2‖f ′‖∞ (since f is 1-periodic), we get

osc (g,R) ≤
√
l + 1

2
√
l (
√
l − 1)

‖g′‖∞

and the proof of Proposition 4.8 is complete.
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5. A minoration for the lower dimension of caloric measure

In this section, f is a bounded function of class C1/2 (not necessarily of
Weierstrass-type) with Hölder constant K . Denote by Ω the corresponding do-
main and choose an arbitrary point M0 in Ω. We want to give estimates for the
lower dimension of ω̃M0 , which is defined by

dim∗(ω̃
M0) = inf

(
dim (E) : ω̃M0(E) > 0

)
.

Using Taylor–Watson results about the description of polar sets related to the
heat equation ([TW]), we know that dim∗(ω̃M0) is not less than 1

2 . In the next
theorem, we improve this result.

Theorem 5.1. There exists ε = ε(K) > 0 such that for every M0 ∈ Ω ,

dim∗(ω̃
M0) ≥ 1

2 (1 + ε).

Remark. If dim∗(ω̃M0) = inf
(
dim (E) : ω̃M0(R \ E) = 0

)
, we obviously

conclude that
dim∗(ω̃M0) ≥ dim∗(ω̃

M0) ≥ 1
2 (1 + ε).

In fact, when f is a Weierstrass-type function, the quasi-Bernoulli property, proved
in Section 3, ensures that

dim∗(ω̃M0) = dim∗(ω̃
M0) = dim(ω̃M0).

However, for a general function f , we can have

dim∗(ω̃M0) > dim∗(ω̃
M0).

Proof of Theorem 5.1. We first remark that if M0 = (x0, t0) and M1 = (x1, t1)
are two points in Ω with t0 ≤ t1 , then, the measures ωM0 and ωM1 have the
same null sets in ∂Ω ∩ {t ≤ t0} . In fact, Harnack inequalities ensure that ωM0

is absolutely continous with respect to ωM1 and Theorem 1.1 ensures that the
measure ωM1 is absolutely continous with respect to ωM0 in ∂Ω ∩ {t ≤ t0} . To
prove Theorem 5.1, it is then sufficient to estimate the Hausdorff dimension of
non negligible sets E related to ω̃M0 when E ⊂ Π

(
∆(Q0,

1
2r)
)

, M0 = Q0 +
(20K

√
r, 8r) and r arbitrarily small (see (1) and (6) for the notation). We will

use the following lemma.

Lemma 5.2. There are two positive numbers C = C(K) and ε = ε(K) such
that for every Q0 =

(
f(t0), t0

)
∈ ∂Ω and r > 0 ,

ω̃M0([s0 − s, s0 + s]) ≤ C
(
s

r

)(1+ε)/2

,

where M0 = Q0 + (20K
√
r, 8r) and [s0 − s, s0 + s] ⊂ [t0 − r, t0 + r] .
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It is elementary to deduce from Lemma 5.2 that there exists C = C(r,K) > 0
such that for every Borel set E ⊂ [t0 − r, t0 + r] ,

ω̃M0(E) ≤ CH (1+ε)/2(E)

where H (1+ε)/2 is the Hausdorff measure in dimension 1
2 (1 + ε) . Then, the lower

dimension of the measure ω̃M0 restricted to [t0−r, t0 +r] is not less than 1
2 (1+ε)

and the theorem follows.

Proof of Lemma 5.2. Using (14) in the present situation, we have

ω̃M0([t− s, t+ s]) ∼<
√
s

r
ϕ∗
(
Q+ (

√
s, 0)

)

where Q =
(
f(s0), s0

)
and ϕ∗ is the C ∗ -harmonic measure of ∂T (Q, r) \∆(Q, r)

in T (Q, r) . Let us introduce

U =
{

(x, t) ∈ R2 : |t| < 1, |x| < 10K and x > −10K
√
|t|
}

and denote by ψ∗ the C ∗ harmonic measure of ∂U \ {(x, t) : x = −10K
√
|t| }

in U . Using the maximum principle and the homogeneity of the operator C ∗ , we
have

ϕ∗
(
Q+ (

√
s, 0)

)
≤ ψ∗

(√
s

r
, 0

)
.

Therefore, Lemma 5.2 is a consequence of the following

Lemma 5.3. There are two positive numbers C = C(K) and ε = ε(K) such
that

ψ∗
(
(x, 0)

)
≤ Cxε for all x ∈ (0, 5K].

Proof. Similar ideas can be found in [H2]. Let us sketch the proof to be
self-contained. Put

V = {(x, t) ∈ R2 : |t| < 1 and |x| < 10K}

and denote by G(A, · ) the Green function of V with singularity at A . Then,
G( · , B) is the Green function of V related to the adjoint operator with singularity
at B . Let B = (−8K, 1

2 ) and observe that B ∈ V \ U . If

Ṽ = {(x, t) ∈ R2 : |t| < 1
4 and |x| < 5K},

there exists a constant C1 = C1(K) > 0 such that

G(M,B) ≥ C1 for all M ∈ Ṽ .
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On the other hand, if Γ( · , · ) is the heat kernel, and if

W = B + {(x, t) ∈ R2 : |t| < 1/100 and |x| < K/10},

there exists a constant C2 = C2(K) > 0 such that

(29) G(M,B) ≤ Γ(M,B) ≤ C2 for all M ∈ ∂W.

Using the maximum principle, we extend (29) to V \W . In particular, it is true
in U . Then, by the maximum principle,

1− ψ∗(M) ≥ 1

C2
G(M,B) for all M ∈ U.

We can conclude that

ψ∗(M) ≤ 1− C1

C2
for all M ∈ Ṽ ∩ U.

Iterating this inequality, we have

ψ∗(M) ≤
(

1− C1

C2

)k

where k ≥ 1 and M ∈ U ∩ {(x, t) : |t| ≤ 4−k, |x| ≤ 10K2−k} . We can easily
deduce that Lemma 5.3 is true with

ε =
− log(1− C1/C2)

log 2
.
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