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Abstract. In this paper we study the hyperbolic geometry on a genus 2 surface. The
main object of study is a subset of the set of hyperbolic lengths of closed geodesics on such a
surface which arises from an algorithmic choice of shortest loops. Maskit has shown that this
data can be used to identify finite sided polyhedral fundamental set for the modular group on the
marked hyperbolic surface structures of a given genus. The special nature of genus 2 has made
it more accessible than in higher genus and we are able to produce a more detailed picture of the
domain and its side-pairing transformations. If the domain can be shown to satisfy certain basic
topological criteria, according to a classical theorem of Poincaré, then this would give a set of
geometrical generators and relations for the modular group.

0. Introduction

In this paper we study the structural properties of hyperbolic geometry on a
genus 2 surface i.e. the crystallographic properties of the Fuchsian groups which
uniformise such a surface. Our primary tool, following on from important work
of Bernard Maskit ([20]), is a detailed analysis of a type of subset of the set
of hyperbolic lengths of closed geodesics on such a surface, which arises from
an algorithmic choice of shortest loops in the surface. Maskit shows that this
data may be used to identify a finite sided polyhedral fundamental set for the
action of the (Teichmiiller) modular group on the space of all marked hyperbolic
surface structures of a given genus. In genus 2, this action has proved to be more
accessible than in higher genus and we are able to produce a more detailed picture
of the domain and its side-pairing transformations. If the domain can be shown
to satisfy certain basic topological criteria, according to a classical theorem of
Poincaré, extended to general discrete group actions, this would then give a set of
geometrical generators and relations for the modular group itself.

Maskit’s construction in the special case of genus 2 is as follows. Choose a
sequence of 4 non-dividing geodesic loops on the surface satisfying the following
intersection property: the second loop intersects the first loop in a single point;
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the third loop intersects the second loop in a single point, but does not intersect
the first; the fourth loop intersects the third loop in a single point, but does not
intersect either the first loop or the second loop. We call such an ordered sequence
of loops a standard chain. Cutting the surface open along a standard chain we
obtain a topological disc and so a standard chain gives a marking for the surface.
So our surface, standard chain pair represents a point in Teichmiiller space. Now if
each choice of geodesic loop was a shortest possible then we say that the standard
chain is minimal. We say a surface, standard chain pair lies in the Maskit domain
if the standard chain is minimal.

We wish to consider the intersections of translates of the Maskit domain. Con-
sider an element of the mapping class group. The image of a standard chain under
this element is an ordered sequence of loops on the surface. Taking the unique
geodesics in the homotopy classes of these loops we obtain another standard chain
on the surface. If there exists a surface with both of these standard chains min-
imal then the Maskit domain and its translate under this mapping class element
has non-empty intersection. So solving the problem of which translations have
non-empty intersection with the Maskit domain becomes the problem of finding
the complete set of allowable minimal standard chain pairs. Due to the special
nature of genus 2 surfaces it is known that sequential loops in a standard chain
intersect at one of the six Weierstrafl points on the surface—the fixed points of the
unique hyperelliptic involution that each genus 2 surface exhibits. Theorem 1.1
states that distinct loops in a pair of minimal chains are either disjoint or intersect
at Weierstrafl points.

Our characterisation of the side-pairing elements of the Maskit domain in
genus 2 is as follows: if the Maskit domain has non-empty intersection with a
translate under the mapping class group, then this intersection contains a copy
of one or other of two special surfaces. One of these special surfaces is the well-
known genus 2 surface with maximal symmetry group. The other special surface
does not seem to have appeared in the literature before; it is unusual in that
it is not defined by its symmetry group alone, it also requires a certain length
equality between geodesic loops to be satisfied. From this characterisation it is
a combinatorial exercise to obtain a complete list of mapping class elements that
are side-pairing elements of the Maskit domain.

We organise the paper as follows. We begin with general preliminaries con-
cerning genus 2 surfaces and the particular model for Teichmiiller space that
we adopt. With respect to this model we then repeat Maskit’s definition for a
fundamental domain for the Teichmiiller modular group. We then construct a
one-parameter family of genus 2 surfaces. Two distinguished members of this
family are the two special surfaces that feature in our main result. We then show
how the main result can be used to give a full list of side-pairing elements of the
Maskit domain. We then have the two main technical parts of the paper. In the
first we prove the main result under the assumption of Theorem 1.1. In the second
we prove Theorem 1.1. We have chosen this order so as to centre the paper on
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the geometry of the two special surfaces. Moreover we apply results from the first
part in the second.

The history of defining a fundamental domain for Mod, for g > 2 goes back
to the rough domains of Keen [11]. Maskit covers certain low signature surfaces
in his papers [17], [18]. In his doctoral thesis Semmler defined a fundamental
domain for closed genus 2 surfaces, based upon locating the shortest dividing
geodesic. Recently McCarthy and Papadopoulos [21] have defined a fundamental
domain based on the classical Dirichlet construction. For surfaces with one or
more punctures there are known triangulations of Teichmiiller space. Associated
to these are combinatorial fundamental domains—see Harer [14] for an overview
of this work. An eventual goal of this work is to give geometrical presentation of
the mapping class group in genus 2. The first presentation of the mapping class
group in genus 2 was obtained by Birman and Hilden [4] completing the program
begun by Bergau and Mennicke [3]. For higher genus surfaces see Hatcher and
Thurston [15]. Part of the author’s inspiration for this work came from reading
Thurston’s note [25].

The author would like to thank W.J. Harvey, B. Maskit, P. Buser, K.-D. Semm-
ler and C. Bavard for many useful discussions. Further I would like to thank the
referee for his or her insight and suggestions.

1. Preliminaries

Throughout our model for the hyperbolic plane H? will be the interior of the
unit circle of the complex plane with a metric of constant curvature —1. Likewise
< will always denote an oriented closed surface of genus 2. The Teichmiiller space
of genus 2 surfaces .7 is the space of hyperbolic metrics on . up to isometries
that are isomorphic to the identity. Without further mention, all genus 2 surfaces
< will be oriented and endowed with a hyperbolic metric.

Let v denote a simple closed geodesic on .. We say that v is dividing if .7\ y
has two components and non-dividing if .# \ v has one component. Throughout
the paper ‘\’ denotes ‘set minus’ and by ‘non-dividing geodesic’ we shall always
mean ‘simple closed non-dividing geodesic’.

We define a chain to be an ordered set of n non-dividing geodesics 7, =

ai,...,o0p on % such that: |a; Ney| =1 for |i —j| =1 and o; Na; = 0 for
li —j| > 2, where 1 < n <5 and 1 <i,j5 <n. A necklace is an ordered set
of 6 non-dividing geodesics % = a1,...,a6 on . such that: |a; Na,;| =1 for

i — jlmod6 =1 and o; Naj =0 for |[i — jlmod6 > 2, where 1 <4,5 < 6. We
call the geodesics in a chain or necklace the links and we call n, the number of
links in a chain, the length of the chain. We note that any length 4 chain extends
uniquely to a chain of length 5 and that any chain of length 5 extends uniquely to
a necklace, so chains of length 4 and 5 and necklaces can be considered equivalent.
We call a chain of length 4 standard and will denote it by <.

To a surface, standard chain pair .¥, &/ Maskit associates discrete faith-
ful representation of m () into PSL(2,R); see [20, p. 376]. It is well known
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that there is a real-analytic diffeomorphism between 2.7 (5” , PSL(2, R)) and the
Teichmiiller space 7 (see Abikoff [1]); this diffeomorphism was given explicitly
by Maskit in [19]. So there is a one-to-one correspondence between pairs .7, .o
and points in .7 .

We define a chain ¢, = a1,...,qa, to be minimal if o is a shortest non-
dividing geodesic and if, for any «/  such that </ = «aq,...,am_1,l, is a chain,
we have that [(a,,) <l(al,) for 2 <m <n.

Firstly, minimal standard chains exist. To see this we use the fact that given
any L > 0 there are only finitely many closed geodesics on .¥ that have length
< L (see Buser [2, p. 27]). An elementary consequence of this fact is that there
are only finitely many shortest non-dividing geodesics; we choose one of them
and label it by «a;. Choose a non-dividing geodesic that intersects «; exactly
once. There are only finitely many shorter non-dividing geodesics with the same
intersection property. Choose a shortest and label it by as. And so on, until we
have a minimal standard chain.

Following Maskit we then define & C .7, the Maskit domain, to be the set of
surface, standard chain pairs ., &/ with &/ minimal. By the above construction
a generic genus 2 surface has exactly one minimal standard chain and so a unique
representative on the interior of . Maskit also shows that the set of surfaces
with more than one minimal standard chain has measure zero in .7 and hence
that the boundary of Z has measure zero. Maskit also gives a proof that the
tesselation of .7 by & is locally finite. Maskit then observes that & satisfies the
classical prerequisites to be a fundamental domain for the action of the Teichmydiller
modular group, or mapping class group, Mod on 7 .

The main question addressed in Maskit’s paper [20] and the author’s pa-
per [13] is the following: given a standard chain, what set of length inequalities
must it satisfy in order to be minimal? Maskit, for any genus g, shows that this
set is finite and, for genus 2, shows that its cardinality is at most 45. In [13]
the author improved this number to 27. The author is confident that this set of
inequalities is optimal.

In this paper we examine the tesselation of .7 by . More precisely we
consider the elements ¢ € Mod that have the property ¢(2) N2 # (), what we
call side-pairing elements of Z. Let ¢ € Mod be a side-pairing element and choose
some point . € ¢(Z)N 7. So . has minimal standard chains &7, % associated
to 2,¢(2), respectively. Here # = [31,..., 4 where [5; = [¢(«;)], the geodesic in
the free homotopy class of ¢(«;). That is associated to any side-pairing element of
2 there is an ordered pair of minimal standard chains &/, % on some surface .7 .

Conversely given an ordered pair of minimal standard chains </, % on .
there is an associated side-pairing element of Z. It suffices to calculate a repre-
sentative ¢ of the unique mapping class such that 3; = [¢(a;)] for i € {1,...,4}.
The natural basis for this calculation is {7;} for 1 <i < 6 where 7; denotes a left
Dehn twist about the link «; in the necklace 7% .

The main fact that enables us to study minimal standard chain pairs is the
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following: every genus 2 surface . exhibits a unique involution, the hyperelliptic
involution ¢ . This order 2 isometry has six fixed points, the Weierstrafl points.
Moreover _# fixes any simple closed geodesic v on ./, the action of ¢ on v
being classified by the topological type of . The restriction of # to v has no
fixed points if v is dividing and two fixed points if v is non-dividing (see Haas—
Susskind [8]). It is a simple consequence that sequential links in a chain intersect
at Weierstrafl points. We say that two distinct non-dividing geodesics cross if they
intersect in a point that is not a Weierstrafl point, and we say that two chains cross
if a link in one chain crosses a link in the other. We have that:

Theorem 1.1. Minimal standard chains do not cross.
Corollary 1.2. There are only finitely many side-pairing elements.

Proof of Corollary 1.2. Let </ be a standard chain on .%. It is enough to
show that there are only finitely many other standard chains % on . that do not
cross /. This follows since there are only finitely many non-dividing geodesics
that do not cross 7. o

An application of Theorem 1.1 is that 7,1 o741 is not a side-pairing element
for 1 < i < 4, subscript addition modulo 6. Let &/ be a standard chain and let
B =r71i_107i41(). Now (; = [1,_1 0 Ti11()] crosses «; (see Subsection 2.1
where we perform similar calculations). So, by Theorem 1.1, 7, % cannot both
be minimal.

Given surfaces .7,.”’ with pairs of minimal standard chains </, % and
o', B, respectively, we say that o/, % on . is equivalent to <«/', A" on .’
if there exists a homeomorphism ¥: . — .’ such that [V(&)] = &', [¥(A)] =
2. Our main result in this paper is:

Theorem 1.3. Any minimal standard chain pair is equivalent to a minimal
standard chain pair on Oct or & .

In Subsection 1.2 we construct Oct and & as members of a one-parameter
family of surfaces—each satisfying a certain length equality. Whilst & does not
seem to have appeared in the literature before, Oct is the well-known genus 2
surface of maximal symmetry group.

A simple consequence of Theorem 1.3 is that if p(2)NZ # () then ¢(2)NZ >
Oct or &. Suppose ¢(Z)N 2 > (. Choose a point .¥ € ¢(Z)N 2. By the
construction above, there exist a minimal standard chain pair &/, % on .¥ such
that # = ¢(«/). By Theorem 1.3, &/, %4 on . is equivalent to &7/, %" on Oct
or &. It follows that ¢(Z)NZ > Oct or &.

The main complaint about the proofs of Theorems 1.3 and 1.1 is that they
are based on a case-by-case analysis. That is, we consider cases and derive contra-
dictions using length inequality results for systems of non-dividing geodesics. The
majority of the paper is devoted to the proofs of these results. Unfortunately the
author has yet to derive a more satisfactory approach.
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1.1. Some notation and nomenclature. All of the hyperbolic formulae
we use can be found in Buser [2, p. 454]. Given a pair of points X,Y in H? we
shall use d(X,Y’) to denote the distance between them. For X, Y distinct we shall
use L XY to denote the bisector of X,Y —the set of points Z € H? such that
d(Z,X) = d(Z,Y). Given a triplet of distinct points X, Y, Z in H? we shall
use /XY Z to denote the angle at the Y vertex of the triangle spanned by X, Y,
Z . By a trirectangle we shall mean a compact hyperbolic quadrilateral with three
right angles. By a birectangle we shall mean a compact hyperbolic quadrilateral
with two adjacent right angles. We shall use curly brackets {x,x*,*} to indicate
unordered sets and round brackets (x,*,#) to indicate ordered sets.

1.2. Special surfaces. Suppose we have a trirectangle with acute angle
7/4. Label the edges incident upon the 7/4 vertex a, 3 and the edge opposite «
(respectively ) by a (respectively b). We label the diagonal from vertex a N
to the vertex aNb by c. Let 0, denote the angle between a, c, et cetera—see
Figure 1. We shall abuse notation by using the same symbol as an edge or diagonal
to denote its length. We denote such a trirectangle by 2, .

Lemma 1.4. For any given a > cosh™* (\/5) there exists such a trirectan-
gle 2, . Moreover there exist 2, such that ¢ = 2a and c = 2a.

Proof. Firstly a triangle in the hyperbolic plane H? with angles 7/4, 7/2,
0 has finite edge (between the 7/4 vertex and the /2 vertex) length cosh™! /2.

Consider three geodesics such that the first geodesic intersects the second at
an angle m/4 and the second intersects the third at an angle 7/2. Let o denote
the distance between these intersections. By the above calculation if cosha = /2
the three geodesics bound a 7/4,7/2,0 triangle. So for cosh o > V2 there exists
a unique common perpendicular between the first and third geodesics. The three
geodesics and this common perpendicular now bound a trirectangle.

We now want to show that there exist trirectangles such that ¢ = 2a and
¢ = 2a. By the above we consider the range 2 < cosh’a < oo. A simple
calculation gives

(cosh? o — 1)(cosh* o — 4 cosh? o + 2)

cosh? ¢ — cosh?2a = — 5
cosh” o — 2

This expression has exactly one root in the range, cosh? a = 2 4+ v/2. Similarly

4 cosh® a — 13 cosh* o + 10 cosh? o — 2

cosh? ¢ — cosh? 2o = — 5
cosh” o — 2

Again this expression has exactly one root in the range. Consider the polynomial
in the numerator as a polynomial in cosh? a. This polynomial has a root between
2 and 3, and its turning points lie at 1, 2. So there exist unique trirectangles

273"
such that ¢ = 2a and ¢ =2a. o
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We are going to define a fundamental domain in terms of the tesselation of
H? by 2,. In Figure 1 we have pictured part of this tesselation, generated by
reflecting in each edge. Consider the copy of 2, with its edges and diagonal
labelled—i.e. in the negative real, negative imaginary quadrant with its (§ edge
along the real axis. Starting at the aNb vertex of this trirectangle, in the direction
of the a edge: walk a distance 4a; turn right through an angle 7 — 6,; walk a
distance c¢; turn right through an angle 7/2; walk a distance c¢; and turn right
through an angle 6,. Repeat this sequence 3 more times to close the path.

Let €0, denote the domain circumscribed by this path. Label the sides of
Q, in the order we have walked round them by Sy, S5, S, S§, Sy, S5, Si,
Sa, Si, Se, S5, S3. Define side-pairing elements g; € PSL(2,R) for Q, so
that ¢;(S;) = S, for 1 < i < 6. This identification pattern has three length
4 vertex cycles—each with angle sum 27. It is the same identification pattern
as that given by Maskit when constructing a discrete faithful representation to a
surface, standard chain pair—see [20, p. 376]. So we obtain a genus 2 surface,
with a complete hyperbolic metric, which we shall denote by .7,. We define the
octahedral surface Oct (respectively exceptional surface &) to be ., with 2,
such that ¢ = 2a (respectively ¢ = 2a).

We need to label a distinguished set of non-dividing geodesics on .7, . Label
by Wwo, w3, Wo, W4, W2, Wi, W2, Wq, Wy, W3, Wo, Wg, W2, Wi, Wz, Wy the
orbits of aNb and aN B on the boundary of €2, in the order that we walked
them and label the origin by ws. Using the index sets k =0,1,2,3, | = 4,5 and
modulo 4 addition label by kj 41 (respectively kg ;) the union of orbits of a or b
(respectively ¢) in €, passing through wg, wiy1 (respectively wy,w;). Label by
i the union of orbits of a or B that intersect kj y4+1. Using the generators g;
it is a simple exercise to check that each one of Ky k41, ki1, Ax projects to a
non-dividing geodesic on .7, . Likewise it is easy to check that each set of points
w; projects to a single point on ., , a Weierstraf point.

Proposition 1.5. The set |J kg k41 UKk, Is the set of shortest non-dividing
geodesics on Oct. The set k12U ks (respectively |J ki U Ao U A2) Is the set of
shortest (respectively second shortest) non-dividing geodesics on & .

It is a simple consequence that minimal chains on Oct (respectively &) lie
in the set of shortest (respectively shortest and second shortest) non-dividing
geodesics.

Proof. Consider & . By definition ¢ = 2a.. It follows that 26, = 6, and hence
a < b. By elementary geometry a < a, b< 8 andso a < a < b < f.

Take an open disc Ds (a circle C5) of radius ¢ = 2« centred on ws. No
other orbit of a Weierstrafl point lies in Ds. Around C5, since ¢ = 2a, there are
orbits of wy and of wy in diametrically opposite pairs. The diameter between the
wy, pair projects to kj 5. The diameters between w, pairs project to Ag and Aa.
So this is the set of shortest non-dividing geodesics passing through ws. Likewise
for wy.
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Figure 1. Construction of the one-parameter family of surfaces.
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Now consider an open disc Dy (a circle Cy) of radius 2a centred on an orbit
of wy. No other orbit of a Weierstrafl point lies in Dy and there is a diametrically
opposite pair of orbits of wz on Cy. No other orbits of Weierstrafl points lie on
Co since 2a < ¢ = 2a. So K3, the image of the diameter between the ws pair, is
the shortest non-dividing geodesic passing through wg. Let C{ denote a circle of
radius ¢ = 2a about wg. There are orbits of w; in diametrically opposite pairs,
projecting to kg;. There are no orbits of wy; or wy on Cf. The nearest such
orbit point is at a distance 2b > ¢ = 2a. So ko, is the set of second shortest
non-dividing geodesics passing through wqy. Likewise for wy, wo, ws.

We now consider Oct. By definition: ¢ = 2a and so 6, = 203. Suppose
that a < b. From the formulae we get that a < 8 and hence that 6, > 6, and
03 < 0. It follows that 6§, > 7/4 and 03 < 7/8 giving a contradiction. Likewise
for a >b. So a=5».

Take an open disc Ds (a circle Cy) of radius ¢ = 2a = 2b centred on ws.
No other orbit of a Weierstrafl point lies in Ds. Since ¢ = 2a < 2« orbits of wy
lie outside C5. Around C5 there are orbits of wy in diametrically opposite pairs.
Again the diameter between the wy pair projects to ki 5 and so this is the set of
shortest non-dividing geodesics passing through ws. Likewise for wy.

Now consider an open disc Dy (a circle C) of radius ¢ = 2a = 2b centred an
orbit of wy. No other orbit of a Weierstrafl point lies in D;. Around C there are
orbits of wy for £ =0,2 and w; in diametrically opposite pairs. Again the diam-
eter between the wy (respectively w;) pair projects to kg1 or k12 (respectively
k1,1) and so this is the set of shortest non-dividing geodesics passing through w .
Likewise for wo, w3, wp. O

2. Listing of side-pairing elements and proof of Theorem 1.3

In this section show how a listing of side-pairing elements can be generated
and prove Theorem 1.3 under the assumption of Theorem 1.1. All minimal chain
pairs may be assumed to be non-crossing.

We say that minimal standard chain pair </, % is of type (I) (respectively
type (II)) if there exist a pair of links I' (respectively a triplet of links Y1) such
that .\ I' (respectively .# \ T) has two components.

The basis of the proof of Theorem 1.3 is to show that a minimal standard
chain of type (I) or (II) is equivalent to a standard minimal chain pair on & . To
show that a minimal standard chain of neither type (I) nor (II) is equivalent to a
standard minimal chain pair on Oct is a combinatorial exercise.

We label Weierstrafl points on % so that «; 3 a;,a;11. Likewise for %g.
Consider a permutation element o € HBg. It is a combinatorial exercise to ennu-
merate non-equivalent pairs of minimal standard chains on Oct, & associated to o.
To each of these pairs it is a simple calculation to write down the corresponding
side-pairing element of the Maskit domain. We do these exercises for the identity
Id and for (ii+ 1) which exchanges a;,a;41 for 1 <i <6.
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2.1. Listing of side-pairing elements of the Maskit domain. Let 7;
denote a left Dehn twist about «; for 1 < i < 6. It is well known that {7;}
generates the mapping class group—for example Humphries [9] showed that {r;}
for 1 <7 <5 generates it. The action of 7; on .@% is also well known. If j =17 or
li — j| > 2 then [r(c;)] = a;. For j =i —1 (respectively j =i+ 1) and [r;(c;)]
is a non-dividing geodesic through aj,a;+1 (respectively a;,a;+1) that does not
cross 2. Moreover a;Ua; U[7;(a;)] bounds a pair of triangles that are exchanged
under ¢ . The geodesics «;, «;, [7i(a;)] lie in anticlockwise order around each
triangle. Moreover we know that 7;, 7; commute if |i — j| > 2.

Consider &7, % on & given by a1 = 1 = K30, a2 = B2 = Ko, a3 = A2,
B3 = Ao and ayq = B4 = Ko 5. It is associated to the identity permutation Id since
a; = b; for 1 < i < 6. The corresponding side-pairing element is ¢ = (72 o 71)3 :
We have illustrated the calculation to show that % = (<) in Figure 2. The
first picture shows 71 (&7); the second 75 o 71(47); et cetera. We now note that
I' = a3 U B3 is a pair of links that divide .¥ into two components, i.e., &/, Z# is

of type (I).

Figure 2. The action of ¢ = (73 o 71)® on the standard chain </

Now consider &/, % on & given by a1 = 81 = k3,0, Q2 = ko4, B2 = K34,
ag = (3 = Ay and ay = B4 = ko 5. Here &7, A is associated to (12) since a; = b,
az = by and a; = b; for 3 <7 < 6. The corresponding side-pairing element is 77 .
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Let T = ay U (1 UBy. We note that .\ T has three components: two triangles
and a torus with boundary component. Also associated to (12) is 71 o ¢.

Next consider &/, % on Oct given by o1 = K30, B1 = Ko,a, 02 = B2 = K34,
a3 = Kaa, (3 = ko3 and oy = (4 = K12, which is associated to (23). The
corresponding side-pairing element is 7.

Consider &,% on & given by a3 = 1 = k39, ®2 = Kos, P2 = Koa,
ag = (O3 = A2, as = ko4 and (4 = ka5, which is associated to (34). The
corresponding side-pairing element is 7, 2075, Let T = ay U By UBs. We note
that .\ T has two components: a quadrilateral disc and an annulus. So <7, %
is of type (IT). Also associated to (34) is 73, 73075 2, 7, 2073075 > and T3 0 ¢,
T1_2O7'30L, 7’307‘5_2OL, 7‘1_207'307'5_2OL.

Similarly 74 is associated to (45); 75, ¢ o 75 are associated to (56); and 74 is
associated to (61). The reader can verify that—up to inverses—we have given each
side-pairing element of the mapping class group associated to each of the stated
permutation elements.

2.2. Projection to the quotient. The quotient of . by the hyperelliptic
involution _# is a sphere with six order two cone points ./ ¢ . By orbifold we
shall always mean a sphere with six order two cone points and a fixed hyperbolic
metric. We shall use & to denote an orbifold. For technical and pictorial reasons
we shall work on the quotient orbifold for the rest of the paper.

The image of a non-dividing geodesic under projection ¢:.7 — 0 is a
simple geodesic between distinct cone points, what we shall call an arc. Likewise
the image of a Weierstral point under the projection #:. — O is a cone
point. Definitions of chains, necklaces, links and crossing all pass naturally to the
quotient. We define a bracelet T to be a set of arcs that contains no crossing arcs,
divides ¢ and is such that no proper subset of T divides &¢'. As with chains,
we call the arcs in a bracelet links and call the number of links the length of a
bracelet. In particular a necklace is a bracelet of length 6.

A length 3 bracelet T always divides the orbifold into two components, di-
viding either: one cone point (¢) from two; or no cone points from three. For the
former we say that YT cuts off c. For the latter we say that T bounds a triangle
(the component of ¢\ T containing no interior cone points).

On the double cover . the lift of T divides either: one Weierstrafl point ¢
from two; or no Weierstrafl points from three. For the former, the single Weierstrafl
point ¢ lies at the centre of the quadrilateral disc and the two Weierstrafl points
lie on the interior of the annulus. For the latter, neither triangular disc contains
an interior Weierstrafl point, whilst the torus with boundary component has three
interior Weierstrafl points.

We can now restate types (I), (II) on the quotient orbifold. We say that a
standard minimal chain pair 7, % is of type (I) if it contains a length 2 bracelet.
We say that a standard minimal chain pair <7, % is of type (II) if it contains a
length 3 bracelet that cuts off a cone point.
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Proof of Theorem 1.3. Consider a minimal standard chain pair &/, % on 0
that is of neither type (I) nor type (II).

We say that an arc set T is of type (III) if T' contains no crossing arcs, each
vertex of I' has index at most four, I" contains no length 2 bracelets and each
length 3 bracelet in I" bounds a triangle. So the arc set .o/ U2 has property (I1I).

We say that an arc set I' on & is octahedral if it is graph-isomorphic to
a subgraph of the set of shortest arcs on Oct. We will show that all arc sets of
type (III) are octahedral. It follows that o/, % is equivalent to a standard minimal
chain pair on Oct.

Let T' be an arc set of type (III). Suppose I' has a vertex of index four. It is
now a simple combinatorial exercise to show that I' is octahedral. So each vertex
of I' has index at most three. Suppose I' contains a bracelet of length 3. Again we
can show that I' is octahedral. So each bracelet is of length at least 4. Likewise
for I' containing bracelets of length 4, 5 and 6. So I' is a tree and we can again
show that it is octahedral. o

2.3. Arc and cone point labelling and pictorial conventions. In this
subsection we define an arc system K U A and explain our pictorial conventions.
Most length inequality results are given in terms of subsets of this arc system. As
its name suggests this arc system is related to the set of non-dividing geodesics we
labelled in Subsection 1.2.

Let K be a set of 12 arcs that contains no crossing arcs and has the combi-
natorial pattern of the edge set of the octahedron. In particular any cone point
has four arcs in K incident upon it. Label a pair of cone points having no K
arc between them ¢; for [ = 4,5. We think of ¢4 as being at the South Pole and
c5 as being at the North Pole. We think of the other cone points as lying on the
equator. We label them c; for £ =0,1,2,3 so that there is a K arc between ¢y,
ck+1. Throughout the paper subscript addition for £ will be modulo 4. Label
the arcs in K so that kp 41 is between ci, cp41 and ki, is between ¢, ¢.
We define Aj to be the arc between c4, c¢5 that crosses only ki 41 C K. Let
A = Uki. We now note that the set of non-dividing geodesics we defined on the
one-parameter family of surfaces .7, projects to an arc set of the form K UA on
a one parameter family of orbifolds &, .

We now explain our pictorial conventions. We always represent the orbifold
as a wire-frame figure. Solid (respectively dashed) lines represent arcs in front
(respectively behind) the figure. There are three different wire-frames: the oc-
tahedral, the exceptional and the triangular prism. The octahedral (respectively
exceptional) wire-frame has a wire for each shortest arc (respectively for each
shortest and second shortest arc). The triangular prism wire-frame is only used
in Section 3. We always represent subsets of K UA on the octahedral wire-frame.
Any K (respectively A) arc in the subset is drawn in thick black (respectively
thick grey). We always orient the figure so that c4 (respectively c5) is at the
bottom (respectively top). When representing minimal chain pairs, &/ arcs are
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drawn in thick grey, Z arcs are drawn in thick black. We regard «; as oriented
from a;,a;41 and use an arrow head to indicate this orientation. Similarly for
Bj. A single unarrowed thick grey (respectively thick black) line represents the
minimal chain @] = a; (respectively %, = 31).

We now note that Ay U171 is a length 2 bracelet that divides the cone point
cr from cgi1, cpya, cpys. Likewise Ap = Ag—1 U Agy1 is a length 2 bracelet
that divides ¢y, cpy1 from cpyo, cpy3. These arc sets feature in the hypotheses
of Lemma 2.3, the result we use to prove Propositions 2.1 and 2.2. Similarly
Ul:4,5 Kk UAg+1 is a length 3 bracelet that cuts off c;1. This arc set features in
the hypothesis of Theorem 2.6, an important result in the proof Propositions 2.4
and 2.5.

We will denote the two components of &\ Ay by Ok k+1, Ok+2x+s so that
Ok.k+1 D Kk k+1. Cutting Oy 41 open along kj 1 we obtain an annulus that
we will label by A xy1. Let P denote the perpendicular from ¢; to ki k1
in Ay 41 for | = 4,5. The perpendiculars divide Ay ;41 into a pair of birect-
angles. Denote by Zj_1 (respectively 241 1) the birectangle such that Ap_;
(respectively A1) lies on its boundary. Similarly for the component 02 13-

2.4. Proof of Theorem 1.3 under the assumption of Theorem 1.1

Proposition 2.1. Let <,,%;, be a minimal chain pair such that T';, ;, =
a;, U B, is a length 2 bracelet. Then (ig,j2) = (3,3) and I's 3 divides two cone
points from two.

Proposition 2.2. Any minimal standard chain pair that contains a length
2 bracelet is equivalent to a minimal standard chain pair on & .

In fact, there is nothing more to prove. To see this, suppose a minimal
standard chain .2/, % contains a length 2 bracelet. By Proposition 2.1, I';3 =
a3 U B3 is this bracelet, I's 3 divides two cone points from two, and ./, £ contains
no other length 2 bracelets. It is now a combinatorial exercise to enumerate
standard chain pairs of this kind. Each one of these is equivalent to a minimal
standard chain pair on &—see the wire-frames in Figure 3 and two of the wire-
frames in Figure 12 for some examples.

Figure 3. Minimal chain pairs on & with (iz,j2) = (3,3).

Lemma 2.3. We have that (i) (k) < (I(Ak—1) +1(\x))/2 for | = 4,5 and
(i) max{l(kpr+1)s U(krr2,e+3)F <(Ee—1) +1(Akt1)) /2.
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We have pictured the arc sets for Lemma 2.3 with k£ = 3 in Figure 4.

Proof. (i) One component of &'\ \;_1U\ contains ¢, label it by 0. Cut Oy
open along kj; for [ =4 or 5. The resulting triangular domain has edge lengths
20(kk1), l(Ak—1),l(Ag). By the triangle inequality 2l(kg;) < {(Ak—1) + I(Ag)-

(ii) Consider the birectangle 2_1 . Its kg x+1 edge is strictly shorter than
its A\y—1 edge. Likewise for the birectangle 2y, . Adding up edge lengths we
have 2l(kgp+1) < (Ag—1) + {(Ag+1). Likewise for the birectangles Zj_1 jy2,
Prt1,k+2- O

Proof of Proposition 2.1. Up to relabelling we may suppose that 15 < j5. We
have that {aiz, CLI’2+1} = {bj27 bj2+1} and so each one of Alyeeey Qip—1, bl, ce ,b]’2_1
must lie in one or other component of &'\ T, j, .

First: I';, j, divides two cone points from two. Suppose j» = 4. Each one of
by, ba, bs lies in one or other component of & \ I';, 4. So be lies in a different
component of &\I';, 4 to by or bs and so B; or [y crosses I';, 4+—a contradiction.

We need to derive a contradiction for iy < 2, otherwise 2 < is < jo < 4 and
(i2,j2) = (3,3). Claim: l(cy,) = U(B},). If ia =1, jo > 1 then «y,, B, are
both shortest arcs: by definition if jo = 1 and because %?31 = B, Bja—1, 1
is a chain for jo > 1. Similarly, if io = 2, jo > 2 then both of @ = a1,0;,,
B = B1,...,Bj,-1,a2 are chains.

By Lemma 2.3(ii) we have a contradiction if «;,,3;, are both shortest arcs.
So ig = 2. The arc a; lies in one component of &'\ I'y ;,. Let o denote the arc
disjoint from I'; ;, in this component of O'\I's ;, . By Lemma 2.3(ii) I(a5) < l(a2).
Since 47y = aq, b is a chain, we have a contradiction.

Next: I';, j, divides one cone point ¢ from three. Let &, denote the com-
ponent of &\ I';, ;, containing ¢ and let O denote its complement. As above
we can show that [(cy,) = 1(B;,). Again, if i3 =1 then ay,;, are both shortest
arcs and Lemma 2.3(i) gives a contradiction.

Suppose ip = 2. If ¢ = a; then oy C O.. Let o} be the other arc in O,.
Then by Lemma 2.3(i): I(a%) < l(caz) and since 27y = aq, b is a chain we have a
contradiction. Suppose ¢ # a1, a3 C 0. Let o be the arc in 0, between as, c.
Again I(ah) < l(aw), 9 = ay,ak is a chain and we have a contradiction.

Finally, consider i > 2. Each of a,...,a;,—1 must lie in &, otherwise one
of these arcs would cross I';, j,. Let a;, be the arc in &, between a;,,c. Again
l(ag,) <lou,), @ =ai,...,a44 1,0, is a chain and we have a contradiction. o

Proposition 2.4. If T;, ;. = oy, U 85,1 U By, is a length 3 bracelet that
cuts off a cone point ¢, then we have that iz > 1, js > 2; if (is,j3) = (2,3),
then (ag,ag) = (bg,b4), C = a1 = bl; if (ig,jg) = (2,4), then (ag,ag) = (b5,b3),
a; = ¢C ¢ {bl,bg}; if (ig,jg) = (3,3), then (CL3,CL4) = (b4,b2), b1 =C ¢ {al,ag};
if (ig,jg) = (3,4), then (ag,a4) = (bg,bg)), Cc §§ {al,ag} = {bl,bg}; if (ig,jg) =
(4,3), then (a4,a5) = (b4,b2), b1 = C ¢ {al,ag}; and if (’i3,j3> = (4,4), then
(a4,a5) = (bg,b5), C ¢ {al,ag} = {bl,bg}.
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Proposition 2.5. Any minimal standard chain pair that contains a length 3

bracelet that cuts off a cone point is equivalent to a minimal standard chain pair
on &.

Unlike Proposition 2.2 which followed directly from Proposition 2.1, Proposi-
tion 2.5 does not follow directly from Proposition 2.4; there is still something to
prove. However almost all the arguments reproduce arguments given in the proof
of Proposition 2.4. The main result we apply to prove Proposition 2.4 is Theo-
rem 2.6 which appeared in paper [12] as Theorem 1.1. Theorem 2.7 also appeared
in paper [12] as Theorem 1.2.

Theorem 2.6. Suppose, for some k, that l(kr;) < l(kg+11), [(Ag+1) <
l(Ag—1) for 1 =4,5, then l(kg1) = l(Kk+1,1), L(Akt1) = 1(Ak—1) for I =4,5.

Theorem 2.7. Suppose, for some k, that kj; is a shortest arc for [ = 4,5
and that I(kg g+1) < U(Kkt2,6+3), {(Ak+1) < U(Ag—1). Then O is the octahedral
orbifold.

Figure 4. Arc sets for Lemma 2.3 and Theorems 2.6, 2.7 with k =3

Lemma 2.8. Suppose, for some k, that l(kk;) = U(kk+1.1), {(Aky1) =
l(Agk—1) for I =4,5. Then l(kg4) = l(kkt1,5) if and only if (Kk42,4) = l(Kk+3,5) -

Proof. We will show [(kk124) = l(Kk+35) implies I(kr4) = l(Kky1,5). The
other direction follows similarly.

Since {(Ak+1) = {(Ak—1) the annulus @2 k43 has mirror symmetry exchang-
ing the birectangles 2,1 ky2, ZLrt1,k+2. That is Py jpyo, Psrio are equally
spaced about the geodesic boundary component K2 k43 of i yo k3. We know
that cg42, cpr3 are also equally spaced about this boundary component. Since
l(/ﬁk+2,4) = l(l-ik+375) it follows that l(P47k_|_2) = Z(P57k_|_2). That is éka_i_g’]H_g has
rotational symmetry exchanging 21 xy2, Li+t1,k+2. Gluing along Kiy2 k43 to
recover U2 k43 this symmetry is respected. This in turn implies that O jy1
has rotational symmetry—c.f. the proof of Theorem 1.2 in [12]—and hence that

l(/‘ik74) = l(lik+1’5> . O

Proof of Proposition 2.4. Suppose T is a length 3 bracelet that cuts off a cone
point c¢. Label arcs in T by kg, g1 for { = 4,5. This labelling then extends
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uniquely to KzUA, C KUA where Kj = J,_4 5 £k, 1UKE+1,1URE k41 UKE+2 k43 . TO
see this we proceed as follows. Label by &, the component of &\ T containing c.
Set ¢ = cpy1 and then label the arcs in O, between cri1, ¢ by kKgy1, for
Il = 4,5 and between ¢y, cx+1 by Krk41. Let O denote the component of
0\ Y not containing c. Label by Ax_; the arc in &, between c4, c¢5 such that
Uj—4 5 Kk, U Ag—1 bounds a triangle. Label by kiy2 43 the arc disjoint from Y
in ﬁé. We will use this extension of arc labelling for applications of Theorem 2.6.

Suppose i3 = 1. In Figure 5 the four wire-frames represent all the config-
urations of 7, %, such that T, ;, cuts off a cone point. For all but the third
configuration we can use Theorem 2.6 and Lemma 2.3(ii) to derive a contradic-
tion. For the third configuration we can apply Theorem 2.7 to show that & is the
octahedral orbifold. As we have observed before minimal chains on Oct lie in its
set of shortest arcs. Any length 3 bracelet in this set bounds a triangle.

Consider, for example the fourth configuration, with jz = 4. Set o1 = K34,
Bs = Ao, Ba = Kk35. This extends uniquely to K3 U Az. We note that %5 =
B, P2, a1, By = b1, 02,03, ko5 are both chains and so A is a shortest arc and
l(kss) < l(kos). We know that k34 is a shortest arc, so the hypotheses of
Theorem 2.6 are satisfied. So [(Ag) = {(A2). By Lemma 2.3(ii): I(k3,0) < I(Ao) =
[(A2) which contradicts Ag being a shortest arc.

For the third configuration we argue as follows. Set a1 = K34, B2 = K35,
B3 = Ao which extends uniquely to K3 U As. We note that %, = 1,01, B =
B1, P2, A2 are chains, so k3 5 is a shortest arc and [(A\g) < I(A2). So the hypotheses
of Theorem 2.7 are satisfied: & is the octahedral orbifold.

Figure 5. Configurations of 27, %;,

So we have shown that i3 > 1. Next we show that j3 > 2 (Figure 6). We
then consider j3 = 3 (Figure 7), then j3 = 4 (Figure 8). By cone point labels
on Ti3,j3 we know that {CLZ‘B,CLZ'3_|_1} = {bj3_1,bj3+1}. Suppose (aiB,ai3+1) =
(bjs41,b55-1). If aj,—1 = bj, then oy, _1,;, share endpoints. Unless (i3, j3) =
(4,3), by PI‘OpOSitiOIl 2.1, Qijg—1 = ﬂjs' So Tis,js = ﬂjg—l U Qis—1 U (07 with
(bjs—1,bj5) = (@is+1,ais—1) which is covered by the argument we give for (i%, j5) =
(j3 - 1,i3) since bj3_2 % Ajq = b]’3+1 . Suppose (ig,jg) = (4,3), (a4,a5) = (b5,b3)
and a3 = by. Suppose a3z = (3. If by = ¢ then &7, A3 is equivalent to a minimal
chain pair on & ; see the third wire-frame, Figure 12. Otherwise, it is covered by
an argument we give for (is,js) = (2,4) since by # a4 = bs. If a3U3 is a bracelet
then &, %3 is equivalent to a minimal chain pair on & by Proposition 2.2; see
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the fourth wire-frame, in Figure 12. So, for (a;,,ai,+1) = (bjs+1,bj,—1), we may
suppose that a;,—1 # bj, .

For j3 = 2 we begin by iz = 2. First we consider (ag,a3) = (by,b3). If
ay # by then &7 = «ay,(; is a chain and as is a shortest arc—this is equivalent
to i3 = 1. So a1 = by, a1, share endpoints and so, by Proposition 2.1,
a1 = [(31; see the first wire-frame, Figure 6. We can apply Theorem 2.6 and
Lemma 2.3(ii) to contradict the shortness of vy = 81. Next (ag,as3) = (bs,b1). We
may suppose that a; # by. So a3 = ¢ or a; € 0. see the second and third wire-
frames. We can apply Theorem 2.6 and Lemma 2.3(ii) to contradict the shortness
of 1,2, respectively. For the latter , with labelling so that f2 = Ag, we show
that [(k3,0) < I(Ao) = I(A2) which gives a contradiction since %% = (1, k3,0 is a
chain.

Next i3 = 3. Suppose (ag,as) = (b1,b3). If {a1,a2} Z by then o7 =
a1, s, is a chain and a3 is a shortest arc—again equivalent to i3 = 1. So
{a1,a2} 2 by. If a; = by then {aq1,as3} = {b1,b2} and so B1 Uay Uay is a bracelet.
Since oy = a1, 31 is a chain it follows that this is a bracelet of shortest arcs and
we can apply Proposition 2.10. So as = bs. Either a; = ¢ or a1 € 0/; see the
fourth and fifth wire-frames. For the former we can apply Theorem 2.7 to show
that & is the octahedral orbifold. For the latter we can apply Theorem 2.6 and
Lemma 2.3(ii) to contradict the shortness of (.

P>

Figure 6. Configurations of <7

3

Finally i3 = 4. If as = by then the arcs aq, 31, as, B2 all have exactly one
cone point in common, @ = «i,1, B, = (1,1 are both chains and so each
arc in this set is shortest. We can now apply Lemma 2.11: & is the octahedral
orbifold. So ag # bs. Suppose (a4,as) = (b1,bs). Either a3 = bs or az = by; see
the sixth and seventh wire-frames. We can apply Theorem 2.6 and Lemma 2.3(ii)
to contradict the shortness of (1. For (ay4,as) = (bs,b1) we may suppose that
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az # ba. So a; = by and we can apply Theorem 2.6 and Lemma 2.3(ii) to
contradict the shortness of (5 ; see the eighth wire-frame.

For j3 = 3 we begin with i3 = 2. Suppose (az,a3) = (ba,bs). If a; # by then
oy = aq, 41 is a chain and as is a shortest arc, again equivalent to i3 = 1. So
a1 = by. For a1 = by = c: 9, P53 is equivalent to a minimal chain pair on &'; see
the first wire-frame, Figure 12. For a; = b; € 0! we can apply Theorem 2.6 and
Lemma 2.3(ii) to contradict the shortness of (5 ; see the first wire-frame, Figure 7.
Now suppose (asg,as) = (by, by ). We may suppose that a; # bs. If a3 = by then
{a1,a3} = {b1,b2} and so 1 Uaj Uas is a bracelet of shortest arcs. So a; # by .
For a1 = ¢, by € 0. we can apply Theorem 2.6 and Lemma 2.3(ii) to contradict
the shortness of 35; see the second wire-frame.

Suppose a1 € O, by = c; see the third wire-frame. Set oy = k34, f2 =
K35, B3 = Ao, o1 = k1,4 which extends uniquely to K3 U A3z UkK; 4 UKo 5. The
hypotheses of Theorem 2.6 are satisfied: each one of &% = ay,k0.4, By = (1, K05,
By = P, P2, A2 is a chain. So l(ks;) = l(koy) for I = 4,5 and [(Ag) = I(N2).
By Lemma 2.3(ii), #3 = A¢ is not a shortest arc. Below we show that ko5 is a
shortest arc, which gives a contradiction since A% = (1, B2, k25 is a chain. First
PBY = P1, a2 is a chain and so [(f2) < l(a2). Next, k3o = (1, k1,4 = a1 are both
shortest arcs and [(k35) = I(ko,5). By Lemma 2.9 there exists an arc 7 such that
l(v) < l(k35) = l(ko5). The arc 7 is such that <7’ = ;1,7 is a chain and so
l(az) < I(7). So, we have that [(k35) = [(B2) < l(a2) = l(ks,4) < U(y) < U(ks,5)
and hence l(k34) = l(ks,5). So l(k34) = l(ko,5) and by Lemma 2.8, l(k14) =
l(k25). Since a; = K14 is a shortest arc we are done.

So a1 # by € O); see the fourth wire-frame. Set as = k34, B2 = K35,
B3 = Ao, B1 = k2,3 which extends uniquely to K UA. We have that </ = a1, ko4
is a chain and so I(k34) < (ko4). Also each one of By = (1, a0, ' = aq, fs,
«%{3 = /Bl,ﬁg,ﬁo75 is a chain and so l(li375) = l(ﬁg) S l(OéQ) S l(ﬁg) S l(lio,5). By
Theorem 2.6, [(A2) < I(Ag). Now both XY = B1,02,\1, By = (1,02, A3 are
chains and so [(Ag) < min{l(\1),l(A3)}. By Theorem 2.12, & is the octahedral
orbifold.

Next i3 = 3. Suppose (ag,as) = (bo,bs). If {ap,a1} Z b1 then o =
a1, g, 4 is a chain, ay is a shortest arc. So {a1,as} 3 by. If {a1,as} > bs then
a1 U By U Bs is a bracelet of shortest arcs. So {ai1,a2} Z bs. Since oy does not
cross T3 3 it follows that a;,ag lie in the same component of &'\ T3 3 and hence
ay,as € 0. If a; = by then B Uaj Uay is a bracelet of shortest arcs. So ay = by;
see the fifth wire-frame; and we can apply Theorem 2.6 and Lemma 2.3(ii) to
contradict the shortness of f#3. Now (as3,a4) = (bg,b2). Again we may suppose
that as # bs. Suppose a; = bsy. If ay = by then we have that oy U 81 U (32 is a
bracelet of shortest arcs. If ag # by then %% = (1, B2, 1, o5 = a1, 3 are both
chains and so f33, as are both shortest arcs. Since (a1, as) = (bs, by) it follows that
B3 Uay Uag is a bracelet of shortest arcs. So {a1,as} Z bs. Again this implies
that aq,as € O... If by = ¢ then o7, $3 is equivalent to a minimal chain pair on
&'; see the second wire-frame, Figure 12. If by € &/ then a; = by or as = b; and
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we can apply Theorems 2.6 and 2.12 to show that & is Oct; see the sixth and
seventh wire-frames.

Next i3 = 4. First (a4,a5) = (ba,bs). Suppose {ai,as,a3} # by then o7 =
a1, 2,3, is a chain and a4 is a shortest arc. So {a1,as,a3} > b1. Also
{a1,a2,a3} > bz since neither ay nor as crosses Y43. So {a1,as,as} D {b1,bs}.
If {a1,a2} = {b1,b3} then a3 UB; UpPs is a bracelet of shortest arcs. If {as,a3} =
{b1,b3} then as U B U By is a bracelet of shortest arcs. For (aq,as) = (by,bs)
we have that <7 = aq, (1, A, = (1,1 are both chains. For (ag,as) = (bs,by)
we have that %, = (1,02, 1, 9y = a1,03, B5 = P1,ay are all chains. So
{a1,a3} = {b1, b3} and we can apply Theorem 2.6 and Lemma 2.3(ii) to contradict
the shortness of (35; see the eighth and ninth wire-frames.

Figure 7. Configurations of <7

P
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Next (ayq,as) = (bs,b2). We may suppose that ag # bs. Again neither ay
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nor ap cross Y43 so {a1,az} 3 bs. If {ai,a2} > by then a; UB UP; is a bracelet
of shortest arcs. So {ai,as} # by. Suppose as = by; see the tenth, eleventh
and twelfth wire-frames, Figure 7. In each case %% = [1, (2,1, “y = 1,03,
P, = b1, ay are chains and so (5 is a shortest arc. We can now apply Theorems 2.6
and 2.12 to show that & is Oct. So {a1,a2,a3} # by and hence B = [, (2, 1
is a chain, (33 is a shortest arc. If by = c¢; see the 13th and 14th wire-frames.
We can apply Theorem 2.6 and Lemma 2.3(ii) to contradict (3 being a shortest
arc. If a; = ¢ or az = ¢ (see the 15th and 16th wire-frames) we can again apply
Theorems 2.6 and 2.12. The argument differs slightly from that given above.
Above we had that I[(A2) < (M) and [(Ag) < min{l(A1),l(A3)}. Again we have
that I(A2) < I(Ao) but only have I(X\g) <I(A;). Here, however, we have that x3
is a shortest arc. The argument runs as follows; c.f. the proof of Lemma 2.11.
Suppose a; = c. Set g = Ao, B2 = K35, B3 = K34, g = ka3 which extends
uniquely to KUA. Since %% = (1, B2, 1, 9 = aq, B3 are both chains, O3 = k34,
ay = Kg3 are both shortest arcs. Since %) = [1,K05 is also a chain we can
apply Theorem 2.6: [(A2) < I(Ag). Now & = aj,as,as, A1 is a chain and
so l(ag) = U(Ao) < U(A1). If I(A2) < I(A3) we can apply Theorem 2.12 since
k2,3 is a shortest arc. Otherwise [(A3) < I(A2) < I(Ag) and we can again apply
Theorem 2.12 since k3,0 = a7 is a shortest arc.

Now j3 = 4. We know that by,by € O, since (; does not cross Y, 4.
Consider iz = 2. If a1 € {by,bo} then & = ay,(; is a chain and as is a
shortest arc. So a; ¢ {b1,b2}. Suppose (az,a3) = (bs,bs5). If a; = by then
we can apply Theorem 2.6 and Lemma 2.3(ii) to contradict oy = (3 being a
shortest arc; see the first wire-frame, Figure 8. So a; = ¢ and we have that
Bl = (1, P2,00, 9 = a1,3 are both chains and so s is again a shortest arc.
Next (ag,as) = (bs,b3). We may suppose that a; # by. So a3 = ¢ and o, A is
equivalent to a minimal chain pair on & ; see the fifth wire-frame, Figure 12.

Next i3 = 3. First (as,a4) = (b3,b5). If {a1,a2} # by then, as a; does
not cross Ys4 it follows that ai,as € O, ie. {a1,a2} = {b1,b2} and o4, % is
equivalent to a minimal chain pair on & ; see the sixth wire-frame, Figure 12. So
{a1,a2} 2 by. Suppose a1 = by. If az = by then (az,a3) = (b1,b3), a1 # by and so
aoUB1UPBs is a bracelet of shortest arcs. If as = by then we argue as follows; see the
second Wire—frame, Figure 8. Set a3 = R34, ﬁg = )\0, ﬁ4 = KR35, Bg =02 = R14,
a1 = kK15 which extends uniquely to K U A. Each one of @ = a1, a2,k0.4,
By = P, P2, Ao, B = (1,2, Ps, ko5 is a chain so the hypotheses of Theorem 2.6
are satisfied: [(Ag) = l(A2). Now &% = a1, is a chain, so ag = K14 is a shortest
arc. Now a; = K15,81 = k1,2 are also shortest arcs so, by Theorem 2.7, &' is
the octahedral orbifold. So as ¢ {b1,b2} and each one of B = [, B2, 3, a1,
oy = ay, P4, By = P1, 02,0 are chains: 3 U ag U g is a bracelet of shortest
arcs. Next suppose as = by. If a3 = ¢ and we can apply Theorem 2.7; see the
third wire-frame. If a; = by then %, = (1,01, 9 = a1, @z, P2 are chains and so
(B2, a3 are shortest arcs; we can apply Theorems 2.6 and 2.12 to show & is Oct;
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Figure 8. Configurations of o7, , %

see the fourth wire-frame. If a; = by then (ai,as3) = (ba,b3), az # by and so
B2 U a1 Uy is a bracelet of shortest arcs.

Next (as,as) = (bs,b3). We may suppose that as # by. Suppose a; = by.
For ay ¢ {b1,bs} we have that both of %) = B1,02,03,01, 5 = 1,34 are
chains and so 4 U a; U asg is a bracelet of shortest arcs. So as € {by,b2}. If
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as = by then aq, 31, as, P2 have exactly one cone point in common and we can
apply Lemma 2.11: & is Oct. If a; = by we can apply Theorems 2.6 and 2.12—
the fifth (respectively sixth) wire-frame illustrates the argument for {(ag) < I((4)
(respectively 1(B4) < l(as)).

So a; # by and hence {aj,a2} = {b1,b2}; see the seventh and eighth wire-
frames. Set a3z = K34, B3 = K35, Ba = Ao, B2 = k23 which extends to K U
A. First &4 = o1, a9,k0,4 is a chain and so I(k34) < l(ko4). Likewise A5 =
B, B2, a3, 3 = ay,a, By, By = B, B2, B3, ko5 are all chains so (k3 5) = I(f3) <
l(ag) < U(Ba) < l(Kkos). Also By = [1,k24 is chain and so l(ke3) < l(k2.4).
Again B = (1, P2, B3, ko5 is a chain and so [(Ag) < I(ko5). By Theorem 2.13
either I(ko4) < l(k34) or l(kos) < l(k35) or l(ka4) < l(ke3) or l(kos) < (o).

Finally i3 = 4. First (a4,a5) = (bs,bs). Suppose a3 = by. Since ag does
not cross Y44 it follows that as,as € 0. and hence {as,as} = {b1,b2}. Suppose
(az,ag) = (b1, b2); see the ninth wire-frame. We argue as follows. Set oy = K34,
ﬁg = )\0, 54 = R35, 3 = ﬁz = K14 which extends to Kg U A3 U R1,4 U R2 5.
We have that % = 01,09,03,K0.4, @é = ﬁl,ﬁg,)\g, %4/1 = ﬁl,ﬁg,ﬁg, Ro,5 are all
chains and so l(k3;) = l(ko,), (Ao) = l(A2) by Theorem 2.6. Now %5 = (31, aq is
a chain and so B2 = K14 is a shortest arc. Since a; = Ky 5 is also a shortest arc we
have l(k1.4) = l(k25). By Lemma 2.8, I(k34) = l(ko5). Now Bs = (1, 2, ko4
is a chain and so [(A\g) < Il(ko,4). Likewise (51 = k12 is a shortest arc and so
l(k12) < l(k3,0). By Theorem 2.14, I(k1,.4) = l(k2,5) > l(k1,2) which contradicts
Ko5 = 1, K14 = [B2 being shortest arcs. If (ag,as) = (b2,b1) we can apply
Theorems 2.6 and 2.7; see the tenth wire-frame.

Next ag = by. If {a1,a3} = {b1,b2} then 51 Ua; Uay is a bracelet of shortest
arcs. For either a1 ¢ {b1,b2} or as ¢ {b1,b2} and we can apply Theorems 2.6
and 2.12; see the 11-14th wire-frames. For as = by we have that {aj,a2} =
{b1, b2} since ay does not cross Y4 4. Here o7, A is equivalent to a minimal chain
pair on &'; see the seventh and eighth wire-frames, Figure 12.

To finish (a4, as5) = (bs, b3). We may suppose that as # by. For a; = by we
again have that {a2,as} = {b1,b2}. Suppose (az,a3) = (ba,b1). We can apply
Theorems 2.6 and 2.12—the 15th (respectively 16th) wire-frame illustrates the
argument for [(03) < [(B4) (respectively I((4) < (P3)). Similarly for (as,as) =
(b1,b2). Suppose as = by. If {ay,a3} = {b1,b2} then (1 Uaj Uay is a bracelet
of shortest arcs. So a; = ¢, a3 € {b1, ba}—=see the 17th and 18th wire-frames—or
ay; € {b1,b2}, as = c—see the 19th and 20th wire-frames—and we can apply
Theorems 2.6 and 2.12. o

Lemma 2.9. If [(k30) = l(k1.4), (ko5) = l(K35) then there exists an arc ~y
between either ca,c¢1 or cg,cqa such that l(v) < (ko) = (Kk35)-

Proof. Let I' = k3 0Uk1 4 UKa s, a disjoint triple of arcs. As I(ks,0) = [(K1,4)
the pair of pants ¢ \ I' has rotational symmetry R exchanging k3o, k14 and
fixing ko5 setwise.

The cone points ¢y, c3, c5 span an isosceles triangle .# bounded by k30 U
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k3,5 Ukos5. So R(co), R(cs), R(cs) spans an isometric isosceles triangle R(.#). As
R(co), R(c3) divides k1,4 into equal length subarcs, either ¢; or ¢4 lies on the
k1,4 edge of R(.#). If v denotes the arc between this cone point and R(c5) = c2
contained in R(.#) then 7 has the required properties. o

Suppose a minimal chain pair o/, % such that (a2,as) = (b1,b3), a1 # bs.
Since as = by but ay # be: o = aq,01, By = (1,1 are both chains and so
ag, B9 are shortest arcs. Now (ag,as) = (b1, b3) and so as U 31 U (B2 is a bracelet
of shortest arcs. By Proposition 2.10, &, % is equivalent to a minimal standard
chain pair on Oct and no length 3 bracelet of links on Oct cuts off a cone point.
Likewise if {aj,a2} = {b1,b3}. (For applications to the proof of Theorem 1.1 we
note that no minimal chains on & cross.)

Proposition 2.10. Suppose an orbifold €' has a length 3 bracelet of shortest
arcs. Any minimal chain pair on O is equivalent to a minimal chain pair on

the Oct.

Proof. Let T be alength 3 bracelet of shortest arcs on ¢'. Suppose T cuts off
a cone point. By an application of Theorem 2.6 and then Lemma 2.3(ii), as in the
proof of Proposition 2.4, we derive a contradiction. So T bounds a triangle. There
exists Y’ another length 3 bracelet of shortest arcs disjoint from Y that bounds
a triangle. Moreover, the conformal symmetry group of & contains a subgroup
isomorphic to Ss. This is a well-known result; see for example Schmutz [23,
Lemma 5.1]. We will sketch the following proof of the existence of Y/, along the
lines of the proof of Lemma 2.9.

Relabel the arcs in T by 3,0, k0,5, k3,5 ; label the shortest arc disjoint from T
by k1,4; and label the unique arc disjoint from k3 0Uk; 4 by k2 5. Label the cone
points so that xj; is between ¢y, ¢, et cetera. Again, let I' = k3 0Uk1 4UK2 5 and
so O\T" is a pair of pants. Denote by P3¢ (respectively P; 4) the common perpen-
dicular between boundary components k95 and k3 (respectively ko5 and k1.4 );
denote by Ds (respectively Ds) a disc of radius l(kso) (respectively [(x1.4))
about ¢ (respectively cz); and denote by I3 (respectively I 4) the interval of
the boundary component k3¢ (respectively x4) inside D5 (respectively Dy ). So
I3, I1,4 are chords to D5, Dy respectively. Let 05 (respectively 65) denote the
angle that I3 (respectively I; 4) subtends at c¢5 (respectively cz). Finally, de-
note by 03 (respectively 6, 4) the angle of an equilateral triangle of edge length
l(k3,0) (respectively I(k1.4)).

Since l(k3,0) < l(k1,4) it follows that 039 > 61 4 and that [(Ps) > (P .4).
Moreover I(ks0) < l(k1,4), {(P30) > [(P14) implies that 65 < 63. Since I 4
subtends an angle 6y > 05 = 03¢ > 61 4 it follows that (11 4) > l(K1,4).

Unless I(/1,4) = l(k1,4) and the cone points c¢i,cs lie at the ends of I; 4,
there exists an arc v between cq,ca or ca,cq such that I(y) < (k1,4). This would
contradict the shortness assumption on k3 4. So (11 4) = l(k1,4) and ¢1,c¢q lie at
the ends of I; 4. So c2, ¢1, ¢4 span a bracelet of shortest arcs Y.
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Let Z be the set of shortest arcs between some cone point on T and some
cone point on Y’. Using cut-and-paste arguments, arcs in = do not cross either:
each other or arcs in T UY’. By the .5 action of the symmetry group: |Z| =3
or 6. It is not hard to show that any minimal chain on ¢ must liein YUY UZ.
Moreover T UY’UZ is graph isomorphic to a subgraph of the set of shortest arcs
on Oct. o

Suppose a minimal chain pair o7, % is such that as = by and aq, a3, b; and
by are all distinct. We have that & = «y, (1, $B5 = (1,1 are both chains and
SO (9, F2 are shortest arcs. It follows that a1, 31, as, B2 are four distinct shortest
arcs with exactly one cone point in common. By Lemma 2.11, & is the octahedral
orbifold.

Lemma 2.11. Suppose, for some k, that Ki_1 1, Kk k+1, Kk, are all shortest
arcs for | = 4,5. Then O is the octahedral orbifold.

Proof. This result appeared as Lemma 5.2 in Schmutz [23]. However we offer
the following proof. It illustrates the applications of Theorems 2.6 and 2.12 in the
proof of Proposition 2.4. The arc set Kr_1%, Kk k+1, Kpg for | = 4,5 extends
uniquely to the arc set K UA.

Suppose [(Ar+1) < [(Agk—2). We know that I(kr;) < l(kg+1) for | = 4,5
and so [(Ag—1) < [(Ak41) by Theorem 2.6. So l(Ap—1) < l(Ag+1) < U(Ag—2).
If I(Ak—1) < l(\r) then we can apply Theorem 2.12. If [(A\;) < [(Agp—1) then
I(Ak) < 1(Ak—1) <1U(Ag+1) and we can again apply Theorem 2.12.

Suppose [(Ap—2) < l(Ag41). We know that I(kr;) < l(kg—1,) for | = 4,5
and so [(Ag) < I(Ak—2) by Theorem 2.6. So [(Ar) < 1(Ap—2) <1 Ak41). If I(Ap) <
[(Ak—1) then we can apply Theorem 2.12. If [(Ax—1) < I(Ag) then I(Ag—1) <
I(Ak) < I(Ak—2) and we can again apply Theorem 2.12. o

Theorem 2.12. Suppose, for some k, that ki 41 is a shortest arc and
I(Ak) <min{l(Ag—1),l(Ak+1)} then O is the octahedral orbifold.

Proof. Suppose k = 3. Cut O30 open along ko5, k34 so as to obtain

a simply connected domain 2. Take a lift of 2 to the universal cover 0 and,
without confusion, give the geodesics having non-trivial intersection with €2 the
same labels as on &'. So ) is bounded by kg5, Ao, k3,4, A2. In the same cyclic
order label the orbits of cone points that lie on the boundary of Q by ¢5, co, ¢,
¢y, c3 and c¢q. The point ¢y (respectively c3) lies at the midpoint of the ko5 edge
(respectively k34 edge). By inspection A3 is the diagonal of 2 between vertices
cs and ¢j. As k3g is a shortest arc c5, ¢ (and hence ¢f, ¢4) cannot lie inside
Dy U D3, where D), denotes the closed disc of radius k3o about ¢y .

To prove the result we will show that either: [(A3) > I(A2) or I(A3) > I(N\g) or
I(A3) =1(A2) =1(No) and O is the octahedral orbifold. Let 6 denote the angle in
an equilateral triangle of edge length [(r30). The maximal length of a shortest arc
on an orbifold & occurs exactly for & the octahedral orbifold; see Néaétéanen [22]
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or Schmutz [23]. It is a simple consequence that 6 > 7 /4 with equality if and only
if O is the octahedral orbifold.

Claim. Either /cscoc) > 20 or Lcsesc) > 20.

Now Zcscocy > /2 implies Zciepcy < 7/2 and hence that [(Ag) < I(A3).
Likewise /Zcsesc) > /2 implies Zcsesey < m/2 and hence that [(A2) < I(As).
So we must have Zcscocy = Zesesdy = 20 = w/2. That is € is the octahedral
orbifold.

Proof of the claim. Since cs lies outside Dy U D3 either Zcscges > 6 or
Lcsesep > 0. Likewise since ¢y lies outside Do U D3 either /Zcjcoes > 60 or
/cyeseg > 0. If Lesepes > 0 and Zcjcoes > 0 then Zesepcy > 20, Likewise, if
Lesesep > 0 and Zceseg > 0 then Zesesc) > 20. So, up to relabelling, we may
suppose that Zeseseg < 0 and Zcjeges < 0 as in Figure 9. Let 05 = Zescoes > 0
and 04 = /cjcseg > 0. If 65 > 20 or 04 > 260 we are done. So suppose not.

Consider points x5, z/, to the c5,c¢) side of k3o respectively, such that
/x5cocs = 05 and /x5c3co = 20 — 055 and /xlcseg = 04 and Zaxlcoes = 20 — 04
Next we show that z5 € Dy. (Similarly 2} € D).

We have constructed the points A, E, C and C’ such that /ABC =
/BAC = /ACB =0 and /BAC’' =05, LABC" =260 — 05. We let O denote the
intersection of AC, BC'. Now LOAC’' = /OBC =05 — 60 and LAOC’ = /BOC
and OA is shorter than OB. So comparing the triangles OAC" and OBC we see
that AC’ is shorter than BC' and we are done.

Now Zeseocy > Lescoxly = 20+ (05—04), Lesescly > Lxsescy = 20+(04—05). o

Figure 9. Arcs and lift of € in Theorem 2.12

Theorem 2.13. Either l(ko4) < l(ks,4) or l(kos5) < l(k3s5) or l(kea) <
l(lig,g) or l(lio,5) < l()\o)

Proof. We suppose that l(k34) < l(ko4), l(k35) < (Kos), U(ke3) < l(K24)
and show that [(kos5) < [(Ag). First, by Theorem 2.6, [(A2) < I(Ag). Also
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Ul:475 k21 U k3 bound the quadrilateral spanned by Ay U ko 3. By Lemma 3.3,
Z(KQA) < l(/ig’g) or l(lig’g,) < l()\g) So l(l’i375) < l()\g)

Cut A3 open along k35 to obtain a simply connected domain 2. Choose
a lift of  in the universal cover of the annulus @73 o. Label the geodesics around
the boundary of Q by k3o, K35, A2, Ao and 53’5, in cyclic order. Without
confusion, give the lifts of x4, ko5 and k34 having non-trivial intersection with
() the same labels. In the same cyclic order, label orbits of cone points around the
boundary of Q: ¢o, c3, c5, ca, c5 and c3. Let P53, Py3 and Pj 5 denote the
perpendiculars to k3o from cs, ¢4, 5 and let f53 = P53NK30, fa3 = PisNkso,
fg’,73 = P5’73 Nr3,0. By choosing orientation we may suppose that Ps 3 is to the left
and P53 to the right of Py3.

We now observe that cyp must lie strictly between P43 and P5’73. If ¢ is left
of Py 3 then I(ko4) < l(k3,4) and if cg is to the right of Pj 3 then I(ko5) < I(K35)-

If c3 = f53 set n=m/2,if c3 = f43 set v =7/2, ¢ = 0. Otherwise we label
angles as follows. Set 0 = Zeseseq, 6/ = Lcteoeq and p = Leseqcs, ' = Lckeqc
and ¢ = ZCgC4f473, gb/ = ZCOC4f4’3 and v = 10463]0473, A ZC4Cof473 and
n=Lescsfs3, ' = Lescofs 35 see Figure 10.

Since l(ks3,l) < l(ko;) for | = 4,5 we have that v > v/, n > n'. If c3
is between P;3 and Py3 then 6 = 7 — (v + 7). If c3 lies strictly to the left
of P53 then § = n—v < (mr—mn) —v since n < n/2. If c3 lies strictly to
the right of Py 3 then § = v —n < (7 —v) —n since v < 7/2. In each case
O<m—(v+n)<nm—0W+7n)=6.

Also I(ks3,4) < l(ko4) implies that ¢ < ¢’. Since I(A2) <I(Ag), by comparing
the birectangles 25 3, 2y 3, we have that ¢+ > ¢’ +’. It follows that 1p > 9.
Now I(k35) < (A2) and so 6 > 1. Therefore 0" > 0 > 1) > 9': I(ko5) < (No). O

el ? 0 |
v/\n WNZ 3 ch MW ch

Figure 10. c3 between P53, P43 and c3 to the left of P53

Theorem 2.14. If l(li3,4) = l(ﬂ3’5) = l(FLOA) = Z(Ko’g,) and l(lﬂ174) = l(lﬁ275),
l()\o) = l()\g) S l(/i014) and l(li172> S l(/‘ig’o) then l(fil’4) = l(l‘igj) > l(/‘€172).

Proof. By Lemma 2.8 both annuli A, 2, A3 have rotational symmetry ex-
changing Ao <> A2. It follows that & \ k12 U k3o has rotational symmetry ex-
changing Ag <> Aa. So kK12 UPy1 UPy3UkzoUPs3UPs; divides & into a pair
of isometric right hexagons, J¢) D Ao, 76 D Aa.
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Consider 7). First we note that ¢y lies at the midpoint of the k3 edge
of . The common perpendicular between the x1 2, k3,0 edges of S divides
%) into a mirror pair of right pentagons &?; where &, has ¢; as a vertex. Relabel
the edges of Z4: A, ..., E in cyclic order such that A =1(Py1),...,E =1(Py3).
Label by F' the diagonal from ANFE to DNC'; by G the perpendicular from ANE
to C; and by H the diagonal from ANE to C'NB. Label by 6 the angle between
A, H; 1 the angle between G, H; and ¢ the angle between C, H. We observe
that [(k1,4) > l(Ps1) = A. To complete the proof we show that A > 2B = [(k1,2).

Consider the triangle ABH :

sinh H = ﬁ or sinh H = smhA.
sin(7/2 — ¢) cos ¢
Now consider the double of ABH along A:
sinh 2B sinh H sinh2B  sin 26
= or =
sin 26 sin(mw/2 — ¢) sinhH  cos¢

and so we have
sinh 2B _sin 20

sinhA  cos2¢’

Now B = l(k12)/2 < l(k3,0)/2 = D implies that 0 < 6 +¢ < 7w/4. So
0<20<7/2—2¢ < mw/2. Therefore sin20 < sin(7/2 — 21)).

Likewise B < D implies that H > F'. Moreover F' = (ko) > l(A\o) = 2G.
Consider CGH doubled along C. As H > 2G we have that 2¢ < 9. Since
Y < w/4 it follows that 0 < 7/4 — ¢ < 7w/4—2¢ < 7w/4. So 0 < /2 —2¢ <
/2 —4¢ < w/2, and hence sin(7w/2 — 2¢) < sin(w/2 — 4¢). Therefore sin20 <
sin(m/2 — 2¢) < sin(mw/2 — 4¢) = cos4¢ and so

sinh 2B o cos 4¢
sinhA ~— cos?2¢’

Now cos? ¢p—cosdp = cos? p—2(2cos? p—1)2—1 = (8cos? p—1)(1—cos? ¢). Since
0 < ¢ < 7/8 it follows that cos? ¢ > cos4¢. So sinh A > sinh2B, A >2B. o

€o

Figure 11. The pentagon &,
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Proof of Proposition 2.5. Suppose that a minimal chain pair 27, %;, satisfies
the hypotheses of Proposition 2.4. We need to show that any minimal standard
chain pair &/, % containing ,,%;, is equivalent to a minimal standard chain
pair on &. Throughout, Prop081t10n 2 1 will be used without mention.

Consider (i3,j3) = (2,3). By Proposition 2.4, (as,as) = (be,bs) and a1 =
bl =c. Set Qg = K34, 62 = KR35, 53 = )\0 which extends to Kg UA3 . Each one of
oy = a1, k0.4, By = P1,Ko5, B5 = P1, 02, A2 is a chain and so [(Ag) = I(A2) by
Theorem 2.6. Consider the possibilities for B4, as,as. Unless T34 = 3 Uz Uy
is a bracelet, <, % is equivalent to a minimal standard chain pair on & .

Suppose Y34 is a bracelet. Exchange labels o, < (. and set af = As.
Suppose Y34 = a3 U B3 U (4 cuts off a cone point. Then (a3, as) = (bs, b3) with
{a1,a2} # by and by applying Lemma 3.3 and Theorem 2.13 we can derive a
contradiction. If T34 = a3 U B3 U 4 bounds a triangle, then Y3 , = a3 U 83U B4
cuts off a cone point. The same argument can now be applied, where we use the
fact that I(af) = l(as).

Next, consider (is,j3) = (2,4). Again, by Proposition 2.4, (asz,as) = (bs, b3)
and ¢ =y ¢ {b1,b2}. Set avg = K34, Bs = K35, P3 = Ao which again extends to
K3 UA3. Again by Theorem 2.6, [(Ag) = [(A\2). Now we consider ag,ay. Unless
T34 =P3UazUay is a bracelet, &7, % is equivalent to a standard minimal chain
on &. Suppose Y34 is a bracelet. Now both of @7 = o, a2, 3,01, B = P1, 04
are chains and so ay, 32 are shortest arcs. If as # (B3 then &% = aq, a3, (3 is a
chain and so a3 is a shortest arc. In either case (31, as, a4 are all shortest arcs
and [(Ag) = {(A2). By Theorem 2.7, & is the octahedral orbifold. As in the proof
of Proposition 2.4 this gives a contradiction.

For (i3,73) = (3,3),(4,3),(4,4) there is nothing to prove. It remains to
consider (is,j3) = (3,4). By Proposition 2.4 we have that (as,as) = (b3, b5) and
{a1,a2} = {b1,b2}. Set oz = k34, Bs = K35, O3 = Ao which extends to K3z UAj.
We can apply Theorem 2.6: [(A\g) = I(A2). Unless ay = B4, &7, A is equivalent to
a minimal standard chain pair on &. Suppose aq = fP4. Set 5 =Kz, a4 = R35,

)\0 ‘which again extends to Kg U A3 Again we can apply Theorem 2.6:
l()\o) = l()\g) The arcs )\2,)\2 between b3, by and as, as, respectively, cross in a
single point and have an endpoint b3 = a3 in common. By one of the cut—ar/l(\i—
paste arguments we use in the proof of Proposition 3.1 we have that [(as) < I(A2)
or I(Bs) < I(A2) which gives a contradiction. o

3. Proof of Theorem 1.1

As in the previous section we shall work on the quotient orbifold & = .7/ 7.
We consider pairs of crossing standard minimal chains &/, # and derive contra-
dictions. We say that «;,,[;, are the first crossing links if i1 = mini € {1,...,4}
such that «;, 8 cross, j1 =minj € {1,...,4} such that «;,,; cross. The cross-
ing minimal chain pair &%, ,%;, has exactly one pair of crossing arcs: «;,,03;, . In
Proposition 3.1 we show that |a;, N3;,| < 2. It remains to consider |a;, NF;,| =1
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\
/

Figure 12. Minimal chain pairs with j3 = 3,4

i.e., a;,, B, have distinct endpoints and a single crossing point —«;, U3;, has the
form an ‘X’ on 0.

Proposition 3.1. We have |a;, NG, ] < 2.

Proof. First we consider «;,,3; having more than one crossing point. We
then consider «;,,[;, having one crossing point and one or two endpoints in
common.

On «y, label the crossing point nearest to its tail by a; and the crossing point
nearest to its head by aj,. Likewise for the crossing points on 3;, . The points a;,
ap,, by, by, divide ay, into either three, four or five subarcs. Label the subarc of
a;, between a;,, a; by ay; between by, by by a,,; and between ay, a;,+1 by ap.
Likewise for the subarcs of 3;, .

Let «j denote the geodesic in the endpoint fixed homotopy class of a; U
Bm U ap. By its definition o is simple. Let <, = ai,...,qj . Suppose o;
crosses «; for some 1 < i < i;. Choose lifts of at,ﬁm,ah,agl in H? so that
a;UBm UapUa;, bounds a rectangle (crossed or uncrossed). A lift of a; intersects
agl between a; ,a;,+1. This lift also intersects eithera; or (,, or «j. This
intersection projects to a crossing point of «; with o;, or §; on & which gives
a contradiction. So .27 is a chain.

Let 5;'1 denote the geodesic in the endpoint fixed homotopy class of (; U
am U B, Again B = pi,...,03; is a chain. We have that I(a;,) < l(ay,) or
1(B5,) < UBj)- I Uam) < U(Bm) then 1(B),) < U(Br) + l(am) + 1(Br) < U(B:) +
1(Bm) +1(Br) < UBj). I 1(Bm) < l(am) then (o] ) < l(ay) + 1(Bm) + l(an) <
o) + Uam) + Uap) < ag,).

We now consider «;,, 3;, having one crossing point and one or two endpoints
in common. We will suppose that a;; = b, (the other possibilities follow simi-
larly). The crossing point divides «a;, into exactly two subarcs which we label oy,
ap, so that a; > «;, . Likewise for 3;, . Let agl,ﬁ}l denote the geodesic in the

endpoint fixed homotopy class of 3; Uayp, oy UGy, respectively. Again we have that
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A} = ai,...,q;,-1,0f and B = B1,...,8;,-1,0), are both chains and that

(3

lad,) <lew,) or 1(fB},) <1(B;). o

We say that <7, ,%;, is of type (I) if {ai,,ai,+1} = {b;,bj41}, for some
Jj < ji—1, up to relabelling o, < (.. We say that <7, ,%;, is of type (II) if
{aiy; aiy+1} = {bj—1,bj41} or {ai,—1,ai, 11} = {bj, bj41}, for some j < ji1—1, up
to relabelling o, <« ..

Proposition 3.2. Type (I), (II) minimal chain pairs give a contradiction.

Proof. Suppose 7, ,%;, is such that {a;,,a;,+1} = {bj,bj41} for some
Jj <Jji—1. 5o arcs aj,,3; share endpoints. We know that these arcs do not cross
and that (3, crosses a;, but does not cross ;. So I';, ; = oy, U B; must be a
bracelet. As j < j; —1 < 3 it follows that j = 1 or j = 2 which by Proposition 2.1
gives a contradiction.

Suppose now that o7, ,%;, is such that {a;,—1,a;,+1} = {bj,bj41} for some
J < j1 — 1. The other possibility follows similarly. So Y;; = 8; Ua;,—1 Uy,
is a bracelet. The arc (3;, crosses only «;, C T;;, . The endpoints b;,,b;, 41 of
B, lie off Y;; ; bj,,bj,41 are distinct from b;,b;41 € B; since j < j; — 1 and
we know that b;,,b;, 41 are both distinct from a;, , the other cone point on Y ;, .
So bj,,bj,+1 must lie in different components of &'\ T;;, . As there is only one
other cone point lying off T;; it follows that T;; cuts off b;, or b; 1. By
Proposition 2.4, 1 < j, 2 < 47. Since j < j1 — 1 < 3, 11 < 4 it follows that
(7,41) = (2,3) or (j,i1) = (2,4). As 2 =j < j; —1 < 3 we have that j; =4. So
Yo3 or To4 cuts off by or bs. By Proposition 2.4 this gives a contradiction. o

P e B
J/

! ! ! ! /

Figure 13. Examples of (a)—(e) of Proposition 3.4

Let €4t Ueyp Uep,n Uen, denote the bracelet that bounds the quadrilateral
spanned by «;, U 3;,; we label so that e, is between a;, ,bj, 11 and &5, is
between a;, +1,b;, , et cetera. As in the proof of Proposition 3.1 none of these arcs
cross <7, , #;, . Similarly l(e;+) < l(cu,) or l(ep,n) < 1(B;,) and all other such
combinations. We have proved:

Lemma 3.3. Either l(e¢;) < l(ay,) or l(ep,n) < 1(Bj,), et cetera.

Proposition 3.4. Up to relabelling o, < (., we have a contradiction:
(a) If ) =ou,...,ci,—1,60n, B, =P, Bj,—1,6n are both chains.
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(b) If either iy = 1 or & = ai,...,;,—1,01 is a chain and either %} =
Biy-os Bjy—1,€t or By = 61,...,6]-1 1,€ht is a chain.

(c) If iy =2 and oy = a1,epn, B = Pr,...,8j,-1,6 are both chains.

(d) If iv = 2, j1 = 4 and oy = ay,B2, B = B1,02, By = P1,en and
By = P, B2, 3, e, are all chains.

(e) If for some j < ji: & = ai,...,0i,-1,8;, B = Br,...,0j-1,%,,

i1

/! / .
B =P1,...,Bj-1,et,n and B; = P1,...,Bj,—1,€n,t are all chains.

Proof. For each part we have a contradiction by Lemma 3.3. For (a) we
have I(a;,) < l(et,n), U(Bj,) < l(ent). For (b) suppose & = Bi,..., 01,64
is a chain. We then have I(a;,) = I(81) < l(enn), U(Bj,) < l(et). For (c) we
have l(ag) < l(epn), 1(Bj,) < l(er). For (d) we have l(az) = I(B2) < l(ene),
1(Bs) < l(etn). For (e) we have I(cy,) = 1(B5) < l(een), 1(Bs,) <l(eny). O

Up to relabelling we may suppose that ¢; < j;. Since aj,,3;, have distinct
endpoints a;,, ai,+1,b;,,0;,+1 are all distinct.

First i1 = 1. If {a1,a2} ¢ {b1,...,bj,—1} then either # =B B 1, €t
or B = P, Bj,-1,Ent IS a cham and we can apply Proposition 3.4(b).
So {ai,a2} C {b1,...,b;,—1} and we have type (I) or (II). So ¢; > 1. Sup-
pose that bj1+1 ¢ {CLl,.. . ,ail,l}, i +1 ¢ {bl,. ..,bjlfl}. We then have that
A = a1, 01,600, By = Pi,...,0j;-1,€n are both chains and we can
apply Proposition 3.4(a). So we may suppose that either b;, 11 € {a1,...,a;;,-1}
or Gj,+1 S {bl, c. 7bj1—1}-

/4\%\%\
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Figure 14. Applications of Proposition 3.4 for i; = 2
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Next i; = 2. First we suppose bj,+1 = a1. If as ¢ {b1,...,b;,_1} then
%’;1 = B1,...,08j,—1,€t is a chain. We note that € 5 is between bj, 11 = a1, a3
and so @/ = «i,ep,, is also a chain and we can apply Proposition 3.4(c). So
as € {bl, e 7bj1—1}-

For j; = 2: Proposition 3.4(b), see the first wire-frame, Figure 14. Suppose
j1 = 3. If az € {b1,b2} type (I). If az & {b1,b2}: Proposition 3.4(b), see the
second and third wire-frames. For j; =4 if a3 € {b1,be,b3}: type (I) or type (II).
So az = bg. If as € {b1,b2}: Proposition 3.4(b), see the fourth and fifth wire-
frames. If as = b3 then 5272/ = Oél,ﬁg, %{3 = ﬁ1,52,042, %g’ = ﬁl,ﬁQ,gtyh and
By = 1, B2, 03,ent are all chains, Proposition 3.4(e), see the sixth wire-frame.

Therefore ay # bj,4+1,a3 € {b1,...,bj,—1}.

For j1 =2, a1 # b3, ag = by. If a; = ba, Proposition 3.4(b), see the seventh
wire-frame. So a; € {by4, b5, bs}, Proposition 3.4(c); see the eighth wire-frame.

For Jj1=3, a1 7é b4, as € {bl,bg}. If ag € {bl,bg}, type (I) So as € {b5,b6}.
If a; € {b1,b2}, type (II). If a; = b3, Proposition 3.4(b); see the ninth and tenth
wire-frames. So as € {b1,b2}, {az,a1} = {b5,b6} and we can apply Theorem 3.7,
see Figure 21.

For j1. =4, a1 # b5, a3 € {bl,bQ,bg}. If as € {bl,bg,bg}, type (I) or (II) So
ar =bg. If a1 € {bl, b2, bg}, type (I) or (II) unless {al, CL3} = {bl, bg} If (al, ag) =
(b1,b3), Proposition 3.4(b); see the eleventh wire-frame. If (ay,a3) = (b3, b1),
Proposition 3.4(d); see the 12th wire-frame. So a; = by, Proposition 3.4(b); see
the 13th, 14th and 15th wire-frames.

Now i; = 3. First j; = 3. Up to relabelling we may suppose by € {a1,a2}.
If b3 € {a1,a2}, type (I). So bs € {as,as}. Likewise, if by € {a1, a2}, type (II).

Suppose b2 = as. If bl = a4, type (I) So bl 7'é a4, Q{qf = 041,062,62,
By = b1, a3, By = br,ern and By = B, B2, e are all chains, Proposition 3.4(e),
see the first to fourth wire-frames in Figure 15.

Suppose by = aq. If by € {as,as}, type (I) or (II). So by = a; or by €
{CL5, CLG}.

For by = a1 we have that by = as. The arc set @5 U A3 divides & into
four components having 6,4, 3 and 3 geodesic boundary pieces respectively. Label
these by Og, 04, O3 and 0% so that as lies on the boundary of &5. Let ¢ denote
the cone point lying off o5 U #B3. We note that both <4 = ay,01, %5 = (1,
are chains and so «s, 32 are both shortest arcs.

Suppose ¢ € Oy, see the fifth wire-frame. Let o} (respectively (1) denote
the arc between ¢ and as (respectively by ) in O4. Both o = aq, 0,644, B =
B1, B2, €, are chains and so max{l(ag),(83)} < l(es+). By Proposition 3.5(v),
(o) <lon) or U(B1) < 1(Br).

Now suppose ¢ € Og; see the sixth wire-frame. Let «of (respectively (%)
denote the arc between ¢ and as (respectively b3) in Og. Again both o =
a1, 09,61, By = P, 02,61, are chains and so max{l(as),l(03)} < l(e4). Since
ag, B2 are both shortest arcs I(az) = I(B2). We can now apply Proposition 3.5(vii):
l(ah) < lag) or 1(B5) < U(B3). As &' = ay,a0,a, BY = (1, 02,05 are both
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chains we have a contradiction.

For ¢ € 05 (equivalently ¢ € %) we can apply Theorems 2.12 and 3.6; see
Figure 20.

For by € {as,a¢} we first suppose by = a;. The arcset T = a3 UasUasU B U
(B3 divides & into three components, having 7,4 and 3 geodesic boundary pieces
respectively. Label these components 07, 0, and O3 respectively. Either b; €
O , see the seventh wire-frame, or by € O3, see the eighth wire-frame. For b, € Oy
(respectively b; € O3) label the arc between by,bs in 07 (respectively O3) by
B . Since o5 = a1, a9,e1, By = (1, P2, are both chains max{l(as),l(F3)} <
l(e1t). By Proposition 3.5(iii), I(a2) < l(a1) or I(#]) < I(B1) contradicting a1, 51
both being shortest arcs.

For this last example the same argument was adapted to the two different
topological configurations. This also holds for all the remaining examples. Ac-
cordingly in Figure 15 we have pictured only one topological configuration to
illustrate the argument used.

YUY

/f‘:»

Figure 15. Applications of Proposition 3.5 for i; =3, j; =3

If by = as we can again apply Proposition 3.5(iii); see the ninth wire-frame.

So by € {a5,a6}.

If by = a1 then by = as; see the tenth wire-frame. The arc set o3 U %3
divides & into three components having 6,6 and 3 geodesic boundary pieces
respectively. Label these components 0g, 0} and 05 respectively so that aso lies
on the boundary of 0g. In Op, label by o) the arc between by, as; by of the arc
between by, as; and by of’ the arc between by, as3. Again & = a1, 9,614, By =
B1, B2, €1t are both chains max{l(ag),(83)} < l(es). Since [, the arc disjoint
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from a3UQs, is a shortest arc, (1) < l(ep,+) and we can apply Proposition 3.5(i):
max{l(a}),l(af),l(af")} < l(a1) contradicting a; being a shortest arc.

If by = ay then by = a; and we can again apply Proposition 3.5(i); see the
eleventh wire-frame. For b; = ag we can apply Proposition 3.4(b); see the 12th
and 13th wire-frame. So b; = a4 and we can apply Proposition 3.5(iii); see the
14th and 15th wire-frames.

Now j; = 4. First we suppose b5 € {a1,a2}. If by € {a1,a2}, type (I). So
by € {as,a6}. If bg € {a1,az}, type (1I).

Suppose by = ag. If {b1,b2} > a4, type (I) or (II). If {by,b2} Z a4 we can
apply Proposition 3.4(e); see the first and second wire-frames, Figure 16, where
we have pictured the possibilities for bs = a .

Suppose by = ay. If {b1,b2} 3 a3 or bs = as, type (I) or type (II). So by = a
or by € {as,a6}.

If by = a; then bs = ay, by € {as,a6} and we can apply Proposition 3.5(i);
see the third wire-frame.

For by € {as,a¢} either by = a1, bs = ag or by = ay, bs = a; and we can
apply Proposition 3.5(i); see the fourth and fifth wire-frames.

So b3 € {a5,a6}.

Suppose by = aq and so bs = ay. Either by = a3 or by = ay.

For by = as, {b1,b2} = {a1,a3} and we can apply Proposition 2.10.

For by = a4 we note that %5 = 31, a1 is a chain and so (3 is a shortest arc.
We can apply Proposition 3.5(i); see the sixth wire-frame.

Suppose by = as and so bs = a1 . Either by = a3 or by = ay4.

For by = as, see the seventh wire-frame. The arc set o753 U %, divides €
into three components having 6,5 and 4 geodesic boundary pieces respectively.
Label these components Og, 05 and O, respectively. In Og, label by o (re-
spectively af) the arc between bo,as (respectively bs,a;). We have that 7 =
ay, 00,60, By = P, 02,03, are both chains I(as) < I(er),1(B3) < l(en,t).
Now %, = [1,a1 is a chain and so (y—the arc disjoint from ag U f,—is a
shortest arc, {((2) < min{l(e.¢),l(e¢,n)} and so we can apply Proposition 3.5(ii):
max{l(a}),l(af)} <l(ay) contradicting oy being a shortest arc.

For by = a4, type (II).

Suppose by = az. If by = a1, we can apply Proposition 2.10. If b; = ao
then b5 = a; and we can apply Proposition 3.4(e); see the eighth wire-frame. If
by = a4, type (I).

So by = a4.

If by = a7 then bs = ay and we note that %, = (31, ;1 is a chain and so (5 is
a shortest arc. We can apply Proposition 3.5(iii) to contradict «aq, 32 both being
shortest arcs; see the ninth wire-frame.

So b1 € {az,a3}, type (I) or (II). Therefore: {ai,a2} ZF bs and a4 €
{b1,b2,b3}.

If ag € {bl,bg,bg}, type (I) or (II) So az = bg.
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YUY
TUX
X

Figure 16. Applications of Propositions 3.4 and 3.5 for i; =3, j; =4

Suppose as = by. If ay = b, type (II). If ay = bs then a; = by or a; = by.
We can apply Proposition 3.5(i) or (ii) respectively; see the tenth and eleventh
wire-frames.

If ay = by, type (II).

Suppose as = bs. If as = by, type (I). If agy = by then ay = bs or a3 = by.
For a; = bs we can apply Proposition 3.5(i); see the 12th wire-frame.

For a; = by, see the 13th wire-frame. The arc set @3U%, divides € into three
components having 6,5 and 4 geodesic boundary pieces respectively. Label these
components g, Os and Oy respectively. In O, label by (3] (respectively [37)
the arc between by, b5 (respectively bs, by ). We have that o5 = a1, 9,615, B =
B1, B2, B3, €t are both chains and so [(as) < l(ern), 1(Bs) < l(ett). We know that
By = [1,en,n is a chain and so I(B2) < l(epn). If U(enn) < l(er) then I(B2) <
min{l(en,n),l(e¢+)} and we can apply Proposition 3.5(ii): max{l(5]),1(5))} <
[(B1) contradicting (51 being a shortest arc. So suppose l(g¢) < l(ep.n). We can
now apply Proposition 3.5(iv): I(5]) < (1) or l(ag) < l(ay) contradicting [y, oy
both being shortest arcs.

So ag = by and we can apply Proposition 3.4(e), see the 14th and 15th wire-
frame, where we pictured the possibilities for ay = by .

Finally we consider ¢1 = 4, j; = 4. Up to relabelling, we may suppose that
bs € {a1,az2,a3}. If by € {ay,asz,a3}, type (I) or (II). So by = ag.

Suppose bs € {ai,as,a3}. Either {b5,b3} > aq, type (II) or {bs,b3} =
{a1,as}.

First: (bs,b3) = (a1,a3). If by = ag either by = a4 or by = a5 and we can
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apply Proposition 3.5(ii) or (i) respectively; see the first and second wire-frames,
Figure 17. If by € {ay4,as5} either by = ay and we can apply Proposition 2.10 or
by € {as, a5}, type (I).

Next: (bs,b3) = (as,a1). If by = ay either by = a4 or by = a5 and we can
apply Proposition 3.5(ii) or (i) respectively, see the third and fourth wire-frames. If
by € {a4,as} either by = ay and we can apply Proposition 2.10, or by € {a4, a5},
type (I).

Suppose b3 = ay. For {b1,b2} # a5 we can apply Proposition 3.4(e); see the
fifth and sixth wire- frames Where we have pictured the possibilities for b5 = a;.
For {bl,bg} o> as, type . S0 bg =as.

YUY
Y

Figure 17. Applications of Propositions 3.4 and 3.5 for i, =4, j; =4

Suppose by = a;. If by = ay we can apply Proposition 3.5(i); see the sixth
wire-frame. If by = a3 we can apply Proposition 2.10. If b; = a4, type (II).

Suppose by = ay. If by = a; or by = ag and we can apply Proposition 3.5(i);
see the eighth and ninth wire-frames. If by = a4, type (II).

So be € {as,aq}, type (I) or (II).

Let Z be an arc set that contains no crossing arcs and has the combinatorial
pattern of the edge set of a triangular prism. Label cone points so that there
is a Z arc between c¢,,c,+1 and between c,,c,4+2 and between c¢,1,c,43 for
n = 0,2,4. Subscript addition is modulo 6. Label the Z arc between c¢,,c,11
by Cnn+1, €t cetera. Label by (, n+3 (respectively (n41n42) the arc between
Cn, Cnts (respectively ¢,y1,cny2) that does not cross any arc in Z for n =0,2,4.
In Figure 18 we have pictured an orbifold as triangular prism wire-frame with
some of these arcs drawn in thick black.

Proposition 3.5. We have the following:

(i) If max{l(C2,5),1(C3,4)} < 1(C3,5) and 1(Co,1) < U(Ca,5) then min{l(Co,3),1(C1,3),
1(C1,2)} < U(Co,2) -

(ii) If U(C2,5) < U(C3,5):1(C3,4) < U(Cay5) and 1(Co,1) < min{l(C2,3),1(Ca5)} then
min{l(Co,3),1(C1,2)} < U(Co,2) -
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(111) If max{l(§2’5),l(<'3,4)} S Z(C3,5) then either Z(C0,3) < Z(CO,Q) or Z(C571) <
1(Ca,1) -

(IV) If l(<2’5) S Z(Cg’g)) and Z(C374) S l(<4’5) S l((g’g) then either l((o’g) <
1(Co,2) or 1(¢s,1) < 1(Can)-

(v) If max{l(Ca5),1(¢3,4)} < 1(C3,5) then either 1((p2) < I(C12) or 1((a0) <
1(Ca,1) -

(vi) If 1(C2,5) < U(C3,5) and 1(C3,.4) < l(Ca5) then either 1(Cp2) < I(C1,2) or
1(Ca,0) < 1(Ca,1)-

(Vii) If max{l(C275), Z(C3,4)} S l(<375), Z(C2’3) - Z(C4,5) and C0’27C470 are ShOI“t—
est arcs, then 1(C13) <1(C3,4) or 1(¢5,1) < 1(C25)-

Proof. Choose the distinguished disjoint triple of arcs I' = (o1 U (2.3 U (a5
We label the common perpendiculars to the pair of pants & \I" by po 2,24, P4.0-

Cutting & open along I',(; 3,(5,1 we obtain a simply connected domain 2.
Choose a lift of € in the universal cover of the pair of pants & \ I'. Without
confusion, we shall use the same labels for geodesics having non-trivial intersection
with 2 ason &'. We label the orbits of cone points on the boundary of €2 in cyclic
order: c¢o, c¢1, c3, co, C5, €}, C5, ¢4, Cco, ¢, so that %; € ¢. The points ¢,
2, ¢4 lie at the midpoints of edges, the other points lie at vertices. Label the
component of (y; containing ¢ by C(/M; see Figure 18.

Label the common perpendiculars to (p 1,¢2,3,Cs,5 by po2,p2.4,pa,0. Let 57
denote the right hexagon bounded by p2 4 U (23 Upg 2 U o1 UpoaUCss. We shall
refer to the inside and outside of pgo so that S lies inside pgo. Similarly for

P2,4,P4,0-

(i) We suppose that max{l(Cz,5),1(C3,4)} < U(C3,5),1(Co,1), 1(Co,1) < U(Ca5) and
1(Co,3) > 1(Co,2) and show that I(¢1,2) < 1(Co,2)- Unless all the inequalities are
equalities this inequality will be strict. If all the inequalities are equalities then
we show that [(¢1.3) < 1(Co.2)-

Consider 25 5 bounded by (45 Upas U (23U L cacy and 25 4 bounded by
C2,3Up24UCss5U L cheq, apair of right quadrilaterals. Recall that L XY denotes
the bisector of a disjoint pair of points X,Y € H?. Any right quadrilateral 2
bounded by AU BU C U D, will be such that the A edge and D edge meet in
an acute angle (2 is ‘finite’ or ‘a trirectangle’) or the A edge and D edge do not
meet (2 is ‘infinite’).

Claim 1. Both 255, 25, are strictly outside pp4, c5 is on the (45 edge
of 253 and c3 is on the (23 edge of 2% .

If either ¢4 or cj is inside py 4 then either Zcochcy > m/2 or Lcheheqs > m/2
and so either [(¢35) < l(C25) or I(C35) < I(C3,4). So both ¢4, ¢ are strictly
outside py 4. As above, we use Zzyz to denote the angle at the y vertex of the
triangle spanned by zyz.

Likewise if either L cach or L cgeq is inside po 4 then either [((35) < I((25)
or [(¢s5) < 1((3.4), since ¢, cf are strictly outside ps 4. So L cach, L cicy and
hence 2, 3, 25, are both strictly outside pa 4.
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If 2, 5 is finite and cf is strictly beyond its acute vertex then 1(¢35) < I(C2,5)
Similarly if 25, is finite and cj is strictly beyond its acute vertex then I({35) <
[(¢3,4). This completes the claim.

Figure 18. Arcs and lift for (i) and (ii)

Consider a third quadrilateral 235 bounded by (o1 U po2 U (23U L c3ca.
We compare edge-lengths of 235, 25 3. Since d(c3,c2) = d(c2,c5) = 1((2,3) =
d(po,2,P2,4), the (23 edges of P32 5 are the same length. Also 235 is strictly
inside po2 since 25 3 is strictly outside pp 4. Now [(Co,1) < I(Cs,5) and so, by
the geometry of right hexagons [(pg2) > l(p2,4). That is, the pg o edge of 254 is
longer than the po 4 edge of 25 5 and so, by the geometry of right quadrilaterals,
the (o1 edge of 254 is longer than the (45 edge of 0@573.

If ¢¢ is outside pg 2 or on the interior of the (p ; edge of 239, 1({o,3) < 1(o,2),
contradicting our supposition. So 23 5 is finite and ¢y beyond its (p; edge which
is longer than the (4 5 edge of 25 3 which contains c5. So d(co,po,2) > d(c5,p2,4)-
Since L ciey is strictly outside po 4 and d(co,c1) = 1(Cp1) < U(Ca5) = d(ckes),
1 cpcy is strictly inside pg 2 and d(L coci,po2) > d(L cgca,p2a).

Consider a fourth quadrilateral 2 ; bounded by (23 U po2 U (p1U L cocy .
We compare edge lengths of 2y, Z5,. We have shown that 2y is strictly
inside po o and that the (o edge of 2y is longer than the (45 edge of 2% ,.
Since I(po,2) > (p2,4), the (23 edge of 2y 1 is longer than the (3 edge of 2% ,.
As cj is on the (o3 edge of 25, and d(c3,p2.4) = d(c2,po,2), c2 is on the (23
edge of 21. So I((1,2) <1(Co,2) as required.

Finally, 1(¢3,4) = I(C2,5) = U(C3,5), 1(Co,1) = U(Ca5), 1(Co,3) = U(Co,2) implies
1(C1,3) <1(Coz2)- So 2y is finite and co is at its acute vertex. Now c3 is either
outside pp o or on the interior of the (23 edge of Zo1: 1(¢1,3) < 1(o.3) = 1(Co.2)-

(ii) We suppose 1(C2,5) < 1(C3,5), 1((3,4) < U(Ca5), 1(Co,1) < min{l(C2,3),1(Ca5)}
and 1(¢o.3) > 1({p.2) and show that 1(¢12) < 1({o2)-

Claim 2. 2,3, cf are both strictly outside py 4, c5 is on the (45 edge of
Qé,iﬂ and d(cy,p2,4) > d(c3,p2.4)-
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Suppose that 2y 5 is strictly inside pa 4.

If 2, 5 is finite and cf is beyond the acute vertex of 25 3 then Zcjegeq > /2,
[(Ca5) < 1(C3,4). If ¢ is on the interior of the (45 edge of 3’2,3 or outside ps 4,
I(¢3,5) < 1(C2,5). Similar arguments hold for 2y 5 trivial or infinite.

Suppose 25 5 (and hence cj) is strictly outside pa 4.

If ¢f is inside po4 we again have Zchjcies > /2, 1(Caps) < U(34). If &
is outside po 4 such that d(ch,p24) < d(cs,p2,4) then Zchchey > Leachel. By
inspection Zcacsel > Leyczey so Leseseq > Leacyes, U(Gas) < 1(C3a). If 254
is finite and cf is strictly beyond its acute vertex, 1((35) < [(C2,;5). The claim
follows.

Recall that 252 is bounded by (o1 Upg 2 U (23U L c3ca. As 3573 is strictly
outside py 4 and the (2 3 edges of 23, 32573 are the same length: 25 5 is strictly
inside po,2. Again [(¢p1) < l(Cs,5) and so I(po,2) > I(p2,4). So the (p1 edge of
932 is longer than the (45 edge of 25 ;.

Recall that 2, is bounded by (23 Upp2 U (p1U L coci. We show that
2p.1 is strictly inside pp2. As with part (i), so that [((o3) > 1((o2): P32 is
finite and ¢ is beyond its acute vertex. So d(co,po2) is longer than the (o3
edge of 23, which is longer than the (45 edge of 25, which is longer than
d(ch,p2,a) > d(ch,paa) = d(ca,po2). That is d(co,po2) > d(c2,po2). Since
L cgeg is strictly inside po o and d(co, c1) = 1(Co,1) < U(C2,3) = d(cs,c2), L cocy is
strictly inside pg o and d(L cocr,po2) > d(L c3c2,p02).

So P35, Zy1 are both inside pg 2, the (o1 edge of Zy; is strictly longer
than the (23 edge of Z35. As 235, £y have pp2 in common, the (23 edge
of Zy; is strictly longer than the (p; edge of 232 which is longer than the (45
edge of 25 5 which is strictly longer than d(c§, p2,4) > d(c3, p2,4) = d(c2,p0,2) - So
co is on the interior of the (33 edge of 2y 1, 1(C1,2) < 1(Co,2)-

(iii) We suppose that max{l(C25),1(¢3,4)} < 1(¢3,5) and show that either
1(Co,3) < 1(Co,2) or I(C5,1) < 1(Ca1). From Claim 1, 25 5, 25, are both strictly
outside pp4 and so P32, 25 are strictly inside po2, pso respectively. Here
2} 5 denotes the right quadrilateral bounded by (o1 UpsoUCss L cacy.

Consider ¢y, ¢ on (1. Either ¢y is outside poo or ¢ is outside pso. So
cp is strictly closer to ¢3 than to ¢y or ¢ is strictly closer to ¢ than to ¢4. That
is either l(C0’3) < l(go’g) or Z(C5’1) < l(C471).

(iv) We suppose that [(C25) < 1((35) and [((34) < 1(Csa5) < ((2,3) and show
that either Z(C073) < Z(Coyg) or Z(C5,1) < Z(C4,1).

From Claim 2, 25 3, c5 are both strictly outside pg 4, d(c5, p2,4) > d(c3,p2.4)
Since d(cs, ca) = 1(Ca,5) < 1(C2,3) = d(ca, c3), Z5 4 is strictly outside pa 4. As with
part (iii), we can conclude that either 1({o3) < [(Co2) or 1(¢s1) < 1(Ca,1)-

(v) We suppose that max{l(C25),l(¢3,4)} < 1((35) and show that either
1(Co,2) < 1(C1,2) or 1(Ca0) <U(Ca1). From Claim 1, ¢4, cf are both strictly outside
p2,4 and so cp and c4 are strictly inside pgo and ps o respectively.
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Consider L cocq, L cfco. Either L coeq is outside poo or L ¢fco is out-
side ps. So either cy is strictly closer to ¢y than to ¢; or ¢4 is strictly closer to
¢o than to ¢ . That is either I({p2) < 1(C1,2) or 1(Ca0) < 1(Can)-

(vi) We suppose that 1((25) < 1((35), 1(¢3.4) <1(Cs5) and show that 1({p2) <
[(¢1,2) or 1(Ca0) <1(Ca1). From Claim 2, ¢§ and ¢ are both strictly outside ps 4.
As with part (v) we can conclude that either 1((p2) < {(C1,2) or 1(Ca0) < 1(Ca1)-

(vil) We suppose that max{l(C25),1(¢3.4)} <1(C35),1(¢2,3) =1((s5) and that
Co,25 Ca,0 are both shortest arcs and show that 1(¢1,3) < 1({3,4) or I(¢s5.1) < 1(C2,5)-

By hypothesis 1((23) = 1(C45) and so € \ I' has rotational symmetry R
exchanging boundary components (23, (4,5 and fixing (p 1, p24 setwise. Gluing
along (o1 to recover O\ (23U (45, this symmetry is respected, exchanging cone
points ¢q, ¢;. In the universal cover, the rotational symmetry of &'\ (2 3U(y 5 lifts
to a rotational symmetry R such that R((23) = (a5, R(Co,1) = (.1, R(co) = ]
and R(p2,4) = p2.a.

By Claim 1, L coch and L cfeq are both strictly outside po 4.

Figure 19. Arcs and lift for (vii)

Either (a) c2, cs4 are both strictly inside ps4 or (b) one of ¢y, ¢4 is out-
side pa4. We shall give the argument for (b); a similar argument holds for (a).
We suppose ¢y is outside ps 4 and show that 1(¢i3) < 1((3.4). (If ¢4 is outside
p2.4, the same argument shows that [(¢51) < [({25).)

Claim 3. ¢4 is inside p2 4 and d(ca,p2,.4) < d(ca,p2.4) < 1(Ca5)/2.

Consider the bisector L ¢oc}. By rotational symmetry L coc} passes through
the midpoint of ps 4. As (p2 is a shortest arc, co € (2.3 is to the ¢q side of L ¢oc] .
So either (s 3 is strictly to the ¢o side of L cpc} or L coc) intersects (2 3 outside
P2,4, beyond ca.

By rotational symmetry, the former corresponds to (45 > c4 lying strictly
to the ¢} side of L ¢oc}. This contradicts (40 being a shortest arc. So L coc}
intersects (2,3 (respectively (45) outside (inside) ps 4, beyond co (between po 4,
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ca). As L cfey is strictly outside po 4, d(cq,p2,4) < d(c,p2,4) and so d(cq,p24) <
[(C4,5)/2. This completes the claim.

By rotational symmetry R(cy4) is outside p2 4 and d(c2,p2.4) < d(R(C4),p2,4)
<1(C2,3)/2.

Claim 4. d(R(c4),c}) < d(R(ca),c4).

We show that d(ca,co) < d(ca, R(ca)), which by rotational symmetry is equiv-
alent. By hypothesis (40 is a shortest arc and so d(ca,co) = 1(Ca0) < 1(C2.4) =
d(cs, c2). By Claim 3 and by inspection d(ca,c2) < d(cq, R(ca)).

Now ¢4 is outside po 4 such that d(c3,p2.4) = 1(¢2,3)+d(c2,p2,4) > 1((2,3)/2 >
d(R(cs),p2,4). So by Claim 4 and by inspection, d(c,¢}) = 1(¢1,3) < U((34) =
d(ch,cq). O

We extend the arc set KUA by H = Un; where 7; is between ¢y, c3 crossing
only ko; C K.

Theorem 3.6. Either [(ko1) < l(n4) or l(kos) < l(ks5) or [(A2) < I(Ao).

Figure 20. Application, arcs and lift of £ in Theorem 3.6

Consider &7, ,%;, with i1 =3, j1 =3 and by = a2, bz € {as,a6}, b2 = a4,
by = a1 such that ¢ € O3; see Figure 20. Since o/ = aq, 31 is a chain, asg is
a shortest arc. We set o1 = ka3, o = K35, a3 = Ao, B1 = Kou, B2 = K14,
B3 = ng. This arc set extends uniquely to the arc set K UA U H. Both o4 =
a1, o, A1, 3 = aq, a9, A3 are chains, so [(Ag) < min{l(A\1),l(A3)}. Since oy is
a shortest arc, Theorem 2.12 implies min{l(A1),{(A3)} < 1(A2). So I(Ao) < I(A2).
By Theorem 3.6 either [(ko1) < l(n4) or l(ko5) < I(Kk35) or I(A2) < I(Ao). As
By = B, P2, ko,1 is achain and ag = K3 5 is a shortest arc, we have a contradiction.

Proof. We suppose 1(n1) < l(ko,1), l(k3,5) < l(ko,5) and show that [(A2) <
[(Ao). Cut € open along k15U k14U Ay and consider 07, the component not
containing cy. Cut 0% open along k3o so as to obtain an annulus. Making a
further cut along k35 we obtain a simply connected domain 2. Choose a lift of
2 in the universal cover of the annulus &5 \ k3.

Label the geodesics around the boundary of €2 by k30, k35, A2, K14, K15,
/{35, in cyclic order. Give the other geodesics having non-trivial intersection with
) the same labels as on ¢'. In the same cyclic order, label orbits of cone points
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around the boundary of Q by c¢o, c3, ¢5, ca, c1, ¢5, 5. Let Ps, Py, P, P;
denote the perpendiculars to k3o from c5, ¢4, c1, ¢ respectively.

Now: l(n4) <l(ko1) implies that P; is closer to c¢3 than to ¢p and I(k35) <
l(kos) implies that P! is closer to ¢§ than to c¢y. It follows that d(Py, Pi) >
l(l‘{/g,()) .

The perpendiculars lie in the order Ps, Py, Py, P, and so d(Py, P}) > d(Py, P%)
and hence d(Ps, Py) < l(k3,0). So the k3 edge of the birectangle 2 3 is strictly
shorter than the k3 edge of the birectangle 2y 3. Therefore I(A2) < I(Ao). O

Theorem 3.7. If [(Ag) < 1(A2), l(ko,1) < min{l(ko,),l(ks,),l(m)} and
l(k1,2) = U(K30) < min{l(k1,),l(k2,1),l(k31)}, for | = 4,5, then O is the octahe-
dral orbifold.

Consider o7, ,%;, with i1 =2,j; =3 and a3 € {b1,b2}, {a2,a1} = {bs, b} ;
see Figure 21. Suppose a3 = b;. Set a1 = k30, 2 = Ko,1, b1 = K12, B2 = K25,
B3 = Ag. This arc set extends uniquely to the arc set K UA U H. Each one
of B3 = P1,52, X2, 9y = ai,koy, Sy = a1,Kk31, Dy = ai,n is a chain so
I(Ao) < I(N2), Ukor) < {l(kop),l(ks1),l(m)} for I = 4,5. Also k3o = o,
k1,2 = (1 are both shortest arcs, so we can apply Theorem 3.7: & is the octahedral
orbifold. This gives a contradiction since minimal chains on Oct lie in its set of
shortest arcs, which contains no crossing arcs. Likewise for ag = bs.

Figure 21. Applications and arc set for Theorem 3.7

Proof. Let I' = k1 2 U2 UK3 o a distinguished disjoint triple of arcs. Let ps 1
denote the common perpendicular between k3¢, x1,2. The pair of pants &' \T" has
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a rotational symmetry R exchanging k12, k3,0 and fixing Ao, A2, p31 setwise.
Gluing along A2 so as to recover & \ k12 U K3, this symmetry is respected. So
R exchanges the birectangles 21 <« Zp3, Zo1 <« Zo3. That is, 2o1, Zos
(respectively 251, 22 3) are isometric.

As we have observed many times above, since [(Ag) < [(A2) the k3 edge
of 2y 3 is shorter than the k3o edge of Z53. Here we observe that I(A\g) <
[(A2) implies that Z¢;2p1 > L6221 . Summing angles we have that ZcsZp 3 +
lesZo3 > LegDa3+ LesDa3.

The set k1,2UPy 1 UPy3Uk30UPs3UPs 5 divides € into a pair of hexagons
6. O M for k = 0,2. We have shown that both hexagons have rotational
symmetry and that the ki 2, k30 edges of J#% are shorter than the k12, K3
edges of % . It follows that the k1 2, K3 edges of & are shorter than I(k12) =
l(k3p0). Also Legdty = LeaLoq + LeaLo3 > LeaPDaq + LeaDo 3 = Ley . Since
Leg I + Lea st = m it follows that Zey 6y = Les ity > /2.

Note. The hypotheses are symmetric up to an exchange of labels: ki 4 < Ki 5
for kK = 0,1,2,3; c4 < ¢5; and ny < 15. So we may suppose that [(Py1) =
I(Ps3) > 1(Py3) =1(Ps1)-

Cut & open along k12U K14 UkgaUkszoUKesUkas to obtain a pair of
simply connected domains €2y, {25 containing Ao, A2 respectively. Take a lift of
Qo to the universal cover of the pair of pants ¢ \ I'. Without confusion use the
same labels for geodesics having non-trivial intersection with €2y, for orbits of
cone points lying on the boundary of €2, for the common perpendicular between
K12,k3,0, for the perpendiculars from c4,c5 to K12,k30 and for the rotational
symmetric of hexagon 75 bounded by r12U Py UPy3UkgoU Ps3UPs 1. We
may suppose that 7, has a bottom, a top, a left and a right, so that x; 2 is the
bottom, K3 is the top, cs to the left and c5 is to the right. Label the unlabelled
vertices of J4): hi, ha, hg, hs in anticlockwise order, beginning from bottom
left.

The main part of the proof has two parts. The first part is to establish

Claim 1. ¢; is strictly between Py, Ps 1.

For ¢; to the left of P, ; we show that [(ko4) < (ko,1). For ¢; right of Ps
a similar argument shows that (ko 5) < I(ko1)-

We use a different pants decomposition of &'. Let IV = k30U K14 UKas.
Label the common perpendiculars associated to this pants decomposition by pg 4,
pas and pso. Cut open along IV, k1 2, k34 and kg5 so as to obtain two simply
connected domains: Qg, 2o, as above. Again take a lift of )y and use the same
labels as before, with the additional labelling for the common perpendiculars to I'.
S0 K14 UpasUkasUpsoUksoUpea bounds a right hexagon. Let p denote the
common perpendicular to K1 4,ps5.0-

As ¢ is to the left of Py, Zcicahs > Lhicahs = Leady > w/2. So ¢y is to
the py 5 side of pg 4 or equivalently, L cicq is closer to ps s than to pp 4. Now p
is closer to po4 than to pss, as I(k30) < l(k25) and using the geometry of right
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hexagons. It follows that 1 cicy lies to the py 5 side of p and so L cicq does not
intersect k30 and hence l(ko4) < l(ko,1). This completes the claim.

A

A

AYA

Figure 22. Claims 1 and 2.

In the second part, we show that [(ko4) < l(ko,1) or I(ko5) < l(ko,1) with
equality if and only if a certain set of conditions are satisfied. At the end we show
that this set of conditions implies that & is the octahedral orbifold.

The argument we use depends upon the positions of cq, ¢ : each part (i)—(viii)
corresponds to a different configuration. However each part uses the following
construction together with the angle comparison we establish in Claim 2.

For each part we define x to be a point on k1 o strictly between Py 1, Ps ;.
We define y to be the point on k12 to the right of x such that d(z,y) = I(k1,2).
Label angles so that ¢ = Zhicyx, v = Lcaxhy, ' = Lhoxes, ¢ = Lxcsha,
¢" = Lhacsy. Let my o (respectively mg ) denote the midpoint of hy,he (re-
spectively hg, hg).

Claim 2. For (i), (ii), (iv), (v): ZR(z)csx > w/2 —1 and for (iii), (vi), (vii),
(viii): ZR(x)csx > w/2 — .

By rotational symmetry we have /R(z)cyz = /R(z)csz. Below we show that
/R(x)esx > w/2 — ¢ for (i)—(viii). For (i), (ii), (iv), (v) the point x is to the
left of miz2. So d(l’,P4,1) S d(m,P571). Since Z(P471) Z l<P571), it follows that
Y >1". So the claim follows from the argument below.

Firstly: ¢ < ¢”. Since d(z,y) = l(k1,2) > d(Ps,1P51) it follows that
d<P4’1,l') < d(P571,y). Also Z(P4’1) > Z(P5’1).

Next: ¢' + ¢ <'. For (i), (ii), (iii), (v)(a), (viii) (respectively (v)(b), (vi))
we have that y is to the right of co which is to the right of P5; (R(y) is to the left
of ¢z which is to the left of P, 3). It follows that d(y,cs) > d(ca,c5) = l(k25) >
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l(k1,2) = d(y,z) (d(R(y)7C4) > d(cs,ca) = U(k34) > l(Kk30) = d(R(y),R(m))).
This is equivalent to ¢’ + ¢” < ¢’.

For (iv), (vii) we have that x is to the left of ¢; which is to the left of Ps ;.
It follows that d(x,c5) > d(ci,¢5) = l(k1,5) > U(k12) = d(z,y). Also z is to the
right of mi2 and so d(l’,P5,1> S d(ml,g,P571) = d(P4,1,P571)/2 S Z(KJLQ)/Q. So
d(y,Ps1) > d(z,P51), d(y,cs) > d(z,c5) > d(z,y). Again, this is equivalent to
(P/ + (‘0// S ,lp/.

So LR(z)caw = LeaHy—(p+¢') 2 7/2—(p+¢') 2 m/2— (9" +¢') = /2
and we are done.

Note. It is an elementary exercise to show that mi o is to the right of ps;
and that Py (the perpendicular from ¢o to k1) is strictly between Py 1, Ps ;.

First: c; to the left of p3 ;.

(i): Po,1 to the left of ¢;.

Let = ¢1. By inspection, Zcgeqx > ZR(x)cyx and by Claim 2, ZR(x)cgx >
w/2 — 1. Also by inspection, 7/2 — ¢ > ZLcoxes. So Lcgeacy > Lcpcicy or
equivalently d(co,c4) < d(co,c1) : l(Kko,4) < U(Ko,1)-

(11) PO,l between C1, P3,1-

Let = = Py1 NK12. By inspection, Zcocax > /R(x)cyx and by Claim 2,
LR(z)cqx > w2 —1) = Legxey. So d(co,cq) < d(co,x). Now x is the closest point
on K12 to ¢ so d(co,x) < d(co,c1) : l(ko,a) < U(kon)-

(111) PO,l to the I‘ight of P3.1-

Again let = Py 1Nk1,2. By inspection, Zcocsz > LR(x)csz and by Claim 2,
LR(x)csx > w2 — " = Legzes. So d(co,c5) < d(co,x) < d(co,c1) : l(Kkos) <
l(/ﬁo}l).

Next: ¢ to the right of p3 ;.

(iv): ¢o to the left of p3 1, min{d(co,p3,1),d(c1,p3,1)} > d(m1,2,p3.1)-

Let © = mj 2. By inspection, Zcocax > ZR(x)caz and by Claim 2, ZR(z)csx
> 7/2 —1p. Again by inspection, 7/2 — 1 > Zcgegx. So d(co, cq) < d(co, ). Now
d(Co,I‘) = d(Co,ml’Q) S d(Co,Cl) . l(li()74) S l(/ﬁoJ).

(V)I Co to the left p371, min{d(co,pg,l), d(Cl,p371)} S d(ml’g,pgyl) .

Either: (a) d(c1,p3,1) < d(co,ps3,1) or (b) d(co,ps1) < d(ci,p31)-

For (a) (respectively (b)) let # = ¢1(R(co)). By inspection, Zcocaz >
/R(x)cqx and by Claim 2, /R(z)cyx > m/2 —1. Again by inspection, 7/2 — 1 >
ZCOC4.I‘. So d(Co,C4) < d(Co,Cl) : l(FLOA) < l(/i()’l) .

(vi): Pp1 between ps1,c; and to the left of mq o.

Let © = Py1 NK12. If cg is to the right of Py 3 we show that either [(k34) <
I(ro,1) or l(ns) <l(ko,1)-

Suppose c3 is between Py3, mso. So d(ca,c3) < d(ca,mszpo). As myg is
to the right of x, d(cs,m12) < d(cs,z). Since c3 is to the right of Py3, co
is to the right of P53. We can apply the same argument as in Claim 1 since
l(k1,2) <1(Kk3,4): K12 lies strictly to the ¢5 side of L cocs. In particular d(cs, x) <
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d(co,x). Again d(co,x) < d(co,c1). That is d(ca, c3) < d(ca,ms ) = d(cs,m12) <
d(C5,$) < d(CQ,$) < d(Co,Cl)I l(/ig’4) < l(ﬁo’l).

Next: c3 to the right of m3 . So L c3cp is to the right of P53 and k1o lies
strictly to the c3 side of L czcq, d(cs,c1) < d(co,c1): 1(na) < (ko,1)-

So: c¢g is stricly to the left of Py 3. By inspection, Zcocsz > ZR(x)csz and
by Claim 2, /R(x)csx > 7/2 — )" = Lepxes. So d(co,c5) < d(cg,z) < d(cg,c1):
l(ko,5) < l(ko,1)-

(vii): Pp1 between psi, ¢; and to the right of m; o.

Let x = Py1 N K1,2. By inspection, Zcocsx > LR(x)csz and by Claim 2,
LR(z)csx > w)2 — ' = Lepwes. Again it follows that (ko 5) < [(Ko1)-

-
O

(i) 0 i (i)

(v)(a) l (v)(b) 0
(
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(viii): Py to the right of ¢1: use the same argment as for (iii).

For each one of (i)—(viii): if {(Ps1) > I(P5,1) then ¢ < ¢” and so l(ko4) <
l(lioyl) or l</€074) < l(lﬁ:o,l). Likewise if l()\o) < l()\g) then d(P471,P571) < l(lﬁ:l,2>.
So we may assume that l(P471) = Z(P571) and l()\o) = l(/\g), d(P471, P5’1) = l(lil,g) .

(vi)

(viis)

Figure 23. Configurations of ¢y and c¢;
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Moreover Z(P4’1) = Z(P571) implies mi2 = P31 N K12, M3o0 = P31 N K3,0 and
I(XAo) = U(A2) implies Zcy 56 = /2.

Consider (i). If I(k2,5) > l(k1,2) then ¢ + ¢"” < ¥ and so l(ko.4) < l(Ko,1)-
So we may assume [(k2,5) = [(k1.2). Alsoif © = ¢; is strictly to the left of p3 1 then
Legear > LR(x)cqr and so (ko) < l(ko1). So we may assume ¢; = p3 1 MNK12.
Likewise Zcocaxr > LR(x)cax if ¢ is strictly to the left of p3 ;. So we may assume
o =P3,1 M K30-

Checking through the proof of Claim 2 we now have I(ko.4) = l(ko,1). Indeed
since [(Py,1) = 1(Ps,1) the hexagon J# has reflective symmetries in p3; and Ag.
As both C1 = P31 N K1,2, Co = P3,1 N K3,0 SO l(/‘i074) = l(/‘i075) = l(/‘f,1’4) = 1(5175).
Similarly for arcs on .74, which is isometric to 7 by an orientation preserving
isometry. It follows that each arc &, . is the same length. As the arc set K has
the combinatorial edge pattern of an octahedron, it is now not hard to show that
¢ must be the octahedral orbifold.

We can argue similarly for each of the other parts (ii)—(viii). o
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