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Abstract. In this paper we study the hyperbolic geometry on a genus 2 surface. The
main object of study is a subset of the set of hyperbolic lengths of closed geodesics on such a
surface which arises from an algorithmic choice of shortest loops. Maskit has shown that this
data can be used to identify finite sided polyhedral fundamental set for the modular group on the
marked hyperbolic surface structures of a given genus. The special nature of genus 2 has made
it more accessible than in higher genus and we are able to produce a more detailed picture of the
domain and its side-pairing transformations. If the domain can be shown to satisfy certain basic
topological criteria, according to a classical theorem of Poincaré, then this would give a set of
geometrical generators and relations for the modular group.

0. Introduction

In this paper we study the structural properties of hyperbolic geometry on a
genus 2 surface i.e. the crystallographic properties of the Fuchsian groups which
uniformise such a surface. Our primary tool, following on from important work
of Bernard Maskit ([20]), is a detailed analysis of a type of subset of the set
of hyperbolic lengths of closed geodesics on such a surface, which arises from
an algorithmic choice of shortest loops in the surface. Maskit shows that this
data may be used to identify a finite sided polyhedral fundamental set for the
action of the (Teichmüller) modular group on the space of all marked hyperbolic
surface structures of a given genus. In genus 2, this action has proved to be more
accessible than in higher genus and we are able to produce a more detailed picture
of the domain and its side-pairing transformations. If the domain can be shown
to satisfy certain basic topological criteria, according to a classical theorem of
Poincaré, extended to general discrete group actions, this would then give a set of
geometrical generators and relations for the modular group itself.

Maskit’s construction in the special case of genus 2 is as follows. Choose a
sequence of 4 non-dividing geodesic loops on the surface satisfying the following
intersection property: the second loop intersects the first loop in a single point;
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the third loop intersects the second loop in a single point, but does not intersect
the first; the fourth loop intersects the third loop in a single point, but does not
intersect either the first loop or the second loop. We call such an ordered sequence
of loops a standard chain. Cutting the surface open along a standard chain we
obtain a topological disc and so a standard chain gives a marking for the surface.
So our surface, standard chain pair represents a point in Teichmüller space. Now if
each choice of geodesic loop was a shortest possible then we say that the standard
chain is minimal. We say a surface, standard chain pair lies in the Maskit domain
if the standard chain is minimal.

We wish to consider the intersections of translates of the Maskit domain. Con-
sider an element of the mapping class group. The image of a standard chain under
this element is an ordered sequence of loops on the surface. Taking the unique
geodesics in the homotopy classes of these loops we obtain another standard chain
on the surface. If there exists a surface with both of these standard chains min-
imal then the Maskit domain and its translate under this mapping class element
has non-empty intersection. So solving the problem of which translations have
non-empty intersection with the Maskit domain becomes the problem of finding
the complete set of allowable minimal standard chain pairs. Due to the special
nature of genus 2 surfaces it is known that sequential loops in a standard chain
intersect at one of the six Weierstraß points on the surface—the fixed points of the
unique hyperelliptic involution that each genus 2 surface exhibits. Theorem 1.1
states that distinct loops in a pair of minimal chains are either disjoint or intersect
at Weierstraß points.

Our characterisation of the side-pairing elements of the Maskit domain in
genus 2 is as follows: if the Maskit domain has non-empty intersection with a
translate under the mapping class group, then this intersection contains a copy
of one or other of two special surfaces. One of these special surfaces is the well-
known genus 2 surface with maximal symmetry group. The other special surface
does not seem to have appeared in the literature before; it is unusual in that
it is not defined by its symmetry group alone, it also requires a certain length
equality between geodesic loops to be satisfied. From this characterisation it is
a combinatorial exercise to obtain a complete list of mapping class elements that
are side-pairing elements of the Maskit domain.

We organise the paper as follows. We begin with general preliminaries con-
cerning genus 2 surfaces and the particular model for Teichmüller space that
we adopt. With respect to this model we then repeat Maskit’s definition for a
fundamental domain for the Teichmüller modular group. We then construct a
one-parameter family of genus 2 surfaces. Two distinguished members of this
family are the two special surfaces that feature in our main result. We then show
how the main result can be used to give a full list of side-pairing elements of the
Maskit domain. We then have the two main technical parts of the paper. In the
first we prove the main result under the assumption of Theorem 1.1. In the second
we prove Theorem 1.1. We have chosen this order so as to centre the paper on
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the geometry of the two special surfaces. Moreover we apply results from the first
part in the second.

The history of defining a fundamental domain for Modg for g ≥ 2 goes back
to the rough domains of Keen [11]. Maskit covers certain low signature surfaces
in his papers [17], [18]. In his doctoral thesis Semmler defined a fundamental
domain for closed genus 2 surfaces, based upon locating the shortest dividing
geodesic. Recently McCarthy and Papadopoulos [21] have defined a fundamental
domain based on the classical Dirichlet construction. For surfaces with one or
more punctures there are known triangulations of Teichmüller space. Associated
to these are combinatorial fundamental domains—see Harer [14] for an overview
of this work. An eventual goal of this work is to give geometrical presentation of
the mapping class group in genus 2. The first presentation of the mapping class
group in genus 2 was obtained by Birman and Hilden [4] completing the program
begun by Bergau and Mennicke [3]. For higher genus surfaces see Hatcher and
Thurston [15]. Part of the author’s inspiration for this work came from reading
Thurston’s note [25].

The author would like to thank W.J. Harvey, B. Maskit, P. Buser, K.-D. Semm-
ler and C. Bavard for many useful discussions. Further I would like to thank the
referee for his or her insight and suggestions.

1. Preliminaries

Throughout our model for the hyperbolic plane H2 will be the interior of the
unit circle of the complex plane with a metric of constant curvature −1. Likewise
S will always denote an oriented closed surface of genus 2. The Teichmüller space
of genus 2 surfaces T is the space of hyperbolic metrics on S up to isometries
that are isomorphic to the identity. Without further mention, all genus 2 surfaces
S will be oriented and endowed with a hyperbolic metric.

Let γ denote a simple closed geodesic on S . We say that γ is dividing if S \γ
has two components and non-dividing if S \ γ has one component. Throughout
the paper ‘\ ’ denotes ‘set minus’ and by ‘non-dividing geodesic’ we shall always
mean ‘simple closed non-dividing geodesic’.

We define a chain to be an ordered set of n non-dividing geodesics An =
α1, . . . , αn on S such that: |αi ∩ αj | = 1 for |i − j| = 1 and αi ∩ αj = ∅ for
|i − j| ≥ 2, where 1 ≤ n ≤ 5 and 1 ≤ i, j ≤ n . A necklace is an ordered set
of 6 non-dividing geodesics A6 = α1, . . . , α6 on S such that: |αi ∩ αj | = 1 for
|i − j|mod 6 = 1 and αi ∩ αj = ∅ for |i − j|mod 6 ≥ 2, where 1 ≤ i, j ≤ 6. We
call the geodesics in a chain or necklace the links and we call n , the number of
links in a chain, the length of the chain. We note that any length 4 chain extends
uniquely to a chain of length 5 and that any chain of length 5 extends uniquely to
a necklace, so chains of length 4 and 5 and necklaces can be considered equivalent.
We call a chain of length 4 standard and will denote it by A .

To a surface, standard chain pair S ,A Maskit associates discrete faith-
ful representation of π1(S ) into PSL(2,R) ; see [20, p. 376]. It is well known
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that there is a real-analytic diffeomorphism between DF
(
S ,PSL(2,R)

)
and the

Teichmüller space T (see Abikoff [1]); this diffeomorphism was given explicitly
by Maskit in [19]. So there is a one-to-one correspondence between pairs S ,A
and points in T .

We define a chain An = α1, . . . , αn to be minimal if α1 is a shortest non-
dividing geodesic and if, for any α′m such that A ′m = α1, . . . , αm−1, α

′
m is a chain,

we have that l(αm) ≤ l(α′m) for 2 ≤ m ≤ n .
Firstly, minimal standard chains exist. To see this we use the fact that given

any L > 0 there are only finitely many closed geodesics on S that have length
≤ L (see Buser [2, p. 27]). An elementary consequence of this fact is that there
are only finitely many shortest non-dividing geodesics; we choose one of them
and label it by α1 . Choose a non-dividing geodesic that intersects α1 exactly
once. There are only finitely many shorter non-dividing geodesics with the same
intersection property. Choose a shortest and label it by α2 . And so on, until we
have a minimal standard chain.

Following Maskit we then define D ⊂ T , the Maskit domain, to be the set of
surface, standard chain pairs S ,A with A minimal. By the above construction
a generic genus 2 surface has exactly one minimal standard chain and so a unique
representative on the interior of D . Maskit also shows that the set of surfaces
with more than one minimal standard chain has measure zero in T and hence
that the boundary of D has measure zero. Maskit also gives a proof that the
tesselation of T by D is locally finite. Maskit then observes that D satisfies the
classical prerequisites to be a fundamental domain for the action of the Teichmüller
modular group, or mapping class group, Mod on T .

The main question addressed in Maskit’s paper [20] and the author’s pa-
per [13] is the following: given a standard chain, what set of length inequalities
must it satisfy in order to be minimal? Maskit, for any genus g , shows that this
set is finite and, for genus 2, shows that its cardinality is at most 45. In [13]
the author improved this number to 27. The author is confident that this set of
inequalities is optimal.

In this paper we examine the tesselation of T by D . More precisely we
consider the elements φ ∈ Mod that have the property φ(D) ∩ D 6= ∅ , what we
call side-pairing elements of D . Let φ ∈ Mod be a side-pairing element and choose
some point S ∈ φ(D)∩D . So S has minimal standard chains A ,B associated
to D , φ(D) , respectively. Here B = β1, . . . , β4 where βi = [φ(αi)] , the geodesic in
the free homotopy class of φ(αi) . That is associated to any side-pairing element of
D there is an ordered pair of minimal standard chains A ,B on some surface S .

Conversely given an ordered pair of minimal standard chains A ,B on S
there is an associated side-pairing element of D . It suffices to calculate a repre-
sentative φ of the unique mapping class such that βi = [φ(αi)] for i ∈ {1, . . . , 4} .
The natural basis for this calculation is {τi} for 1 ≤ i ≤ 6 where τi denotes a left
Dehn twist about the link αi in the necklace A6 .

The main fact that enables us to study minimal standard chain pairs is the
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following: every genus 2 surface S exhibits a unique involution, the hyperelliptic
involution J . This order 2 isometry has six fixed points, the Weierstraß points.
Moreover J fixes any simple closed geodesic γ on S , the action of J on γ
being classified by the topological type of γ . The restriction of J to γ has no
fixed points if γ is dividing and two fixed points if γ is non-dividing (see Haas–
Susskind [8]). It is a simple consequence that sequential links in a chain intersect
at Weierstraß points. We say that two distinct non-dividing geodesics cross if they
intersect in a point that is not a Weierstraß point, and we say that two chains cross
if a link in one chain crosses a link in the other. We have that:

Theorem 1.1. Minimal standard chains do not cross.

Corollary 1.2. There are only finitely many side-pairing elements.

Proof of Corollary 1.2. Let A be a standard chain on S . It is enough to
show that there are only finitely many other standard chains B on S that do not
cross A . This follows since there are only finitely many non-dividing geodesics
that do not cross A .

An application of Theorem 1.1 is that τi−1 ◦τi+1 is not a side-pairing element
for 1 ≤ i ≤ 4, subscript addition modulo 6. Let A be a standard chain and let
B = τi−1 ◦ τi+1(A ) . Now βi = [τi−1 ◦ τi+1(αi)] crosses αi (see Subsection 2.1
where we perform similar calculations). So, by Theorem 1.1, A ,B cannot both
be minimal.

Given surfaces S ,S ′ with pairs of minimal standard chains A ,B and
A ′,B′ , respectively, we say that A ,B on S is equivalent to A ′,B′ on S ′

if there exists a homeomorphism Ψ: S → S ′ such that [Ψ(A )] = A ′ , [Ψ(B)] =
B′ . Our main result in this paper is:

Theorem 1.3. Any minimal standard chain pair is equivalent to a minimal
standard chain pair on Oct or E .

In Subsection 1.2 we construct Oct and E as members of a one-parameter
family of surfaces—each satisfying a certain length equality. Whilst E does not
seem to have appeared in the literature before, Oct is the well-known genus 2
surface of maximal symmetry group.

A simple consequence of Theorem 1.3 is that if ϕ(D)∩D 6= ∅ then φ(D)∩D 3
Oct or E . Suppose φ(D) ∩ D 3 ∅ . Choose a point S ∈ φ(D) ∩ D . By the
construction above, there exist a minimal standard chain pair A ,B on S such
that B = φ(A ) . By Theorem 1.3, A ,B on S is equivalent to A ′,B′ on Oct
or E . It follows that φ(D) ∩D 3 Oct or E .

The main complaint about the proofs of Theorems 1.3 and 1.1 is that they
are based on a case-by-case analysis. That is, we consider cases and derive contra-
dictions using length inequality results for systems of non-dividing geodesics. The
majority of the paper is devoted to the proofs of these results. Unfortunately the
author has yet to derive a more satisfactory approach.
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1.1. Some notation and nomenclature. All of the hyperbolic formulae
we use can be found in Buser [2, p. 454]. Given a pair of points X,Y in H2 we
shall use d(X,Y ) to denote the distance between them. For X,Y distinct we shall
use ⊥ XY to denote the bisector of X,Y —the set of points Z ∈ H2 such that
d(Z,X) = d(Z, Y ) . Given a triplet of distinct points X , Y , Z in H2 we shall
use 6 XY Z to denote the angle at the Y vertex of the triangle spanned by X , Y ,
Z . By a trirectangle we shall mean a compact hyperbolic quadrilateral with three
right angles. By a birectangle we shall mean a compact hyperbolic quadrilateral
with two adjacent right angles. We shall use curly brackets {∗, ∗, ∗} to indicate
unordered sets and round brackets (∗, ∗, ∗) to indicate ordered sets.

1.2. Special surfaces. Suppose we have a trirectangle with acute angle
π/4. Label the edges incident upon the π/4 vertex α, β and the edge opposite α
(respectively β ) by a (respectively b). We label the diagonal from vertex α ∩ β
to the vertex a ∩ b by c . Let θa denote the angle between a , c , et cetera—see
Figure 1. We shall abuse notation by using the same symbol as an edge or diagonal
to denote its length. We denote such a trirectangle by Qα .

Lemma 1.4. For any given a > cosh−1
(√

2
)

there exists such a trirectan-
gle Qα . Moreover there exist Qα such that c = 2a and c = 2α .

Proof. Firstly a triangle in the hyperbolic plane H2 with angles π/4, π/2,
0 has finite edge (between the π/4 vertex and the π/2 vertex) length cosh−1

√
2.

Consider three geodesics such that the first geodesic intersects the second at
an angle π/4 and the second intersects the third at an angle π/2. Let α denote
the distance between these intersections. By the above calculation if coshα =

√
2

the three geodesics bound a π/4, π/2, 0 triangle. So for coshα >
√

2 there exists
a unique common perpendicular between the first and third geodesics. The three
geodesics and this common perpendicular now bound a trirectangle.

We now want to show that there exist trirectangles such that c = 2a and
c = 2α . By the above we consider the range 2 < cosh2 α < ∞ . A simple
calculation gives

cosh2 c− cosh2 2a = − (cosh2 α− 1)(cosh4 α− 4 cosh2 α+ 2)

cosh2 α− 2
.

This expression has exactly one root in the range, cosh2 α = 2 +
√

2. Similarly

cosh2 c− cosh2 2α = −4 cosh6 α− 13 cosh4 α+ 10 cosh2 α− 2

cosh2 α− 2
.

Again this expression has exactly one root in the range. Consider the polynomial
in the numerator as a polynomial in cosh2 α . This polynomial has a root between
2 and 3, and its turning points lie at 1

2 ,
5
3 . So there exist unique trirectangles

such that c = 2a and c = 2α .
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We are going to define a fundamental domain in terms of the tesselation of
H2 by Qα . In Figure 1 we have pictured part of this tesselation, generated by
reflecting in each edge. Consider the copy of Qα with its edges and diagonal
labelled—i.e. in the negative real, negative imaginary quadrant with its β edge
along the real axis. Starting at the a∩b vertex of this trirectangle, in the direction
of the a edge: walk a distance 4a ; turn right through an angle π − θa ; walk a
distance c ; turn right through an angle π/2; walk a distance c ; and turn right
through an angle θa . Repeat this sequence 3 more times to close the path.

Let Ωα denote the domain circumscribed by this path. Label the sides of
Ωα in the order we have walked round them by S1 , S′3 , S4 , S′6 , S′4 , S′2 , S′1 ,
S2 , S′5 , S6 , S5 , S3 . Define side-pairing elements gi ∈ PSL(2,R) for Ωα so
that gi(Si) = S′i for 1 ≤ i ≤ 6. This identification pattern has three length
4 vertex cycles—each with angle sum 2π . It is the same identification pattern
as that given by Maskit when constructing a discrete faithful representation to a
surface, standard chain pair—see [20, p. 376]. So we obtain a genus 2 surface,
with a complete hyperbolic metric, which we shall denote by Sα . We define the
octahedral surface Oct (respectively exceptional surface E ) to be Sα with Qα

such that c = 2a (respectively c = 2α).
We need to label a distinguished set of non-dividing geodesics on Sα . Label

by ω0 , ω3 , ω0 , ω4 , ω2 , ω1 , ω2 , ω4 , ω0 , ω3 , ω0 , ω4 , ω2 , ω1 , ω2 , ω4 the
orbits of a ∩ b and α ∩ β on the boundary of Ωα in the order that we walked
them and label the origin by ω5 . Using the index sets k = 0, 1, 2, 3, l = 4, 5 and
modulo 4 addition label by κk,k+1 (respectively κk,l ) the union of orbits of a or b
(respectively c) in Ωα passing through ωk , ωk+1 (respectively ωk, ωl ). Label by
λk the union of orbits of α or β that intersect κk,k+1 . Using the generators gi
it is a simple exercise to check that each one of κk,k+1 , κk,l , λk projects to a
non-dividing geodesic on Sα . Likewise it is easy to check that each set of points
ωi projects to a single point on Sα , a Weierstraß point.

Proposition 1.5. The set
⋃
κk,k+1 ∪ κk,l is the set of shortest non-dividing

geodesics on Oct . The set κ1,2 ∪ κ3,0 (respectively
⋃
κk,l ∪ λ0 ∪ λ2 ) is the set of

shortest (respectively second shortest) non-dividing geodesics on E .

It is a simple consequence that minimal chains on Oct (respectively E ) lie
in the set of shortest (respectively shortest and second shortest) non-dividing
geodesics.

Proof. Consider E . By definition c = 2α . It follows that 2θb = θα and hence
α < b . By elementary geometry a < α , b < β and so a < α < b < β .

Take an open disc D5 (a circle C5 ) of radius c = 2α centred on ω5 . No
other orbit of a Weierstraß point lies in D5 . Around C5 , since c = 2α , there are
orbits of ωk and of ω4 in diametrically opposite pairs. The diameter between the
ωk pair projects to κk,5 . The diameters between ω4 pairs project to λ0 and λ2 .
So this is the set of shortest non-dividing geodesics passing through ω5 . Likewise
for ω4 .
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Figure 1. Construction of the one-parameter family of surfaces.
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Now consider an open disc D0 (a circle C0 ) of radius 2a centred on an orbit
of ω0 . No other orbit of a Weierstraß point lies in D0 and there is a diametrically
opposite pair of orbits of ω3 on C0 . No other orbits of Weierstraß points lie on
C0 since 2a < c = 2α . So κ3,0 , the image of the diameter between the ω3 pair, is
the shortest non-dividing geodesic passing through ω0 . Let C ′0 denote a circle of
radius c = 2α about ω0 . There are orbits of ωl in diametrically opposite pairs,
projecting to κ0,l . There are no orbits of ω1 or ω2 on C ′0 . The nearest such
orbit point is at a distance 2b > c = 2α . So κ0,l is the set of second shortest
non-dividing geodesics passing through ω0 . Likewise for ω1 , ω2 , ω3 .

We now consider Oct . By definition: c = 2a and so θa = 2θβ . Suppose
that a < b . From the formulae we get that α < β and hence that θa > θb and
θβ < θα . It follows that θa > π/4 and θβ < π/8 giving a contradiction. Likewise
for a > b . So a = b .

Take an open disc D5 (a circle C5 ) of radius c = 2a = 2b centred on ω5 .
No other orbit of a Weierstraß point lies in D5 . Since c = 2a < 2α orbits of ω4

lie outside C5 . Around C5 there are orbits of ωk in diametrically opposite pairs.
Again the diameter between the ωk pair projects to κk,5 and so this is the set of
shortest non-dividing geodesics passing through ω5 . Likewise for ω4 .

Now consider an open disc D1 (a circle C1 ) of radius c = 2a = 2b centred an
orbit of ω1 . No other orbit of a Weierstraß point lies in D1 . Around C1 there are
orbits of ωk for k = 0, 2 and ωl in diametrically opposite pairs. Again the diam-
eter between the ωk (respectively ωl ) pair projects to κ0,1 or κ1,2 (respectively
κ1,l ) and so this is the set of shortest non-dividing geodesics passing through ω1 .
Likewise for ω2 , ω3 , ω0 .

2. Listing of side-pairing elements and proof of Theorem 1.3

In this section show how a listing of side-pairing elements can be generated
and prove Theorem 1.3 under the assumption of Theorem 1.1. All minimal chain
pairs may be assumed to be non-crossing.

We say that minimal standard chain pair A ,B is of type (I) (respectively
type (II)) if there exist a pair of links Γ (respectively a triplet of links Υ) such
that S \ Γ (respectively S \Υ) has two components.

The basis of the proof of Theorem 1.3 is to show that a minimal standard
chain of type (I) or (II) is equivalent to a standard minimal chain pair on E . To
show that a minimal standard chain of neither type (I) nor (II) is equivalent to a
standard minimal chain pair on Oct is a combinatorial exercise.

We label Weierstraß points on A6 so that αi 3 ai, ai+1 . Likewise for B6 .
Consider a permutation element σ ∈ B6 . It is a combinatorial exercise to ennu-
merate non-equivalent pairs of minimal standard chains on Oct ,E associated to σ .
To each of these pairs it is a simple calculation to write down the corresponding
side-pairing element of the Maskit domain. We do these exercises for the identity
Id and for (i i+ 1) which exchanges ai, ai+1 for 1 ≤ i ≤ 6.
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2.1. Listing of side-pairing elements of the Maskit domain. Let τi
denote a left Dehn twist about αi for 1 ≤ i ≤ 6. It is well known that {τi}
generates the mapping class group—for example Humphries [9] showed that {τi}
for 1 ≤ i ≤ 5 generates it. The action of τi on A6 is also well known. If j = i or
|i− j| > 2 then [τi(αj)] = αj . For j = i− 1 (respectively j = i+ 1) and [τi(αj)]
is a non-dividing geodesic through aj , ai+1 (respectively ai, aj+1 ) that does not
cross A6 . Moreover αj∪αi∪[τi(αj)] bounds a pair of triangles that are exchanged
under J . The geodesics αj , αi , [τi(αj)] lie in anticlockwise order around each
triangle. Moreover we know that τi , τj commute if |i− j| ≥ 2.

Consider A ,B on E given by α1 = β1 = κ3,0 , α2 = β2 = κ0,4 , α3 = λ2 ,
β3 = λ0 and α4 = β4 = κ2,5 . It is associated to the identity permutation Id since
ai = bi for 1 ≤ i ≤ 6. The corresponding side-pairing element is ι = (τ2 ◦ τ1)3 .
We have illustrated the calculation to show that B = ι(A ) in Figure 2. The
first picture shows τ1(A ) ; the second τ2 ◦ τ1(A ) ; et cetera. We now note that
Γ = α3 ∪ β3 is a pair of links that divide S into two components, i.e., A ,B is
of type (I).

α1

α1
α2

α2

α3 α4

τ1 τ2 τ1

τ2 τ1 τ2

α1

α1

α1

α1

α2

α2

α3

α4

α2

α2

α2

α2

α1

α1

α3

α4

α1

α1

α1

α1

α2

α2

α3

α4

α2

α2

α2

α2

α1 α1

α3

α4α1

α1

α2

α2
α3

α4

Figure 2. The action of ι = (τ2 ◦ τ1)3 on the standard chain A

Now consider A ,B on E given by α1 = β1 = κ3,0 , α2 = κ0,4 , β2 = κ3,4 ,
α3 = β3 = λ2 and α4 = β4 = κ2,5 . Here A ,B is associated to (12) since a1 = b2 ,
a2 = b1 and ai = bi for 3 ≤ i ≤ 6. The corresponding side-pairing element is τ1 .
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Let Υ = α2 ∪ β1 ∪ β2 . We note that S \Υ has three components: two triangles
and a torus with boundary component. Also associated to (12) is τ1 ◦ ι .

Next consider A ,B on Oct given by α1 = κ3,0 , β1 = κ0,4 , α2 = β2 = κ3,4 ,
α3 = κ2,4 , β3 = κ2,3 and α4 = β4 = κ1,2 , which is associated to (23). The
corresponding side-pairing element is τ2 .

Consider A ,B on E given by α1 = β1 = κ3,0 , α2 = κ0,5 , β2 = κ0,4 ,
α3 = β3 = λ2 , α4 = κ2,4 and β4 = κ2,5 , which is associated to (34). The
corresponding side-pairing element is τ−2

1 ◦ τ3 . Let Υ = α2 ∪ β2 ∪ β3 . We note
that S \ Υ has two components: a quadrilateral disc and an annulus. So A ,B
is of type (II). Also associated to (34) is τ3 , τ3 ◦ τ−2

5 , τ−2
1 ◦ τ3 ◦ τ−2

5 and τ3 ◦ ι ,
τ−2
1 ◦ τ3 ◦ ι , τ3 ◦ τ−2

5 ◦ ι , τ−2
1 ◦ τ3 ◦ τ−2

5 ◦ ι .
Similarly τ4 is associated to (45); τ5 , ι ◦ τ5 are associated to (56); and τ6 is

associated to (61). The reader can verify that—up to inverses—we have given each
side-pairing element of the mapping class group associated to each of the stated
permutation elements.

2.2. Projection to the quotient. The quotient of S by the hyperelliptic
involution J is a sphere with six order two cone points S /J . By orbifold we
shall always mean a sphere with six order two cone points and a fixed hyperbolic
metric. We shall use O to denote an orbifold. For technical and pictorial reasons
we shall work on the quotient orbifold for the rest of the paper.

The image of a non-dividing geodesic under projection J : S → O is a
simple geodesic between distinct cone points, what we shall call an arc. Likewise
the image of a Weierstraß point under the projection J : S → O is a cone
point. Definitions of chains, necklaces, links and crossing all pass naturally to the
quotient. We define a bracelet Υ to be a set of arcs that contains no crossing arcs,
divides O and is such that no proper subset of Υ divides O . As with chains,
we call the arcs in a bracelet links and call the number of links the length of a
bracelet. In particular a necklace is a bracelet of length 6.

A length 3 bracelet Υ always divides the orbifold into two components, di-
viding either: one cone point (c) from two; or no cone points from three. For the
former we say that Υ cuts off c . For the latter we say that Υ bounds a triangle
(the component of O \Υ containing no interior cone points).

On the double cover S the lift of Υ divides either: one Weierstraß point c
from two; or no Weierstraß points from three. For the former, the single Weierstraß
point c lies at the centre of the quadrilateral disc and the two Weierstraß points
lie on the interior of the annulus. For the latter, neither triangular disc contains
an interior Weierstraß point, whilst the torus with boundary component has three
interior Weierstraß points.

We can now restate types (I), (II) on the quotient orbifold. We say that a
standard minimal chain pair A ,B is of type (I) if it contains a length 2 bracelet.
We say that a standard minimal chain pair A ,B is of type (II) if it contains a
length 3 bracelet that cuts off a cone point.
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Proof of Theorem 1.3. Consider a minimal standard chain pair A ,B on O
that is of neither type (I) nor type (II).

We say that an arc set Γ is of type (III) if Γ contains no crossing arcs, each
vertex of Γ has index at most four, Γ contains no length 2 bracelets and each
length 3 bracelet in Γ bounds a triangle. So the arc set A ∪B has property (III).

We say that an arc set Γ on O is octahedral if it is graph-isomorphic to
a subgraph of the set of shortest arcs on Oct . We will show that all arc sets of
type (III) are octahedral. It follows that A ,B is equivalent to a standard minimal
chain pair on Oct .

Let Γ be an arc set of type (III). Suppose Γ has a vertex of index four. It is
now a simple combinatorial exercise to show that Γ is octahedral. So each vertex
of Γ has index at most three. Suppose Γ contains a bracelet of length 3. Again we
can show that Γ is octahedral. So each bracelet is of length at least 4. Likewise
for Γ containing bracelets of length 4, 5 and 6. So Γ is a tree and we can again
show that it is octahedral.

2.3. Arc and cone point labelling and pictorial conventions. In this
subsection we define an arc system K ∪ Λ and explain our pictorial conventions.
Most length inequality results are given in terms of subsets of this arc system. As
its name suggests this arc system is related to the set of non-dividing geodesics we
labelled in Subsection 1.2.

Let K be a set of 12 arcs that contains no crossing arcs and has the combi-
natorial pattern of the edge set of the octahedron. In particular any cone point
has four arcs in K incident upon it. Label a pair of cone points having no K
arc between them cl for l = 4, 5. We think of c4 as being at the South Pole and
c5 as being at the North Pole. We think of the other cone points as lying on the
equator. We label them ck for k = 0, 1, 2, 3 so that there is a K arc between ck ,
ck+1 . Throughout the paper subscript addition for k will be modulo 4. Label
the arcs in K so that κk,k+1 is between ck , ck+1 and κk,l is between ck , cl .
We define λk to be the arc between c4 , c5 that crosses only κk,k+1 ⊂ K . Let
Λ = ∪κk . We now note that the set of non-dividing geodesics we defined on the
one-parameter family of surfaces Sα projects to an arc set of the form K ∪Λ on
a one parameter family of orbifolds Oα .

We now explain our pictorial conventions. We always represent the orbifold
as a wire-frame figure. Solid (respectively dashed) lines represent arcs in front
(respectively behind) the figure. There are three different wire-frames: the oc-
tahedral, the exceptional and the triangular prism. The octahedral (respectively
exceptional) wire-frame has a wire for each shortest arc (respectively for each
shortest and second shortest arc). The triangular prism wire-frame is only used
in Section 3. We always represent subsets of K ∪Λ on the octahedral wire-frame.
Any K (respectively Λ) arc in the subset is drawn in thick black (respectively
thick grey). We always orient the figure so that c4 (respectively c5 ) is at the
bottom (respectively top). When representing minimal chain pairs, A arcs are
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drawn in thick grey, B arcs are drawn in thick black. We regard αi as oriented
from ai, ai+1 and use an arrow head to indicate this orientation. Similarly for
βj . A single unarrowed thick grey (respectively thick black) line represents the
minimal chain A1 = α1 (respectively B1 = β1 ).

We now note that λk∪λk+1 is a length 2 bracelet that divides the cone point
ck from ck+1 , ck+2 , ck+3 . Likewise Λk = λk−1 ∪ λk+1 is a length 2 bracelet
that divides ck , ck+1 from ck+2 , ck+3 . These arc sets feature in the hypotheses
of Lemma 2.3, the result we use to prove Propositions 2.1 and 2.2. Similarly⋃
l=4,5 κk,l∪λk+1 is a length 3 bracelet that cuts off ck+1 . This arc set features in

the hypothesis of Theorem 2.6, an important result in the proof Propositions 2.4
and 2.5.

We will denote the two components of O \ Λk by Ok,k+1 , Ok+2,k+3 so that
Ok,k+1 ⊃ κk,k+1 . Cutting Ok,k+1 open along κk,k+1 we obtain an annulus that
we will label by Ak,k+1 . Let Pl,k denote the perpendicular from cl to κk,k+1

in Ak,k+1 for l = 4, 5. The perpendiculars divide Ak,k+1 into a pair of birect-
angles. Denote by Qk−1,k (respectively Qk+1,k ) the birectangle such that λk−1

(respectively λk+1 ) lies on its boundary. Similarly for the component Ok+2,k+3 .

2.4. Proof of Theorem 1.3 under the assumption of Theorem 1.1

Proposition 2.1. Let Ai2 ,Bj2 be a minimal chain pair such that Γi2,j2 =
αi2 ∪ βj2 is a length 2 bracelet. Then (i2, j2) = (3, 3) and Γ3,3 divides two cone
points from two.

Proposition 2.2. Any minimal standard chain pair that contains a length
2 bracelet is equivalent to a minimal standard chain pair on E .

In fact, there is nothing more to prove. To see this, suppose a minimal
standard chain A ,B contains a length 2 bracelet. By Proposition 2.1, Γ3,3 =
α3∪β3 is this bracelet, Γ3,3 divides two cone points from two, and A ,B contains
no other length 2 bracelets. It is now a combinatorial exercise to enumerate
standard chain pairs of this kind. Each one of these is equivalent to a minimal
standard chain pair on E —see the wire-frames in Figure 3 and two of the wire-
frames in Figure 12 for some examples.

Figure 3. Minimal chain pairs on E with (i2, j2) = (3, 3) .

Lemma 2.3. We have that (i) l(κk,l) <
(
l(λk−1) + l(λk)

)
/2 for l = 4, 5 and

(ii) max{l(κk,k+1), l(κk+2,k+3)} <
(
l(λk−1) + l(λk+1)

)
/2 .
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We have pictured the arc sets for Lemma 2.3 with k = 3 in Figure 4.

Proof. (i) One component of O\λk−1∪λk contains ck , label it by Ok . Cut Ok
open along κk,l for l = 4 or 5. The resulting triangular domain has edge lengths
2l(κk,l), l(λk−1), l(λk) . By the triangle inequality 2l(κk,l) < l(λk−1) + l(λk) .

(ii) Consider the birectangle Qk−1,k . Its κk,k+1 edge is strictly shorter than
its λk−1 edge. Likewise for the birectangle Qk+1,k . Adding up edge lengths we
have 2l(κk,k+1) < l(λk−1) + l(λk+1) . Likewise for the birectangles Qk−1,k+2 ,
Qk+1,k+2 .

Proof of Proposition 2.1. Up to relabelling we may suppose that i2 ≤ j2 . We
have that {ai2 , ai2+1} = {bj2 , bj2+1} and so each one of a1, . . . , ai2−1, b1, . . . , bj2−1

must lie in one or other component of O \ Γi2,j2 .
First: Γi2,j2 divides two cone points from two. Suppose j2 = 4. Each one of

b1 , b2 , b3 lies in one or other component of O \ Γi2,4 . So b2 lies in a different
component of O \Γi2,4 to b1 or b3 and so β1 or β2 crosses Γi2,4 —a contradiction.

We need to derive a contradiction for i2 ≤ 2, otherwise 2 < i2 ≤ j2 < 4 and
(i2, j2) = (3, 3). Claim: l(αi2) = l(βj2) . If i2 = 1, j2 ≥ 1 then αi2 , βj2 are
both shortest arcs: by definition if j2 = 1 and because B′j1 = β1, . . . , βj2−1, α1

is a chain for j2 > 1. Similarly, if i2 = 2, j2 ≥ 2 then both of A ′2 = α1, βj2 ,
B′j1 = β1, . . . , βj2−1, α2 are chains.

By Lemma 2.3(ii) we have a contradiction if αi2 , βj2 are both shortest arcs.
So i2 = 2. The arc α1 lies in one component of O \ Γ2,j2 . Let α′2 denote the arc
disjoint from Γ2,j2 in this component of O\Γ2,j2 . By Lemma 2.3(ii) l(α′2) < l(α2) .
Since A ′2 = α1, α

′
2 is a chain, we have a contradiction.

Next: Γi2,j2 divides one cone point c from three. Let Oc denote the com-
ponent of O \ Γi2,j2 containing c and let O ′c denote its complement. As above
we can show that l(αi2) = l(βj2) . Again, if i2 = 1 then α1, βj2 are both shortest
arcs and Lemma 2.3(i) gives a contradiction.

Suppose i2 = 2. If c = a1 then α1 ⊂ Oc . Let α′2 be the other arc in Oc .
Then by Lemma 2.3(i): l(α′2) < l(α2) and since A ′2 = α1, α

′
2 is a chain we have a

contradiction. Suppose c 6= a1 , α1 ⊂ O ′c . Let α′2 be the arc in Oc between a2, c .
Again l(α′2) < l(α2) , A ′2 = α1, α

′
2 is a chain and we have a contradiction.

Finally, consider i2 > 2. Each of α1, . . . , αi2−1 must lie in O ′c , otherwise one
of these arcs would cross Γi2,j2 . Let α′i2 be the arc in Oc between ai2 , c . Again
l(α′i2) < l(αi2) , A ′i2 = α1, . . . , αi2−1, α

′
i2

is a chain and we have a contradiction.

Proposition 2.4. If Υi3,j3 = αi3 ∪ βj3−1 ∪ βj3 is a length 3 bracelet that
cuts off a cone point c , then we have that i3 > 1 , j3 > 2; if (i3, j3) = (2, 3) ,
then (a2, a3) = (b2, b4) , c = a1 = b1 ; if (i3, j3) = (2, 4) , then (a2, a3) = (b5, b3) ,
a1 = c /∈ {b1, b2} ; if (i3, j3) = (3, 3) , then (a3, a4) = (b4, b2) , b1 = c /∈ {a1, a2} ;
if (i3, j3) = (3, 4) , then (a3, a4) = (b3, b5) , c /∈ {a1, a2} = {b1, b2} ; if (i3, j3) =
(4, 3) , then (a4, a5) = (b4, b2) , b1 = c /∈ {a1, a2} ; and if (i3, j3) = (4, 4) , then
(a4, a5) = (b3, b5) , c /∈ {a1, a2} = {b1, b2} .
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Proposition 2.5. Any minimal standard chain pair that contains a length 3
bracelet that cuts off a cone point is equivalent to a minimal standard chain pair
on E .

Unlike Proposition 2.2 which followed directly from Proposition 2.1, Proposi-
tion 2.5 does not follow directly from Proposition 2.4; there is still something to
prove. However almost all the arguments reproduce arguments given in the proof
of Proposition 2.4. The main result we apply to prove Proposition 2.4 is Theo-
rem 2.6 which appeared in paper [12] as Theorem 1.1. Theorem 2.7 also appeared
in paper [12] as Theorem 1.2.

Theorem 2.6. Suppose, for some k , that l(κk,l) ≤ l(κk+1,l) , l(λk+1) ≤
l(λk−1) for l = 4, 5 , then l(κk,l) = l(κk+1,l) , l(λk+1) = l(λk−1) for l = 4, 5 .

Theorem 2.7. Suppose, for some k , that κk,l is a shortest arc for l = 4, 5
and that l(κk,k+1) ≤ l(κk+2,k+3) , l(λk+1) ≤ l(λk−1) . Then O is the octahedral
orbifold.

c0 c0 c0 c0

c4 c4 c4 c4

c5 c5 c5 c5

c3 c3 c3 c3

c1 c1 c1 c1

c2 c2 c2 c2

λ2 λ2 λ2 λ2

λ0 λ0 λ0

κ3,5 κ3,5

κ3,4 κ3,4 κ3,4

λ3
κ3,0 κ3,0

κ1,2 κ1,2

κ0,4

κ3,5

κ0,5

Figure 4. Arc sets for Lemma 2.3 and Theorems 2.6, 2.7 with k = 3

Lemma 2.8. Suppose, for some k , that l(κk,l) = l(κk+1,l) , l(λk+1) =
l(λk−1) for l = 4, 5 . Then l(κk,4) = l(κk+1,5) if and only if l(κk+2,4) = l(κk+3,5) .

Proof. We will show l(κk+2,4) = l(κk+3,5) implies l(κk,4) = l(κk+1,5) . The
other direction follows similarly.

Since l(λk+1) = l(λk−1) the annulus Ak+2,k+3 has mirror symmetry exchang-
ing the birectangles Qk−1,k+2 , Qk+1,k+2 . That is P4,k+2 , P5,k+2 are equally
spaced about the geodesic boundary component κk+2,k+3 of Ak+2,k+3 . We know
that ck+2 , ck+3 are also equally spaced about this boundary component. Since
l(κk+2,4) = l(κk+3,5) it follows that l(P4,k+2) = l(P5,k+2) . That is Ak+2,k+3 has
rotational symmetry exchanging Qk−1,k+2 , Qk+1,k+2 . Gluing along κk+2,k+3 to
recover Ok+2,k+3 this symmetry is respected. This in turn implies that Ok,k+1

has rotational symmetry—c.f. the proof of Theorem 1.2 in [12]—and hence that
l(κk,4) = l(κk+1,5) .

Proof of Proposition 2.4. Suppose Υ is a length 3 bracelet that cuts off a cone
point c . Label arcs in Υ by κk,l, λk+1 for l = 4, 5. This labelling then extends
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uniquely to Kk∪Λk ⊂ K∪Λ where Kk =
⋃
l=4,5 κk,l∪κk+1,l∪κk,k+1∪κk+2,k+3 . To

see this we proceed as follows. Label by Oc the component of O \Υ containing c .
Set c = ck+1 and then label the arcs in Oc between ck+1 , cl by κk+1,l for
l = 4, 5 and between ck , ck+1 by κk,k+1 . Let O ′c denote the component of
O \ Υ not containing c . Label by λk−1 the arc in O ′c between c4 , c5 such that⋃
l=4,5 κk,l ∪ λk−1 bounds a triangle. Label by κk+2,k+3 the arc disjoint from Υ

in O ′c . We will use this extension of arc labelling for applications of Theorem 2.6.
Suppose i3 = 1. In Figure 5 the four wire-frames represent all the config-

urations of A1,Bj3 such that Υ1,j3 cuts off a cone point. For all but the third
configuration we can use Theorem 2.6 and Lemma 2.3(ii) to derive a contradic-
tion. For the third configuration we can apply Theorem 2.7 to show that O is the
octahedral orbifold. As we have observed before minimal chains on Oct lie in its
set of shortest arcs. Any length 3 bracelet in this set bounds a triangle.

Consider, for example the fourth configuration, with j3 = 4. Set α1 = κ3,4 ,
β3 = λ0 , β4 = κ3,5 . This extends uniquely to K3 ∪ Λ3 . We note that B′3 =
β1, β2, α1 , B′4 = β1, β2, β3, κ0,5 are both chains and so λ0 is a shortest arc and
l(κ3,5) ≤ l(κ0,5) . We know that κ3,4 is a shortest arc, so the hypotheses of
Theorem 2.6 are satisfied. So l(λ0) = l(λ2) . By Lemma 2.3(ii): l(κ3,0) < l(λ0) =
l(λ2) which contradicts λ0 being a shortest arc.

For the third configuration we argue as follows. Set α1 = κ3,4 , β2 = κ3,5 ,
β3 = λ0 which extends uniquely to K3 ∪ Λ3 . We note that B′2 = β1, α1 , B′3 =
β1, β2, λ2 are chains, so κ3,5 is a shortest arc and l(λ0) ≤ l(λ2) . So the hypotheses
of Theorem 2.7 are satisfied: O is the octahedral orbifold.

Figure 5. Configurations of A1,Bj3

So we have shown that i3 > 1. Next we show that j3 > 2 (Figure 6). We
then consider j3 = 3 (Figure 7), then j3 = 4 (Figure 8). By cone point labels
on Υi3,j3 we know that {ai3 , ai3+1} = {bj3−1, bj3+1} . Suppose (ai3 , ai3+1) =
(bj3+1, bj3−1) . If ai3−1 = bj3 then αi3−1, βj3 share endpoints. Unless (i3, j3) =
(4, 3), by Proposition 2.1, αi3−1 = βj3 . So Υi3,j3 = βj3−1 ∪ αi3−1 ∪ αi3 with
(bj3−1, bj3) = (ai3+1, ai3−1) which is covered by the argument we give for (i′3, j

′
3) =

(j3 − 1, i3) since bj3−2 6= ai3 = bj3+1 . Suppose (i3, j3) = (4, 3), (a4, a5) = (b5, b3)
and a3 = b4 . Suppose α3 = β3 . If b1 = c then A ,B3 is equivalent to a minimal
chain pair on E ; see the third wire-frame, Figure 12. Otherwise, it is covered by
an argument we give for (i3, j3) = (2, 4) since b1 6= a4 = b5 . If α3∪β3 is a bracelet
then A ,B3 is equivalent to a minimal chain pair on E by Proposition 2.2; see
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the fourth wire-frame, in Figure 12. So, for (ai3 , ai3+1) = (bj3+1, bj3−1) , we may
suppose that ai3−1 6= bj3 .

For j3 = 2 we begin by i3 = 2. First we consider (a2, a3) = (b1, b3) . If
a1 6= b2 then A ′2 = α1, β1 is a chain and α2 is a shortest arc—this is equivalent
to i3 = 1. So a1 = b2 , α1, β1 share endpoints and so, by Proposition 2.1,
α1 = β1 ; see the first wire-frame, Figure 6. We can apply Theorem 2.6 and
Lemma 2.3(ii) to contradict the shortness of α1 = β1 . Next (a2, a3) = (b3, b1 ). We
may suppose that a1 6= b2 . So a1 = c or a1 ∈ O ′c ; see the second and third wire-
frames. We can apply Theorem 2.6 and Lemma 2.3(ii) to contradict the shortness
of β1, β2 , respectively. For the latter , with labelling so that β2 = λ0 , we show
that l(κ3,0) < l(λ0) = l(λ2) which gives a contradiction since B′2 = β1, κ3,0 is a
chain.

Next i3 = 3. Suppose (a3, a4) = (b1, b3) . If {a1, a2} 63 b2 then A ′3 =
α1, α2, β1 is a chain and α3 is a shortest arc—again equivalent to i3 = 1. So
{a1, a2} 3 b2 . If a1 = b2 then {a1, a3} = {b1, b2} and so β1∪α1∪α2 is a bracelet.
Since A ′2 = α1, β1 is a chain it follows that this is a bracelet of shortest arcs and
we can apply Proposition 2.10. So a2 = b2 . Either a1 = c or a1 ∈ O ′c ; see the
fourth and fifth wire-frames. For the former we can apply Theorem 2.7 to show
that O is the octahedral orbifold. For the latter we can apply Theorem 2.6 and
Lemma 2.3(ii) to contradict the shortness of β1 .

Figure 6. Configurations of Ai3 ,B2

Finally i3 = 4. If a2 = b2 then the arcs α1, β1, α2, β2 all have exactly one
cone point in common, A ′2 = α1, β1 , B′2 = β1, α1 are both chains and so each
arc in this set is shortest. We can now apply Lemma 2.11: O is the octahedral
orbifold. So a2 6= b2 . Suppose (a4, a5) = (b1, b3) . Either a1 = b2 or a3 = b2 ; see
the sixth and seventh wire-frames. We can apply Theorem 2.6 and Lemma 2.3(ii)
to contradict the shortness of β1 . For (a4, a5) = (b3, b1 ) we may suppose that



20 David Griffiths

a3 6= b2 . So a1 = b2 and we can apply Theorem 2.6 and Lemma 2.3(ii) to
contradict the shortness of β2 ; see the eighth wire-frame.

For j3 = 3 we begin with i3 = 2. Suppose (a2, a3) = (b2, b4) . If a1 6= b1 then
A ′2 = α1, β1 is a chain and α2 is a shortest arc, again equivalent to i3 = 1. So
a1 = b1 . For a1 = b1 = c : A2,B3 is equivalent to a minimal chain pair on E ; see
the first wire-frame, Figure 12. For a1 = b1 ∈ O ′c we can apply Theorem 2.6 and
Lemma 2.3(ii) to contradict the shortness of β2 ; see the first wire-frame, Figure 7.
Now suppose (a2, a3) = (b4, b2 ). We may suppose that a1 6= b3 . If a1 = b1 then
{a1, a3} = {b1, b2} and so β1 ∪ α1 ∪ α2 is a bracelet of shortest arcs. So a1 6= b1 .
For a1 = c , b1 ∈ O ′c we can apply Theorem 2.6 and Lemma 2.3(ii) to contradict
the shortness of β2 ; see the second wire-frame.

Suppose a1 ∈ O ′c , b1 = c ; see the third wire-frame. Set α2 = κ3,4 , β2 =
κ3,5 , β3 = λ0 , α1 = κ1,4 which extends uniquely to K3 ∪ Λ3 ∪ κ1,4 ∪ κ2,5 . The
hypotheses of Theorem 2.6 are satisfied: each one of A ′2 = α1, κ0,4 , B′2 = β1, κ0,5 ,
B′3 = β1, β2, λ2 is a chain. So l(κ3,l) = l(κ0,l) for l = 4, 5 and l(λ0) = l(λ2) .
By Lemma 2.3(ii), β3 = λ0 is not a shortest arc. Below we show that κ2,5 is a
shortest arc, which gives a contradiction since B′′3 = β1, β2, κ2,5 is a chain. First
B′′2 = β1, α2 is a chain and so l(β2) ≤ l(α2) . Next, κ3,0 = β1 , κ1,4 = α1 are both
shortest arcs and l(κ3,5) = l(κ0,5) . By Lemma 2.9 there exists an arc γ such that
l(γ) ≤ l(κ3,5) = l(κ0,5) . The arc γ is such that A ′′2 = α1, γ is a chain and so
l(α2) ≤ l(γ) . So, we have that l(κ3,5) = l(β2) ≤ l(α2) = l(κ3,4) ≤ l(γ) ≤ l(κ3,5)
and hence l(κ3,4) = l(κ3,5) . So l(κ3,4) = l(κ0,5) and by Lemma 2.8, l(κ1,4) =
l(κ2,5) . Since α1 = κ1,4 is a shortest arc we are done.

So a1 6= b1 ∈ O ′c ; see the fourth wire-frame. Set α2 = κ3,4 , β2 = κ3,5 ,
β3 = λ0 , β1 = κ2,3 which extends uniquely to K∪Λ. We have that A ′2 = α1, κ0,4

is a chain and so l(κ3,4) ≤ l(κ0,4) . Also each one of B′2 = β1, α2 , A ′′2 = α1, β3 ,
B′3 = β1, β2, κ0,5 is a chain and so l(κ3,5) = l(β2) ≤ l(α2) ≤ l(β3) ≤ l(κ0,5) . By
Theorem 2.6, l(λ2) ≤ l(λ0) . Now both B′′3 = β1, β2, λ1 , B′′′3 = β1, β2, λ3 are
chains and so l(λ0) ≤ min{l(λ1), l(λ3)} . By Theorem 2.12, O is the octahedral
orbifold.

Next i3 = 3. Suppose (a3, a4) = (b2, b4) . If {a0, a1} 63 b1 then A ′3 =
α1, α2, β1 is a chain, α2 is a shortest arc. So {a1, a2} 3 b1 . If {a1, a2} 3 b3 then
α1 ∪ β1 ∪ β2 is a bracelet of shortest arcs. So {a1, a2} 63 b3 . Since α1 does not
cross Υ3,3 it follows that a1, a2 lie in the same component of O \Υ3,3 and hence
a1, a2 ∈ O ′c . If a1 = b1 then β1∪α1∪α2 is a bracelet of shortest arcs. So a2 = b1 ;
see the fifth wire-frame; and we can apply Theorem 2.6 and Lemma 2.3(ii) to
contradict the shortness of β2 . Now (a3, a4) = (b4, b2) . Again we may suppose
that a2 6= b3 . Suppose a1 = b3 . If a2 = b1 then we have that α1 ∪ β1 ∪ β2 is a
bracelet of shortest arcs. If a2 6= b1 then B′3 = β1, β2, α1 , A ′2 = α1, β3 are both
chains and so β3, α2 are both shortest arcs. Since (a1, a3) = (b3, b4) it follows that
β3 ∪ α1 ∪ α2 is a bracelet of shortest arcs. So {a1, a2} 63 b3 . Again this implies
that a1, a2 ∈ O ′c . If b1 = c then A3,B3 is equivalent to a minimal chain pair on
E ; see the second wire-frame, Figure 12. If b1 ∈ O ′c then a1 = b1 or a2 = b1 and
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we can apply Theorems 2.6 and 2.12 to show that O is Oct ; see the sixth and
seventh wire-frames.

Next i3 = 4. First (a4, a5) = (b2, b4) . Suppose {a1, a2, a3} 63 b1 then A ′4 =
α1, α2, α3, β1 is a chain and α4 is a shortest arc. So {a1, a2, a3} 3 b1 . Also
{a1, a2, a3} 3 b3 since neither α1 nor α2 crosses Υ4,3 . So {a1, a2, a3} ⊃ {b1, b3} .
If {a1, a2} = {b1, b3} then α1 ∪β1 ∪β2 is a bracelet of shortest arcs. If {a2, a3} =
{b1, b3} then α2 ∪ β1 ∪ β2 is a bracelet of shortest arcs. For (a2, a3) = (b1, b3)
we have that A ′2 = α1, β1 , B′2 = β1, α1 are both chains. For (a2, a3) = (b3, b1)
we have that B′3 = β1, β2, α1 , A ′2 = α1, β3 , B′2 = β1, α2 are all chains. So
{a1, a3} = {b1, b3} and we can apply Theorem 2.6 and Lemma 2.3(ii) to contradict
the shortness of β2 ; see the eighth and ninth wire-frames.

Figure 7. Configurations of Ai3 ,B3

Next (a4, a5) = (b4, b2) . We may suppose that a3 6= b3 . Again neither α1
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nor α2 cross Υ4,3 so {a1, a2} 3 b3 . If {a1, a2} 3 b1 then α1∪β1∪β2 is a bracelet
of shortest arcs. So {a1, a2} 63 b1 . Suppose a3 = b1 ; see the tenth, eleventh
and twelfth wire-frames, Figure 7. In each case B′3 = β1, β2, α1 , A ′2 = α1, β3 ,
B′2 = β1, α2 are chains and so β2 is a shortest arc. We can now apply Theorems 2.6
and 2.12 to show that O is Oct . So {a1, a2, a3} 63 b1 and hence B′3 = β1, β2, α1

is a chain, β3 is a shortest arc. If b1 = c ; see the 13th and 14th wire-frames.
We can apply Theorem 2.6 and Lemma 2.3(ii) to contradict β3 being a shortest
arc. If a1 = c or a3 = c (see the 15th and 16th wire-frames) we can again apply
Theorems 2.6 and 2.12. The argument differs slightly from that given above.
Above we had that l(λ2) ≤ l(λ0) and l(λ0) ≤ min{l(λ1), l(λ3)} . Again we have
that l(λ2) ≤ l(λ0) but only have l(λ0) ≤ l(λ1) . Here, however, we have that κ3,0

is a shortest arc. The argument runs as follows; c.f. the proof of Lemma 2.11.
Suppose a1 = c . Set α4 = λ0 , β2 = κ3,5 , β3 = κ3,4 , α2 = κ2,3 which extends
uniquely to K∪Λ. Since B′3 = β1, β2, α1 , A ′2 = α1, β3 are both chains, β3 = κ3,4 ,
α2 = κ2,3 are both shortest arcs. Since B′2 = β1, κ0,5 is also a chain we can
apply Theorem 2.6: l(λ2) ≤ l(λ0) . Now A ′4 = α1, α2, α3, λ1 is a chain and
so l(α4) = l(λ0) ≤ l(λ1) . If l(λ2) ≤ l(λ3) we can apply Theorem 2.12 since
κ2,3 is a shortest arc. Otherwise l(λ3) ≤ l(λ2) ≤ l(λ0) and we can again apply
Theorem 2.12 since κ3,0 = α1 is a shortest arc.

Now j3 = 4. We know that b1, b2 ∈ O ′c since β1 does not cross Υi3,4 .
Consider i3 = 2. If a1 ∈ {b1, b2} then A ′2 = α1, β1 is a chain and α2 is a
shortest arc. So a1 /∈ {b1, b2} . Suppose (a2, a3) = (b3, b5) . If a1 = b4 then
we can apply Theorem 2.6 and Lemma 2.3(ii) to contradict α1 = β3 being a
shortest arc; see the first wire-frame, Figure 8. So a1 = c and we have that
B′3 = β1, β2, α1 , A ′2 = α1, β3 are both chains and so α2 is again a shortest arc.
Next (a2, a3) = (b5, b3) . We may suppose that a1 6= b4 . So a1 = c and A2,B is
equivalent to a minimal chain pair on E ; see the fifth wire-frame, Figure 12.

Next i3 = 3. First (a3, a4) = (b3, b5) . If {a1, a2} 63 b4 then, as α1 does
not cross Υ3,4 it follows that a1, a2 ∈ O ′c , i.e. {a1, a2} = {b1, b2} and A3,B is
equivalent to a minimal chain pair on E ; see the sixth wire-frame, Figure 12. So
{a1, a2} 3 b4 . Suppose a1 = b4 . If a2 = b1 then (a2, a3) = (b1, b3) , a1 6= b2 and so
α2∪β1∪β2 is a bracelet of shortest arcs. If a2 = b2 then we argue as follows; see the
second wire-frame, Figure 8. Set α3 = κ3,4 , β3 = λ0 , β4 = κ3,5 , β2 = α2 = κ1,4 ,
α1 = κ1,5 which extends uniquely to K ∪ Λ. Each one of A ′3 = α1, α2, κ0,4 ,
B′3 = β1, β2, λ2 , B′4 = β1, β2, β3, κ0,5 is a chain so the hypotheses of Theorem 2.6
are satisfied: l(λ0) = l(λ2) . Now A ′2 = α1, β1 is a chain, so α2 = κ1,4 is a shortest
arc. Now α1 = κ1,5, β1 = κ1,2 are also shortest arcs so, by Theorem 2.7, O is
the octahedral orbifold. So a2 /∈ {b1, b2} and each one of B′4 = β1, β2, β3, α1 ,
A ′2 = α1, β4 , B′3 = β1, β2, α2 are chains: β3 ∪ α1 ∪ α2 is a bracelet of shortest
arcs. Next suppose a2 = b4 . If a1 = c and we can apply Theorem 2.7; see the
third wire-frame. If a1 = b1 then B′2 = β1, α1 , A ′3 = α1, α2, β2 are chains and so
β2, α3 are shortest arcs; we can apply Theorems 2.6 and 2.12 to show O is Oct ;
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Figure 8. Configurations of Ai3 ,B4

see the fourth wire-frame. If a1 = b2 then (a1, a3) = (b2, b3) , a2 6= b1 and so
β2 ∪ α1 ∪ α2 is a bracelet of shortest arcs.

Next (a3, a4) = (b5, b3) . We may suppose that a2 6= b4 . Suppose a1 = b4 .
For a2 /∈ {b1, b2} we have that both of B′4 = β1, β2, β3, α1 , A ′2 = α1, β4 are
chains and so β4 ∪ α1 ∪ α2 is a bracelet of shortest arcs. So a2 ∈ {b1, b2} . If
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a2 = b2 then α1, β1, α2, β2 have exactly one cone point in common and we can
apply Lemma 2.11: O is Oct . If a2 = b1 we can apply Theorems 2.6 and 2.12—
the fifth (respectively sixth) wire-frame illustrates the argument for l(α3) ≤ l(β4)
(respectively l(β4) ≤ l(α3)).

So a1 6= b4 and hence {a1, a2} = {b1, b2} ; see the seventh and eighth wire-
frames. Set α3 = κ3,4 , β3 = κ3,5 , β4 = λ0 , β2 = κ2,3 which extends to K ∪
Λ. First A ′3 = α1, α2, κ0,4 is a chain and so l(κ3,4) ≤ l(κ0,4) . Likewise B′3 =
β1, β2, α3 , A ′3 = α1, α2, β4 , B′4 = β1, β2, β3, κ0,5 are all chains so l(κ3,5) = l(β3) ≤
l(α3) ≤ l(β4) ≤ l(κ0,5) . Also B′2 = β1, κ2,4 is chain and so l(κ2,3) ≤ l(κ2,4) .
Again B′4 = β1, β2, β3, κ0,5 is a chain and so l(λ0) ≤ l(κ0,5) . By Theorem 2.13
either l(κ0,4) < l(κ3,4) or l(κ0,5) < l(κ3,5) or l(κ2,4) < l(κ2,3) or l(κ0,5) < l(λ0) .

Finally i3 = 4. First (a4, a5) = (b3, b5) . Suppose a1 = b4 . Since α2 does
not cross Υ4,4 it follows that a2, a3 ∈ O ′c and hence {a2, a3} = {b1, b2} . Suppose
(a2, a3) = (b1, b2) ; see the ninth wire-frame. We argue as follows. Set α4 = κ3,4 ,
β3 = λ0 , β4 = κ3,5 , α3 = β2 = κ1,4 which extends to K3 ∪ Λ3 ∪ κ1,4 ∪ κ2,5 .
We have that A ′4 = α1, α2, α3, κ0,4 , B′3 = β1, β2, λ2 , B′4 = β1, β2, β3, κ0,5 are all
chains and so l(κ3,l) = l(κ0,l) , l(λ0) = l(λ2) by Theorem 2.6. Now B′2 = β1, α1 is
a chain and so β2 = κ1,4 is a shortest arc. Since α1 = κ2,5 is also a shortest arc we
have l(κ1,4) = l(κ2,5) . By Lemma 2.8, l(κ3,4) = l(κ0,5) . Now B′3 = β1, β2, κ0,4

is a chain and so l(λ0) ≤ l(κ0,4) . Likewise β1 = κ1,2 is a shortest arc and so
l(κ1,2) ≤ l(κ3,0) . By Theorem 2.14, l(κ1,4) = l(κ2,5) > l(κ1,2) which contradicts
κ2,5 = α1 , κ1,4 = β2 being shortest arcs. If (a2, a3) = (b2, b1) we can apply
Theorems 2.6 and 2.7; see the tenth wire-frame.

Next a2 = b4 . If {a1, a3} = {b1, b2} then β1∪α1∪α2 is a bracelet of shortest
arcs. For either a1 /∈ {b1, b2} or a2 /∈ {b1, b2} and we can apply Theorems 2.6
and 2.12; see the 11–14th wire-frames. For a3 = b4 we have that {a1, a2} =
{b1, b2} since α1 does not cross Υ4,4 . Here A ,B is equivalent to a minimal chain
pair on E ; see the seventh and eighth wire-frames, Figure 12.

To finish (a4, a5) = (b5, b3) . We may suppose that a3 6= b4 . For a1 = b4 we
again have that {a2, a3} = {b1, b2} . Suppose (a2, a3) = (b2, b1) . We can apply
Theorems 2.6 and 2.12—the 15th (respectively 16th) wire-frame illustrates the
argument for l(β3) ≤ l(β4) (respectively l(β4) ≤ l(β3)). Similarly for (a2, a3) =
(b1, b2) . Suppose a2 = b4 . If {a1, a3} = {b1, b2} then β1 ∪ α1 ∪ α2 is a bracelet
of shortest arcs. So a1 = c , a3 ∈ {b1, b2}—see the 17th and 18th wire-frames—or
a1 ∈ {b1, b2} , a3 = c—see the 19th and 2Oth wire-frames—and we can apply
Theorems 2.6 and 2.12.

Lemma 2.9. If l(κ3,0) = l(κ1,4) , l(κ0,5) = l(κ3,5) then there exists an arc γ
between either c2, c1 or c2, c4 such that l(γ) ≤ l(κ0,5) = l(κ3,5) .

Proof. Let Γ = κ3,0 ∪κ1,4 ∪κ2,5 , a disjoint triple of arcs. As l(κ3,0) = l(κ1,4)
the pair of pants O \ Γ has rotational symmetry R exchanging κ3,0 , κ1,4 and
fixing κ2,5 setwise.

The cone points c0 , c3 , c5 span an isosceles triangle I bounded by κ3,0 ∪
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κ3,5 ∪κ0,5 . So R(c0), R(c3), R(c5) spans an isometric isosceles triangle R(I ) . As
R(c0), R(c3) divides κ1,4 into equal length subarcs, either c1 or c4 lies on the
κ1,4 edge of R(I ) . If γ denotes the arc between this cone point and R(c5) = c2
contained in R(I ) then γ has the required properties.

Suppose a minimal chain pair A ,B such that (a2, a3) = (b1, b3) , a1 6= b2 .
Since a2 = b1 but a1 6= b2 : A ′2 = α1, β1 , B′2 = β1, α1 are both chains and so
α2, β2 are shortest arcs. Now (a2, a3) = (b1, b3) and so α2 ∪ β1 ∪ β2 is a bracelet
of shortest arcs. By Proposition 2.10, A ,B is equivalent to a minimal standard
chain pair on Oct and no length 3 bracelet of links on Oct cuts off a cone point.
Likewise if {a1, a2} = {b1, b3} . (For applications to the proof of Theorem 1.1 we
note that no minimal chains on O cross.)

Proposition 2.10. Suppose an orbifold O has a length 3 bracelet of shortest
arcs. Any minimal chain pair on O is equivalent to a minimal chain pair on
the Oct .

Proof. Let Υ be a length 3 bracelet of shortest arcs on O . Suppose Υ cuts off
a cone point. By an application of Theorem 2.6 and then Lemma 2.3(ii), as in the
proof of Proposition 2.4, we derive a contradiction. So Υ bounds a triangle. There
exists Υ′ another length 3 bracelet of shortest arcs disjoint from Υ that bounds
a triangle. Moreover, the conformal symmetry group of O contains a subgroup
isomorphic to S3 . This is a well-known result; see for example Schmutz [23,
Lemma 5.1]. We will sketch the following proof of the existence of Υ′ , along the
lines of the proof of Lemma 2.9.

Relabel the arcs in Υ by κ3,0, κ0,5, κ3,5 ; label the shortest arc disjoint from Υ
by κ1,4 ; and label the unique arc disjoint from κ3,0 ∪κ1,4 by κ2,5 . Label the cone
points so that κk,l is between ck , cl , et cetera. Again, let Γ = κ3,0∪κ1,4∪κ2,5 and
so O\Γ is a pair of pants. Denote by P3,0 (respectively P1,4 ) the common perpen-
dicular between boundary components κ2,5 and κ3,0 (respectively κ2,5 and κ1,4 );
denote by D5 (respectively D2 ) a disc of radius l(κ3,0) (respectively l(κ1,4))
about c5 (respectively c2 ); and denote by I3,0 (respectively I1,4 ) the interval of
the boundary component κ3,0 (respectively κ1,4 ) inside D5 (respectively D2 ). So
I3,0 , I1,4 are chords to D5 , D2 respectively. Let θ5 (respectively θ2 ) denote the
angle that I3,0 (respectively I1,4 ) subtends at c5 (respectively c2 ). Finally, de-
note by θ3,0 (respectively θ1,4 ) the angle of an equilateral triangle of edge length
l(κ3,0) (respectively l(κ1,4)).

Since l(κ3,0) ≤ l(κ1,4) it follows that θ3,0 ≥ θ1,4 and that l(P3,0) ≥ l(P1,4) .
Moreover l(κ3,0) ≤ l(κ1,4) , l(P3,0) ≥ l(P1,4) implies that θ5 ≤ θ2 . Since I1,4
subtends an angle θ2 ≥ θ5 = θ3,0 ≥ θ1,4 it follows that l(I1,4) ≥ l(κ1,4) .

Unless l(I1,4) = l(κ1,4) and the cone points c1, c4 lie at the ends of I1,4 ,
there exists an arc γ between c1, c2 or c2, c4 such that l(γ) < l(κ1,4) . This would
contradict the shortness assumption on κ1,4 . So l(I1,4) = l(κ1,4) and c1, c4 lie at
the ends of I1,4 . So c2 , c1 , c4 span a bracelet of shortest arcs Υ′ .
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Let Ξ be the set of shortest arcs between some cone point on Υ and some
cone point on Υ′ . Using cut-and-paste arguments, arcs in Ξ do not cross either:
each other or arcs in Υ ∪Υ′ . By the S3 action of the symmetry group: |Ξ| = 3
or 6. It is not hard to show that any minimal chain on O must lie in Υ∪Υ′ ∪Ξ.
Moreover Υ∪Υ′ ∪Ξ is graph isomorphic to a subgraph of the set of shortest arcs
on Oct .

Suppose a minimal chain pair A ,B is such that a2 = b2 and a1 , a3 , b1 and
b3 are all distinct. We have that A ′2 = α1, β1 , B′2 = β1, α1 are both chains and
so α2, β2 are shortest arcs. It follows that α1, β1, α2, β2 are four distinct shortest
arcs with exactly one cone point in common. By Lemma 2.11, O is the octahedral
orbifold.

Lemma 2.11. Suppose, for some k , that κk−1,k , κk,k+1 , κk,l are all shortest
arcs for l = 4, 5 . Then O is the octahedral orbifold.

Proof. This result appeared as Lemma 5.2 in Schmutz [23]. However we offer
the following proof. It illustrates the applications of Theorems 2.6 and 2.12 in the
proof of Proposition 2.4. The arc set κk−1,k , κk,k+1 , κk,l for l = 4, 5 extends
uniquely to the arc set K ∪ Λ.

Suppose l(λk+1) ≤ l(λk−2) . We know that l(κk,l) ≤ l(κk+1,l) for l = 4, 5
and so l(λk−1) ≤ l(λk+1) by Theorem 2.6. So l(λk−1) ≤ l(λk+1) ≤ l(λk−2) .
If l(λk−1) ≤ l(λk) then we can apply Theorem 2.12. If l(λk) ≤ l(λk−1) then
l(λk) ≤ l(λk−1) ≤ l(λk+1) and we can again apply Theorem 2.12.

Suppose l(λk−2) ≤ l(λk+1) . We know that l(κk,l) ≤ l(κk−1,l) for l = 4, 5
and so l(λk) ≤ l(λk−2) by Theorem 2.6. So l(λk) ≤ l(λk−2) ≤ l(λk+1) . If l(λk) ≤
l(λk−1) then we can apply Theorem 2.12. If l(λk−1) ≤ l(λk) then l(λk−1) ≤
l(λk) ≤ l(λk−2) and we can again apply Theorem 2.12.

Theorem 2.12. Suppose, for some k , that κk,k+1 is a shortest arc and
l(λk) ≤ min{l(λk−1), l(λk+1)} then O is the octahedral orbifold.

Proof. Suppose k = 3. Cut O3,0 open along κ0,5 , κ3,4 so as to obtain

a simply connected domain Ω. Take a lift of Ω to the universal cover Õ and,
without confusion, give the geodesics having non-trivial intersection with Ω the
same labels as on O . So Ω is bounded by κ0,5 , λ0 , κ3,4 , λ2 . In the same cyclic
order label the orbits of cone points that lie on the boundary of Ω by c5 , c0 , c′5 ,
c′4 , c3 and c4 . The point c0 (respectively c3 ) lies at the midpoint of the κ0,5 edge
(respectively κ3,4 edge). By inspection λ3 is the diagonal of Ω between vertices
c5 and c′4 . As κ3,0 is a shortest arc c5 , c′4 (and hence c′5 , c4 ) cannot lie inside
D0 ∪D3 , where Dk denotes the closed disc of radius κ3,0 about ck .

To prove the result we will show that either: l(λ3) > l(λ2) or l(λ3) > l(λ0) or
l(λ3) = l(λ2) = l(λ0) and O is the octahedral orbifold. Let θ denote the angle in
an equilateral triangle of edge length l(κ3,0) . The maximal length of a shortest arc
on an orbifold O occurs exactly for O the octahedral orbifold; see Näätänen [22]
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or Schmutz [23]. It is a simple consequence that θ ≥ π/4 with equality if and only
if O is the octahedral orbifold.

Claim. Either 6 c5c0c′4 ≥ 2θ or 6 c5c3c′4 ≥ 2θ .

Now 6 c5c0c′4 > π/2 implies 6 c′5c0c
′
4 < π/2 and hence that l(λ0) < l(λ3) .

Likewise 6 c5c3c′4 > π/2 implies 6 c5c3c4 < π/2 and hence that l(λ2) < l(λ3) .
So we must have 6 c5c0c′4 = 6 c5c3c′4 = 2θ = π/2. That is O is the octahedral
orbifold.

Proof of the claim. Since c5 lies outside D0 ∪ D3 either 6 c5c0c3 ≥ θ or
6 c5c3c0 ≥ θ . Likewise since c′4 lies outside D0 ∪ D3 either 6 c′4c0c3 ≥ θ or
6 c′4c3c0 ≥ θ . If 6 c5c0c3 ≥ θ and 6 c′4c0c3 ≥ θ then 6 c5c0c′4 ≥ 2θ . Likewise, if
6 c5c3c0 ≥ θ and 6 c′4c3c0 ≥ θ then 6 c5c3c′4 ≥ 2θ . So, up to relabelling, we may
suppose that 6 c5c3c0 ≤ θ and 6 c′4c0c3 ≤ θ as in Figure 9. Let θ5 = 6 c5c0c3 ≥ θ
and θ4 = 6 c′4c3c0 ≥ θ . If θ5 ≥ 2θ or θ4 ≥ 2θ we are done. So suppose not.

Consider points x5 , x′4 , to the c5, c
′
4 side of κ3,0 respectively, such that

6 x5c0c3 = θ5 and 6 x5c3c0 = 2θ − θ5 ; and 6 x′4c3c0 = θ4 and 6 x′4c0c3 = 2θ − θ4 .
Next we show that x5 ∈ D0 . (Similarly x′4 ∈ D3 ).

We have constructed the points A , E , C and C ′ such that 6 ABC =
6 BAC = 6 ACB = θ and 6 BAC ′ = θ5 , 6 ABC ′ = 2θ − θ5 . We let O denote the
intersection of AC,BC ′ . Now 6 OAC ′ = 6 OBC = θ5 − θ and 6 AOC ′ = 6 BOC
and OA is shorter than OB . So comparing the triangles OAC ′ and OBC we see
that AC ′ is shorter than BC and we are done.

Now 6 c5c0c′4 ≥ 6 c5c0x′4 = 2θ+(θ5−θ4) , 6 c5c3c′4 ≥ 6 x5c3c
′
4 = 2θ+(θ4−θ5) .

A B

C

C ′

O

θ

θ5 − θ

θ4

θ5

x5

x′

4

λ0

λ2

λ3

c0 c3

c4

c5

c′
4

c′
5

Figure 9. Arcs and lift of Ω in Theorem 2.12

Theorem 2.13. Either l(κ0,4) < l(κ3,4) or l(κ0,5) < l(κ3,5) or l(κ2,4) <
l(κ2,3) or l(κ0,5) < l(λ0) .

Proof. We suppose that l(κ3,4) ≤ l(κ0,4) , l(κ3,5) ≤ l(κ0,5) , l(κ2,3) ≤ l(κ2,4)
and show that l(κ0,5) < l(λ0) . First, by Theorem 2.6, l(λ2) ≤ l(λ0) . Also
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⋃
l=4,5 κ2,l ∪ κ3,l bound the quadrilateral spanned by λ2 ∪ κ2,3 . By Lemma 3.3,

l(κ2,4) < l(κ2,3) or l(κ3,5) < l(λ2) . So l(κ3,5) < l(λ2) .
Cut A3,0 open along κ3,5 to obtain a simply connected domain Ω. Choose

a lift of Ω in the universal cover of the annulus A3,0 . Label the geodesics around
the boundary of Ω by κ3,0 , κ3,5 , λ2 , λ0 and κ′3,5 , in cyclic order. Without
confusion, give the lifts of κ0,4 , κ0,5 and κ3,4 having non-trivial intersection with
Ω the same labels. In the same cyclic order, label orbits of cone points around the
boundary of Ω: c0 , c3 , c5 , c4 , c′5 and c′3 . Let P5,3 , P4,3 and P ′5,3 denote the
perpendiculars to κ3,0 from c5 , c4 , c′5 and let f5,3 = P5,3∩κ3,0 , f4,3 = P4,3∩κ3,0 ,
f ′5,3 = P ′5,3 ∩κ3,0 . By choosing orientation we may suppose that P5,3 is to the left
and P ′5,3 to the right of P4,3 .

We now observe that c0 must lie strictly between P4,3 and P ′5,3 . If c0 is left
of P4,3 then l(κ0,4) < l(κ3,4) and if c0 is to the right of P ′5,3 then l(κ0,5) < l(κ3,5) .

If c3 = f5,3 set η = π/2, if c3 = f4,3 set ν = π/2, φ = 0. Otherwise we label
angles as follows. Set θ = 6 c5c3c4 , θ′ = 6 c′5c0c4 and ψ = 6 c5c4c3 , ψ′ = 6 c′5c4c0
and φ = 6 c3c4f4,3 , φ′ = 6 c0c4f4,3 and ν = 6 c4c3f4,3 , ν′ = 6 c4c0f4,3 and
η = 6 c5c3f5,3 , η′ = 6 c′5c0f

′
5,3 ; see Figure 10.

Since l(κ3, l) ≤ l(κ0,l) for l = 4, 5 we have that ν ≥ ν ′ , η ≥ η′ . If c3
is between P5,3 and P4,3 then θ = π − (ν + η) . If c3 lies strictly to the left
of P5,3 then θ = η − ν < (π − η) − ν since η < π/2. If c3 lies strictly to
the right of P4,3 then θ = ν − η < (π − ν) − η since ν < π/2. In each case
θ ≤ π − (ν + η) ≤ π − (ν ′ + η′) = θ′ .

Also l(κ3,4) ≤ l(κ0,4) implies that φ ≤ φ′ . Since l(λ2) ≤ l(λ0) , by comparing
the birectangles Q2,3,Q0,3 , we have that φ+ψ ≥ φ′+ψ′ . It follows that ψ ≥ ψ′ .
Now l(κ3,5) < l(λ2) and so θ > ψ . Therefore θ′ ≥ θ > ψ ≥ ψ′ : l(κ0,5) < l(λ0) .

c0 c0

c4c5

λ0

λ2

c4c5

λ0

λ2

ψ ψ

η′ ν′
θ′

η′ ν′
θ′

θ θ

η ην

ν

φ

φ′
φ φ′ψ′

ψ′

c′
5

c′
5

c′
3

c′
3

c3

c3

Figure 10. c3 between P5,3 , P4,3 and c3 to the left of P5,3

Theorem 2.14. If l(κ3,4) = l(κ3,5) = l(κ0,4) = l(κ0,5) and l(κ1,4) = l(κ2,5) ,
l(λ0) = l(λ2) ≤ l(κ0,4) and l(κ1,2) ≤ l(κ3,0) then l(κ1,4) = l(κ2,5) > l(κ1,2) .

Proof. By Lemma 2.8 both annuli A1,2, A3,0 have rotational symmetry ex-
changing λ0 ↔ λ2 . It follows that O \ κ1,2 ∪ κ3,0 has rotational symmetry ex-
changing λ0 ↔ λ2 . So κ1,2 ∪ P4,1 ∪ P4,3 ∪ κ3,0 ∪ P5,3 ∪ P5,1 divides O into a pair
of isometric right hexagons, H0 ⊃ λ0 , H2 ⊃ λ2 .
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Consider H0 . First we note that c0 lies at the midpoint of the κ3,0 edge
of H0 . The common perpendicular between the κ1,2 , κ3,0 edges of H0 divides
H0 into a mirror pair of right pentagons Pl where Pl has cl as a vertex. Relabel
the edges of P4 : A, . . . , E in cyclic order such that A = l(P4,1), . . . , E = l(P4,3) .
Label by F the diagonal from A∩E to D∩C ; by G the perpendicular from A∩E
to C ; and by H the diagonal from A∩E to C∩B . Label by θ the angle between
A,H ; ψ the angle between G,H ; and φ the angle between C,H . We observe
that l(κ1,4) ≥ l(P4,1) = A . To complete the proof we show that A > 2B = l(κ1,2) .

Consider the triangle ABH :

sinhH =
sinhA

sin(π/2− φ)
or sinhH =

sinhA

cosφ
.

Now consider the double of ABH along A :

sinh 2B

sin 2θ
=

sinhH

sin(π/2− φ)
or

sinh 2B

sinhH
=

sin 2θ

cosφ

and so we have
sinh 2B

sinhA
=

sin 2θ

cos2 φ
.

Now B = l(κ1,2)/2 ≤ l(κ3,0)/2 = D implies that 0 < θ + ψ ≤ π/4. So
0 < 2θ ≤ π/2− 2ψ < π/2. Therefore sin 2θ ≤ sin(π/2− 2ψ) .

Likewise B ≤ D implies that H ≥ F . Moreover F = l(κ0,4) ≥ l(λ0) = 2G .
Consider CGH doubled along C . As H ≥ 2G we have that 2φ ≤ ψ . Since
ψ < π/4 it follows that 0 < π/4 − ψ ≤ π/4 − 2φ < π/4. So 0 < π/2 − 2ψ ≤
π/2 − 4φ < π/2, and hence sin(π/2 − 2ψ) ≤ sin(π/2 − 4φ) . Therefore sin 2θ ≤
sin(π/2− 2ψ) ≤ sin(π/2− 4φ) = cos 4φ and so

sinh 2B

sinhA
≤ cos 4φ

cos2 φ
.

Now cos2 φ−cos 4φ = cos2 φ−2(2 cos2 φ−1)2−1 = (8 cos2 φ−1)(1−cos2 φ) . Since
0 < φ < π/8 it follows that cos2 φ > cos 4φ . So sinhA > sinh 2B , A > 2B .

D B

E A

F H

G

Cc0

c4

φ

θψ

Figure 11. The pentagon P4
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Proof of Proposition 2.5. Suppose that a minimal chain pair Ai3 ,Bj3 satisfies
the hypotheses of Proposition 2.4. We need to show that any minimal standard
chain pair A ,B containing Ai3 ,Bj3 is equivalent to a minimal standard chain
pair on E . Throughout, Proposition 2.1 will be used without mention.

Consider (i3, j3) = (2, 3). By Proposition 2.4, (a2, a3) = (b2, b4) and a1 =
b1 = c . Set α2 = κ3,4 , β2 = κ3,5 , β3 = λ0 which extends to K3∪Λ3 . Each one of
A ′2 = α1, κ0,4 , B′2 = β1, κ0,5 , B′3 = β1, β2, λ2 is a chain and so l(λ0) = l(λ2) by
Theorem 2.6. Consider the possibilities for β4, α3, α4 . Unless Υ3,4 = β3 ∪α3 ∪α4

is a bracelet, A ,B is equivalent to a minimal standard chain pair on E .
Suppose Υ3,4 is a bracelet. Exchange labels α∗ ↔ β∗ and set α′3 = λ2 .

Suppose Υ3,4 = α3 ∪ β3 ∪ β4 cuts off a cone point. Then (a3, a4) = (b5, b3) with
{a1, a2} 6= b4 and by applying Lemma 3.3 and Theorem 2.13 we can derive a
contradiction. If Υ3,4 = α3 ∪ β3 ∪ β4 bounds a triangle, then Υ′3,4 = α′3 ∪ β3 ∪ β4

cuts off a cone point. The same argument can now be applied, where we use the
fact that l(α′3) = l(α3) .

Next, consider (i3, j3) = (2, 4). Again, by Proposition 2.4, (a2, a3) = (b5, b3)
and c = α1 /∈ {b1, b2} . Set α2 = κ3,4 , β4 = κ3,5 , β3 = λ0 which again extends to
K3 ∪ Λ3 . Again by Theorem 2.6, l(λ0) = l(λ2) . Now we consider α3, α4 . Unless
Υ3,4 = β3 ∪α3 ∪α4 is a bracelet, A ,B is equivalent to a standard minimal chain
on E . Suppose Υ3,4 is a bracelet. Now both of A ′4 = α1, α2, α3, β1 , B′2 = β1, α4

are chains and so α4, β2 are shortest arcs. If α3 6= β2 then A ′3 = α1, α2, β2 is a
chain and so α3 is a shortest arc. In either case β1, α3, α4 are all shortest arcs
and l(λ0) = l(λ2) . By Theorem 2.7, O is the octahedral orbifold. As in the proof
of Proposition 2.4 this gives a contradiction.

For (i3, j3) = (3, 3), (4, 3), (4, 4) there is nothing to prove. It remains to
consider (i3, j3) = (3, 4). By Proposition 2.4 we have that (a3, a4) = (b3, b5) and
{a1, a2} = {b1, b2} . Set α3 = κ3,4 , β4 = κ3,5 , β3 = λ0 which extends to K3 ∪Λ3 .
We can apply Theorem 2.6: l(λ0) = l(λ2) . Unless α4 = β4 , A ,B is equivalent to
a minimal standard chain pair on E . Suppose α4 = β4 . Set β3 = κ̂3,4 , α4 = κ̂3,5 ,

α3 = λ̂0 which again extends to K̂3 ∪ Λ̂3 . Again we can apply Theorem 2.6:

l(λ̂0) = l(λ̂2) . The arcs λ2, λ̂2 between b3, b4 and a3, a4 , respectively, cross in a
single point and have an endpoint b3 = a3 in common. By one of the cut-and-

paste arguments we use in the proof of Proposition 3.1 we have that l(α3) < l(λ̂2)
or l(β3) < l(λ2) which gives a contradiction.

3. Proof of Theorem 1.1

As in the previous section we shall work on the quotient orbifold O = S /J .
We consider pairs of crossing standard minimal chains A ,B and derive contra-
dictions. We say that αi1 , βj1 are the first crossing links if i1 = min i ∈ {1, . . . , 4}
such that αi, βj cross, j1 = min j ∈ {1, . . . , 4} such that αi1 , βj cross. The cross-
ing minimal chain pair Ai1 ,Bj1 has exactly one pair of crossing arcs: αi1 , βj1 . In
Proposition 3.1 we show that |αi1 ∩βj1 | < 2. It remains to consider |αi1 ∩βj1 | = 1
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Figure 12. Minimal chain pairs with j3 = 3, 4

i.e., αi1 , βj1 have distinct endpoints and a single crossing point −αi1 ∪βj1 has the
form an ‘X ’ on O .

Proposition 3.1. We have |αi1 ∩ βj1 | < 2 .

Proof. First we consider αi1 , βj1 having more than one crossing point. We
then consider αi1 , βj1 having one crossing point and one or two endpoints in
common.

On αi1 label the crossing point nearest to its tail by at and the crossing point
nearest to its head by ah . Likewise for the crossing points on βj1 . The points at ,
ah , bt , bh divide αi1 into either three, four or five subarcs. Label the subarc of
αi1 between ai1 , at by αt ; between bt , bh by αm ; and between ah , ai1+1 by αh .
Likewise for the subarcs of βj1 .

Let α′i1 denote the geodesic in the endpoint fixed homotopy class of αt ∪
βm ∪ αh . By its definition α′i1 is simple. Let Ai1 = α1, . . . , α

′
i1

. Suppose α′i1
crosses αi for some 1 ≤ i < i1 . Choose lifts of αt, βm, αh, α

′
i1

in H2 so that
αt∪βm∪αh∪α′i1 bounds a rectangle (crossed or uncrossed). A lift of αi intersects
α′i1 between ai1 , ai1+1 . This lift also intersects eitherαt or βm or αh . This
intersection projects to a crossing point of αi with αi1 or βj1 on O which gives
a contradiction. So A ′i1 is a chain.

Let β′j1 denote the geodesic in the endpoint fixed homotopy class of βt ∪
αm ∪ βh . Again B′j1 = β1, . . . , β

′
j1

is a chain. We have that l(α′i1) < l(αi1) or
l(β′j1) < l(βj1) . If l(αm) ≤ l(βm) then l(β′j1) < l(βt) + l(αm) + l(βh) ≤ l(βt) +
l(βm) + l(βh) ≤ l(βj1) . If l(βm) ≤ l(αm) then l(α′i1) < l(αt) + l(βm) + l(αh) ≤
l(αt) + l(αm) + l(αh) ≤ l(αi1) .

We now consider αi1 , βj1 having one crossing point and one or two endpoints
in common. We will suppose that ai1 = bj1 (the other possibilities follow simi-
larly). The crossing point divides αi1 into exactly two subarcs which we label αt ,
αh , so that αt 3 αi1 . Likewise for βj1 . Let α′i1 , β

′
j1

denote the geodesic in the
endpoint fixed homotopy class of βt∪αh, αt∪βh respectively. Again we have that
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A ′i1 = α1, . . . , αi1−1, α
′
i1

and B′j1 = β1, . . . , βj1−1, β
′
j1

are both chains and that
l(α′i1) < l(αi1) or l(β′j1) < l(βj1) .

We say that Ai1 ,Bj1 is of type (I) if {ai1 , ai1+1} = {bj , bj+1} , for some
j < j1 − 1, up to relabelling α∗ ↔ β∗ . We say that Ai1 ,Bj1 is of type (II) if
{ai1 , ai1+1} = {bj−1, bj+1} or {ai1−1, ai1+1} = {bj , bj+1} , for some j < j1− 1, up
to relabelling α∗ ↔ β∗ .

Proposition 3.2. Type (I), (II) minimal chain pairs give a contradiction.

Proof. Suppose Ai1 ,Bj1 is such that {ai1 , ai1+1} = {bj , bj+1} for some
j < j1− 1. So arcs αi1 , βj share endpoints. We know that these arcs do not cross
and that βj1 crosses αi1 but does not cross βj . So Γi1,j = αi1 ∪ βj must be a
bracelet. As j < j1−1 ≤ 3 it follows that j = 1 or j = 2 which by Proposition 2.1
gives a contradiction.

Suppose now that Ai1 ,Bj1 is such that {ai1−1, ai1+1} = {bj , bj+1} for some
j < j1 − 1. The other possibility follows similarly. So Υj,i1 = βj ∪ αi1−1 ∪ αi1
is a bracelet. The arc βj1 crosses only αi1 ⊂ Υj,i1 . The endpoints bj1 , bj1+1 of
βj1 lie off Υj,i1 ; bj1 , bj1+1 are distinct from bj , bj+1 ∈ βj since j < j1 − 1 and
we know that bj1 , bj1+1 are both distinct from ai1 , the other cone point on Υj,i1 .
So bj1 , bj1+1 must lie in different components of O \ Υj,i1 . As there is only one
other cone point lying off Υj,i1 it follows that Υj,i1 cuts off bj1 or bj1+1 . By
Proposition 2.4, 1 < j , 2 < i1 . Since j < j1 − 1 ≤ 3, i1 ≤ 4 it follows that
(j, i1) = (2, 3) or (j, i1) = (2, 4). As 2 = j < j1 − 1 ≤ 3 we have that j1 = 4. So
Υ2,3 or Υ2,4 cuts off b4 or b5 . By Proposition 2.4 this gives a contradiction.

Figure 13. Examples of (a)–(e) of Proposition 3.4

Let εt,t ∪ εt,h ∪ εh,h ∪ εh,t denote the bracelet that bounds the quadrilateral
spanned by αi1 ∪ βj1 ; we label so that εt,h is between ai1 , bj1+1 and εh,t is
between ai1+1, bj1 , et cetera. As in the proof of Proposition 3.1 none of these arcs
cross Ai1 ,Bj1 . Similarly l(εt,t) < l(αi1) or l(εh,h) < l(βj1) and all other such
combinations. We have proved:

Lemma 3.3. Either l(εt,t) < l(αi1) or l(εh,h) < l(βj1) , et cetera.

Proposition 3.4. Up to relabelling α∗ ↔ β∗ , we have a contradiction:
(a) If A ′i1 = α1, . . . , αi1−1, εt,h , B′j1 = β1, . . . , βj1−1, εh,t are both chains.
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(b) If either i1 = 1 or A ′i1 = a1, . . . , αi1−1, β1 is a chain and either B′j1 =
β1, . . . , βj1−1, εt,t or B′′j1 = β1, . . . , βj1−1, εh,t is a chain.

(c) If i1 = 2 and A ′2 = α1, εh,h , B′j1 = β1, . . . , βj1−1, εt,t are both chains.

(d) If i1 = 2 , j1 = 4 and A ′2 = α1, β2 , B′2 = β1, α2 , B′′2 = β1, εh,t and
B′4 = β1, β2, β3, εt,h are all chains.

(e) If for some j < j1 : A ′i1 = α1, . . . , αi1−1, βj , B′j = β1, . . . , βj−1, αi1 ,
B′′j = β1, . . . , βj−1, εt,h and B′j1 = β1, . . . , βj1−1, εh,t are all chains.

Proof. For each part we have a contradiction by Lemma 3.3. For (a) we
have l(αi1) ≤ l(εt,h) , l(βj1) ≤ l(εh,t) . For (b) suppose B′j1 = β1, . . . , βj1−1, εt,t
is a chain. We then have l(αi1) = l(β1) ≤ l(εh,h) , l(βj1) ≤ l(εt,t) . For (c) we
have l(α2) ≤ l(εh,h) , l(βj1) ≤ l(εt,t) . For (d) we have l(α2) = l(β2) ≤ l(εh,t) ,
l(β4) ≤ l(εt,h) . For (e) we have l(αi1) = l(βj) ≤ l(εt,h) , l(βj1) ≤ l(εh,t) .

Up to relabelling we may suppose that i1 ≤ j1 . Since αi1 , βj1 have distinct
endpoints ai1 , ai1+1, bj1 , bj1+1 are all distinct.

First i1 = 1. If {a1, a2} 6⊂ {b1, . . . , bj1−1} then either B′j1 = β1, . . . , βj1−1, εt,t
or B′j1 = β1, . . . , βj1−1, εh,t is a chain and we can apply Proposition 3.4(b).
So {a1, a2} ⊂ {b1, . . . , bj1−1} and we have type (I) or (II). So i1 > 1. Sup-
pose that bj1+1 /∈ {a1, . . . , ai1−1} , ai1+1 /∈ {b1, . . . , bj1−1} . We then have that
A ′i1 = α1, . . . , αi1−1, εt,h , B′j1 = β1, . . . , βj1−1, εh,t are both chains and we can
apply Proposition 3.4(a). So we may suppose that either bj1+1 ∈ {a1, . . . , ai1−1}
or ai1+1 ∈ {b1, . . . , bj1−1} .

Figure 14. Applications of Proposition 3.4 for i1 = 2
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Next i1 = 2. First we suppose bj1+1 = a1 . If a2 /∈ {b1, . . . , bj1−1} then
B′j1 = β1, . . . , βj1−1, εt,t is a chain. We note that εh,h is between bj1+1 = a1, a3

and so A ′2 = α1, εh,h is also a chain and we can apply Proposition 3.4(c). So
a2 ∈ {b1, . . . , bj1−1} .

For j1 = 2: Proposition 3.4(b), see the first wire-frame, Figure 14. Suppose
j1 = 3. If a3 ∈ {b1, b2} type (I). If a3 /∈ {b1, b2} : Proposition 3.4(b), see the
second and third wire-frames. For j1 = 4 if a3 ∈ {b1, b2, b3} : type (I) or type (II).
So a3 = b6 . If a2 ∈ {b1, b2} : Proposition 3.4(b), see the fourth and fifth wire-
frames. If a2 = b3 then A ′2 = α1, β3 , B′3 = β1, β2, α2 , B′′3 = β1, β2, εt,h and
B′4 = β1, β2, β3, εh,t are all chains, Proposition 3.4(e), see the sixth wire-frame.

Therefore a1 6= bj1+1, a3 ∈ {b1, . . . , bj1−1} .
For j1 = 2, a1 6= b3 , a3 = b1 . If a1 = b2 , Proposition 3.4(b), see the seventh

wire-frame. So a1 ∈ {b4, b5, b6} , Proposition 3.4(c); see the eighth wire-frame.
For j1 = 3, a1 6= b4 , a3 ∈ {b1, b2} . If a2 ∈ {b1, b2} , type (I). So a2 ∈ {b5, b6} .

If a1 ∈ {b1, b2} , type (II). If a1 = b3 , Proposition 3.4(b); see the ninth and tenth
wire-frames. So a3 ∈ {b1, b2} , {a2, a1} = {b5, b6} and we can apply Theorem 3.7,
see Figure 21.

For j1 = 4, a1 6= b5 , a3 ∈ {b1, b2, b3} . If a2 ∈ {b1, b2, b3} , type (I) or (II). So
a2 = b6 . If a1 ∈ {b1, b2, b3} , type (I) or (II) unless {a1, a3} = {b1, b3} . If (a1, a3) =
(b1, b3) , Proposition 3.4(b); see the eleventh wire-frame. If (a1, a3) = (b3, b1) ,
Proposition 3.4(d); see the 12th wire-frame. So a1 = b4 , Proposition 3.4(b); see
the 13th, 14th and 15th wire-frames.

Now i1 = 3. First j1 = 3. Up to relabelling we may suppose b4 ∈ {a1, a2} .
If b3 ∈ {a1, a2} , type (I). So b3 ∈ {a5, a6} . Likewise, if b2 ∈ {a1, a2} , type (II).

Suppose b2 = a3 . If b1 = a4 , type (I). So b1 6= a4 , A ′3 = α1, α2, β2 ,
B′2 = β1, α3 , B′′2 = β1, εt,h and B′3 = β1, β2, εh,t are all chains, Proposition 3.4(e),
see the first to fourth wire-frames in Figure 15.

Suppose b2 = a4 . If b1 ∈ {a2, a3} , type (I) or (II). So b1 = a1 or b1 ∈
{a5, a6} .

For b1 = a1 we have that b4 = a2 . The arc set A3 ∪ B3 divides O into
four components having 6, 4, 3 and 3 geodesic boundary pieces respectively. Label
these by O6 , O4 , O3 and O ′3 so that α2 lies on the boundary of O3 . Let c denote
the cone point lying off A3 ∪B3 . We note that both A ′2 = α1, β1 , B′2 = β1, α1

are chains and so α2, β2 are both shortest arcs.
Suppose c ∈ O4 , see the fifth wire-frame. Let α′1 (respectively β′1 ) denote

the arc between c and a2 (respectively b2 ) in O4 . Both A ′3 = α1, α2, εt,t , B′3 =
β1, β2, εt,t are chains and so max{l(α3), l(β3)} ≤ l(εt,t) . By Proposition 3.5(v),
l(α′1) < l(α1) or l(β′1) < l(β1) .

Now suppose c ∈ O6 ; see the sixth wire-frame. Let α′3 (respectively β′3 )
denote the arc between c and a3 (respectively b3 ) in O6 . Again both A ′3 =
α1, α2, εt,t , B′3 = β1, β2, εt,t are chains and so max{l(α3), l(β3)} ≤ l(εt,t) . Since
α2, β2 are both shortest arcs l(α2) = l(β2) . We can now apply Proposition 3.5(vii):
l(α′3) < l(α3) or l(β′3) < l(β3) . As A ′′3 = α1, α2, α

′
3 , B′′3 = β1, β2, β

′
3 are both
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chains we have a contradiction.
For c ∈ O3 (equivalently c ∈ O ′3 ) we can apply Theorems 2.12 and 3.6; see

Figure 20.
For b1 ∈ {a5, a6} we first suppose b4 = a1 . The arc set Υ = α1∪α2∪α3∪β2∪

β3 divides O into three components, having 7, 4 and 3 geodesic boundary pieces
respectively. Label these components O7 , O4 and O3 respectively. Either b1 ∈
O7 , see the seventh wire-frame, or b1 ∈ O3 , see the eighth wire-frame. For b1 ∈ O7

(respectively b1 ∈ O3 ) label the arc between b1, b3 in O7 (respectively O3 ) by
β′1 . Since A ′3 = α1, α2, εt,t , B′3 = β1, β2, εt,t are both chains max{l(α3), l(β3)} ≤
l(εt,t) . By Proposition 3.5(iii), l(α2) < l(α1) or l(β′1) < l(β1) contradicting α1, β1

both being shortest arcs.
For this last example the same argument was adapted to the two different

topological configurations. This also holds for all the remaining examples. Ac-
cordingly in Figure 15 we have pictured only one topological configuration to
illustrate the argument used.

Figure 15. Applications of Proposition 3.5 for i1 = 3, j1 = 3

If b4 = a2 we can again apply Proposition 3.5(iii); see the ninth wire-frame.
So b2 ∈ {a5, a6} .
If b1 = a1 then b4 = a2 ; see the tenth wire-frame. The arc set A3 ∪ B3

divides O into three components having 6, 6 and 3 geodesic boundary pieces
respectively. Label these components O6 , O ′6 and O3 respectively so that α2 lies
on the boundary of O6 . In O6 , label by α′1 the arc between b1, a3 ; by α′′1 the arc
between b2, a2 ; and by α′′′1 the arc between b2, a3 . Again A ′3 = α1, α2, εt,t , B′3 =
β1, β2, εt,t are both chains max{l(α3), l(β3)} ≤ l(εt,t) . Since β1 , the arc disjoint
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from α3∪β3 , is a shortest arc, l(β1) ≤ l(εh,t) and we can apply Proposition 3.5(i):
max{l(α′1), l(α′′1 ), l(α′′′1 )} < l(α1) contradicting α1 being a shortest arc.

If b1 = a2 then b4 = a1 and we can again apply Proposition 3.5(i); see the
eleventh wire-frame. For b1 = a3 we can apply Proposition 3.4(b); see the 12th
and 13th wire-frame. So b1 = a4 and we can apply Proposition 3.5(iii); see the
14th and 15th wire-frames.

Now j1 = 4. First we suppose b5 ∈ {a1, a2} . If b4 ∈ {a1, a2} , type (I). So
b4 ∈ {a5, a6} . If b3 ∈ {a1, a2} , type (II).

Suppose b3 = a3 . If {b1, b2} 3 a4 , type (I) or (II). If {b1, b2} 63 a4 we can
apply Proposition 3.4(e); see the first and second wire-frames, Figure 16, where
we have pictured the possibilities for b5 = a1 .

Suppose b3 = a4 . If {b1, b2} 3 a3 or b2 = a2 , type (I) or type (II). So b2 = a1

or b2 ∈ {a5, a6} .
If b2 = a1 then b5 = a2 , b1 ∈ {a5, a6} and we can apply Proposition 3.5(i);

see the third wire-frame.
For b2 ∈ {a5, a6} either b1 = a1 , b5 = a2 or b1 = a2 , b5 = a1 and we can

apply Proposition 3.5(i); see the fourth and fifth wire-frames.
So b3 ∈ {a5, a6} .
Suppose b2 = a1 and so b5 = a2 . Either b1 = a3 or b1 = a4 .
For b1 = a3 , {b1, b2} = {a1, a3} and we can apply Proposition 2.10.
For b1 = a4 we note that B′2 = β1, α1 is a chain and so β2 is a shortest arc.

We can apply Proposition 3.5(i); see the sixth wire-frame.
Suppose b2 = a2 and so b5 = a1 . Either b1 = a3 or b1 = a4 .
For b1 = a3 , see the seventh wire-frame. The arc set A3 ∪ B4 divides O

into three components having 6, 5 and 4 geodesic boundary pieces respectively.
Label these components O6 , O5 and O4 respectively. In O6 , label by α′1 (re-
spectively α′′1 ) the arc between b2, a4 (respectively b3, a1 ). We have that A ′3 =
α1, α2, εt,t , B′4 = β1, β2, β3, εh,t are both chains l(α3) ≤ l(εt,t), l(β3) ≤ l(εh,t) .
Now B′2 = β1, α1 is a chain and so β2 —the arc disjoint from α3 ∪ β4 —is a
shortest arc, l(β2) ≤ min{l(εt,t), l(εt,h)} and so we can apply Proposition 3.5(ii):
max{l(α′1), l(α′′1 )} < l(α1) contradicting α1 being a shortest arc.

For b1 = a4 , type (II).
Suppose b2 = a3 . If b1 = a1 , we can apply Proposition 2.10. If b1 = a2

then b5 = a1 and we can apply Proposition 3.4(e); see the eighth wire-frame. If
b1 = a4 , type (I).

So b2 = a4 .
If b1 = a1 then b5 = a2 and we note that B′2 = β1, α1 is a chain and so β2 is

a shortest arc. We can apply Proposition 3.5(iii) to contradict α1, β2 both being
shortest arcs; see the ninth wire-frame.

So b1 ∈ {a2, a3} , type (I) or (II). Therefore: {a1, a2} 63 b5 and a4 ∈
{b1, b2, b3} .

If a3 ∈ {b1, b2, b3} , type (I) or (II). So a3 = b6 .
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Figure 16. Applications of Propositions 3.4 and 3.5 for i1 = 3, j1 = 4

Suppose a2 = b1 . If a4 = b2 , type (II). If a4 = b3 then a1 = b2 or a1 = b4 .
We can apply Proposition 3.5(i) or (ii) respectively; see the tenth and eleventh
wire-frames.

If a2 = b2 , type (II).

Suppose a2 = b3 . If a4 = b2 , type (I). If a4 = b1 then a1 = b2 or a1 = b4 .
For a1 = b2 we can apply Proposition 3.5(i); see the 12th wire-frame.

For a1 = b4 , see the 13th wire-frame. The arc set A3∪B4 divides O into three
components having 6, 5 and 4 geodesic boundary pieces respectively. Label these
components O6 , O5 and O4 respectively. In O6 , label by β′1 (respectively β′′1 )
the arc between b2, b5 (respectively b3, b1 ). We have that A ′3 = α1, α2, εt,h , B′4 =
β1, β2, β3, εt,t are both chains and so l(α3) ≤ l(εt,h) , l(β4) ≤ l(εt,t) . We know that
B′2 = β1, εh,h is a chain and so l(β2) ≤ l(εh,h) . If l(εh,h) ≤ l(εt,t) then l(β2) ≤
min{l(εh,h), l(εt,t)} and we can apply Proposition 3.5(ii): max{l(β ′1), l(β′′1 )} <
l(β1) contradicting β1 being a shortest arc. So suppose l(εt,t) ≤ l(εh,h) . We can
now apply Proposition 3.5(iv): l(β ′1) < l(β1) or l(α2) < l(α1) contradicting β1, α1

both being shortest arcs.

So a2 = b4 and we can apply Proposition 3.4(e), see the 14th and 15th wire-
frame, where we pictured the possibilities for a4 = b1 .

Finally we consider i1 = 4, j1 = 4. Up to relabelling, we may suppose that
b5 ∈ {a1, a2, a3} . If b4 ∈ {a1, a2, a3} , type (I) or (II). So b4 = a6 .

Suppose b3 ∈ {a1, a2, a3} . Either {b5, b3} 3 a2 , type (II) or {b5, b3} =
{a1, a3} .

First: (b5, b3) = (a1, a3) . If b2 = a2 either b1 = a4 or b1 = a5 and we can
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apply Proposition 3.5(ii) or (i) respectively; see the first and second wire-frames,
Figure 17. If b2 ∈ {a4, a5} either b1 = a2 and we can apply Proposition 2.10 or
b1 ∈ {a4, a5} , type (I).

Next: (b5, b3) = (a3, a1) . If b2 = a2 either b1 = a4 or b1 = a5 and we can
apply Proposition 3.5(ii) or (i) respectively, see the third and fourth wire-frames. If
b2 ∈ {a4, a5} either b1 = a2 and we can apply Proposition 2.10, or b1 ∈ {a4, a5} ,
type (I).

Suppose b3 = a4 . For {b1, b2} 63 a5 we can apply Proposition 3.4(e); see the
fifth and sixth wire-frames, where we have pictured the possibilities for b5 = a1 .
For {b1, b2} 3 a5 , type (I) or (II). So b3 = a5 .

Figure 17. Applications of Propositions 3.4 and 3.5 for i1 = 4, j1 = 4

Suppose b2 = a1 . If b1 = a2 we can apply Proposition 3.5(i); see the sixth
wire-frame. If b1 = a3 we can apply Proposition 2.10. If b1 = a4 , type (II).

Suppose b2 = a2 . If b1 = a1 or b1 = a3 and we can apply Proposition 3.5(i);
see the eighth and ninth wire-frames. If b1 = a4 , type (II).

So b2 ∈ {a3, a4} , type (I) or (II).
Let Z be an arc set that contains no crossing arcs and has the combinatorial

pattern of the edge set of a triangular prism. Label cone points so that there
is a Z arc between cn, cn+1 and between cn, cn+2 and between cn+1, cn+3 for
n = 0, 2, 4. Subscript addition is modulo 6. Label the Z arc between cn, cn+1

by ζn,n+1 , et cetera. Label by ζn,n+3 (respectively ζn+1,n+2 ) the arc between
cn, cn+3 (respectively cn+1, cn+2 ) that does not cross any arc in Z for n = 0, 2, 4.
In Figure 18 we have pictured an orbifold as triangular prism wire-frame with
some of these arcs drawn in thick black.

Proposition 3.5. We have the following :
(i) If max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5) and l(ζ0,1) ≤ l(ζ4,5) then min{l(ζ0,3), l(ζ1,3) ,

l(ζ1,2)} < l(ζ0,2) .
(ii) If l(ζ2,5) ≤ l(ζ3,5), l(ζ3,4) ≤ l(ζ4,5) and l(ζ0,1) ≤ min{l(ζ2,3), l(ζ4,5)} then

min{l(ζ0,3), l(ζ1,2)} < l(ζ0,2) .
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(iii) If max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5) then either l(ζ0,3) < l(ζ0,2) or l(ζ5,1) <
l(ζ4,1) .

(iv) If l(ζ2,5) ≤ l(ζ3,5) and l(ζ3,4) ≤ l(ζ4,5) ≤ l(ζ2,3) then either l(ζ0,3) <
l(ζ0,2) or l(ζ5,1) < l(ζ4,1) .

(v) If max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5) then either l(ζ0,2) < l(ζ1,2) or l(ζ4,0) <
l(ζ4,1) .

(vi) If l(ζ2,5) ≤ l(ζ3,5) and l(ζ3,4) ≤ l(ζ4,5) then either l(ζ0,2) < l(ζ1,2) or
l(ζ4,0) < l(ζ4,1) .

(vii) If max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5) , l(ζ2,3) = l(ζ4,5) and ζ0,2, ζ4,0 are short-
est arcs, then l(ζ1,3) < l(ζ3,4) or l(ζ5,1) < l(ζ2,5) .

Proof. Choose the distinguished disjoint triple of arcs Γ = ζ0,1 ∪ ζ2,3 ∪ ζ4,5 .
We label the common perpendiculars to the pair of pants O \Γ by p0,2, p2,4, p4,0 .

Cutting O open along Γ, ζ1,3, ζ5,1 we obtain a simply connected domain Ω.
Choose a lift of Ω in the universal cover of the pair of pants O \ Γ. Without
confusion, we shall use the same labels for geodesics having non-trivial intersection
with Ω as on O . We label the orbits of cone points on the boundary of Ω in cyclic
order: c0 , c1 , c3 , c2 , c′3 , c′1 , c′5 , c4 , c′′5 , c′′1 , so that ∗i ∈ c̃i . The points c0 ,
c2 , c4 lie at the midpoints of edges, the other points lie at vertices. Label the

component of ζ̃0,1 containing c′1 by ζ ′0,1 ; see Figure 18.
Label the common perpendiculars to ζ0,1, ζ2,3, ζ4,5 by p0,2, p2,4, p4,0 . Let H

denote the right hexagon bounded by p2,4 ∪ ζ2,3 ∪ p0,2 ∪ ζ0,1 ∪ p0,4 ∪ ζ4,5 . We shall
refer to the inside and outside of p0,2 so that H lies inside p0,2 . Similarly for
p2,4, p4,0 .

(i) We suppose that max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5), l(ζ0,1), l(ζ0,1) ≤ l(ζ4,5) and
l(ζ0,3) ≥ l(ζ0,2) and show that l(ζ1,2) ≤ l(ζ0,2) . Unless all the inequalities are
equalities this inequality will be strict. If all the inequalities are equalities then
we show that l(ζ1,3) < l(ζ0,2) .

Consider Q′2,3 bounded by ζ4,5 ∪ p2,4 ∪ ζ2,3∪ ⊥ c2c
′
3 and Q′5,4 bounded by

ζ2,3∪p2,4∪ ζ4,5∪ ⊥ c′5c4 , a pair of right quadrilaterals. Recall that ⊥ XY denotes
the bisector of a disjoint pair of points X,Y ∈ H2 . Any right quadrilateral Q
bounded by A ∪ B ∪ C ∪ D , will be such that the A edge and D edge meet in
an acute angle (Q is ‘finite’ or ‘a trirectangle’) or the A edge and D edge do not
meet (Q is ‘infinite’).

Claim 1. Both Q′2,3 , Q′5,4 are strictly outside p2,4 , c′5 is on the ζ4,5 edge
of Q′2,3 and c′3 is on the ζ2,3 edge of Q′5,4 .

If either c′3 or c′5 is inside p2,4 then either 6 c2c′3c
′
5 ≥ π/2 or 6 c′3c

′
5c4 ≥ π/2

and so either l(ζ3,5) < l(ζ2,5) or l(ζ3,5) < l(ζ3,4) . So both c′3 , c′5 are strictly
outside p2,4 . As above, we use 6 xyz to denote the angle at the y vertex of the
triangle spanned by xyz .

Likewise if either ⊥ c2c
′
3 or ⊥ c′5c4 is inside p2,4 then either l(ζ3,5) < l(ζ2,5)

or l(ζ3,5) < l(ζ3,4) , since c′3 , c′5 are strictly outside p2,4 . So ⊥ c2c
′
3 , ⊥ c′5c4 and

hence Q′2,3 , Q′5,4 are both strictly outside p2,4 .
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If Q′2,3 is finite and c′5 is strictly beyond its acute vertex then l(ζ3,5) < l(ζ2,5) .
Similarly if Q′5,4 is finite and c′3 is strictly beyond its acute vertex then l(ζ3,5) <
l(ζ3,4) . This completes the claim.
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Figure 18. Arcs and lift for (i) and (ii)

Consider a third quadrilateral Q3,2 bounded by ζ0,1 ∪ p0,2 ∪ ζ2,3∪ ⊥ c3c2 .
We compare edge-lengths of Q3,2 , Q′2,3 . Since d(c3, c2) = d(c2, c

′
3) = l(ζ2,3) =

d(p0,2, p2,4) , the ζ2,3 edges of Q3,2Q′2,3 are the same length. Also Q3,2 is strictly
inside p0,2 since Q′2,3 is strictly outside p2,4 . Now l(ζ0,1) ≤ l(ζ4,5) and so, by
the geometry of right hexagons l(p0,2) ≥ l(p2,4) . That is, the p0,2 edge of Q3,2 is
longer than the p2,4 edge of Q′2,3 and so, by the geometry of right quadrilaterals,
the ζ0,1 edge of Q3,2 is longer than the ζ4,5 edge of Q′2,3 .

If c0 is outside p0,2 or on the interior of the ζ0,1 edge of Q3,2 , l(ζ0,3) < l(ζ0,2) ,
contradicting our supposition. So Q3,2 is finite and c0 beyond its ζ0,1 edge which
is longer than the ζ4,5 edge of Q′2,3 which contains c′5 . So d(c0, p0,2) ≥ d(c′5, p2,4) .
Since ⊥ c′5c4 is strictly outside p2,4 and d(c0, c1) = l(ζ0,1) ≤ l(ζ4,5) = d(c′5c4) ,
⊥ c0c1 is strictly inside p0,2 and d(⊥ c0c1, p0,2) ≥ d(⊥ c′5c4, p2,4) .

Consider a fourth quadrilateral Q0,1 bounded by ζ2,3 ∪ p0,2 ∪ ζ0,1∪ ⊥ c0c1 .
We compare edge lengths of Q0,1 , Q′5,4 . We have shown that Q0,1 is strictly
inside p0,2 and that the ζ0,1 edge of Q0,1 is longer than the ζ4,5 edge of Q′5,4 .
Since l(p0,2) ≥ l(p2,4) , the ζ2,3 edge of Q0,1 is longer than the ζ2,3 edge of Q′5,4 .
As c′3 is on the ζ2,3 edge of Q′5,4 and d(c′3, p2,4) = d(c2, p0,2) , c2 is on the ζ2,3
edge of Q0,1 . So l(ζ1,2) ≤ l(ζ0,2) as required.

Finally, l(ζ3,4) = l(ζ2,5) = l(ζ3,5) , l(ζ0,1) = l(ζ4,5) , l(ζ0,3) = l(ζ0,2) implies
l(ζ1,3) < l(ζ0,2) . So Q0,1 is finite and c2 is at its acute vertex. Now c3 is either
outside p0,2 or on the interior of the ζ2,3 edge of Q0,1 : l(ζ1,3) < l(ζ0,3) = l(ζ0,2) .

(ii) We suppose l(ζ2,5) ≤ l(ζ3,5) , l(ζ3,4) ≤ l(ζ4,5) , l(ζ0,1) ≤ min{l(ζ2,3), l(ζ4,5)}
and l(ζ0,3) ≥ l(ζ0,2) and show that l(ζ1,2) < l(ζ0,2) .

Claim 2. Q′2,3 , c′5 are both strictly outside p2,4 , c′5 is on the ζ4,5 edge of
Q′2,3 and d(c′5, p2,4) > d(c′3, p2,4) .
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Suppose that Q′2,3 is strictly inside p2,4 .

If Q′2,3 is finite and c′5 is beyond the acute vertex of Q′2,3 then 6 c′3c
′
5c4 > π/2,

l(ζ4,5) < l(ζ3,4) . If c′5 is on the interior of the ζ4,5 edge of Q′2,3 or outside p2,4 ,
l(ζ3,5) < l(ζ2,5) . Similar arguments hold for Q′2,3 trivial or infinite.

Suppose Q′2,3 (and hence c′3 ) is strictly outside p2,4 .

If c′5 is inside p2,4 we again have 6 c′3c
′
5c4 > π/2, l(ζ4,5) < l(ζ3,4) . If c′5

is outside p2,4 such that d(c′5, p2,4) ≤ d(c′3, p2,4) then 6 c′3c
′
5c4 ≥ 6 c2c′3c

′
5 . By

inspection 6 c2c′3c
′
5 > 6 c4c′3c

′
5 so 6 c′3c

′
5c4 > 6 c4c′3c

′
5 , l(ζ4,5) < l(ζ3,4) . If Q′2,3

is finite and c′5 is strictly beyond its acute vertex, l(ζ3,5) < l(ζ2,5) . The claim
follows.

Recall that Q3,2 is bounded by ζ0,1 ∪ p0,2 ∪ ζ2,3∪ ⊥ c3c2 . As Q′2,3 is strictly
outside p2,4 and the ζ2,3 edges of Q3,2 , Q′2,3 are the same length: Q3,2 is strictly
inside p0,2 . Again l(ζ0,1) ≤ l(ζ4,5) and so l(p0,2) ≥ l(p2,4) . So the ζ0,1 edge of
Q3,2 is longer than the ζ4,5 edge of Q′2,3 .

Recall that Q0,1 is bounded by ζ2,3 ∪ p0,2 ∪ ζ0,1∪ ⊥ c0c1 . We show that
Q0,1 is strictly inside p0,2 . As with part (i), so that l(ζ0,3) ≥ l(ζ0,2) : Q3,2 is
finite and c0 is beyond its acute vertex. So d(c0, p0,2) is longer than the ζ0,1

edge of Q3,2 which is longer than the ζ4,5 edge of Q′2,3 which is longer than
d(c′5, p2,4) > d(c′3, p2,4) = d(c2, p0,2) . That is d(c0, p0,2) > d(c2, p0,2) . Since
⊥ c3c2 is strictly inside p0,2 and d(c0, c1) = l(ζ0,1) ≤ l(ζ2,3) = d(c3, c2) , ⊥ c0c1 is
strictly inside p0,2 and d(⊥ c0c1, p0,2) > d(⊥ c3c2, p0,2) .

So Q3,2 , Q0,1 are both inside p0,2 , the ζ0,1 edge of Q0,1 is strictly longer
than the ζ2,3 edge of Q3,2 . As Q3,2 , Q0,1 have p0,2 in common, the ζ2,3 edge
of Q0,1 is strictly longer than the ζ0,1 edge of Q3,2 which is longer than the ζ4,5

edge of Q′2,3 which is strictly longer than d(c′5, p2,4) > d(c′3, p2,4) = d(c2, p0,2) . So
c2 is on the interior of the ζ2,3 edge of Q0,1 , l(ζ1,2) < l(ζ0,2) .

(iii) We suppose that max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5) and show that either
l(ζ0,3) < l(ζ0,2) or l(ζ5,1) < l(ζ4,1) . From Claim 1, Q′2,3 , Q′5,4 are both strictly
outside p2,4 and so Q3,2 , Q′′4,5 are strictly inside p0,2 , p4,0 respectively. Here
Q′′4,5 denotes the right quadrilateral bounded by ζ0,1 ∪ p4,0 ∪ ζ4,5 ⊥ c4c′′5 .

Consider c0 , c′′1 on ζ0,1 . Either c0 is outside p0,2 or c′′1 is outside p4,0 . So
c0 is strictly closer to c3 than to c2 or c′′1 is strictly closer to c′′5 than to c4 . That
is either l(ζ0,3) < l(ζ0,2) or l(ζ5,1) < l(ζ4,1) .

(iv) We suppose that l(ζ2,5) ≤ l(ζ3,5) and l(ζ3,4) ≤ l(ζ4,5) ≤ l(ζ2,3) and show
that either l(ζ0,3) < l(ζ0,2) or l(ζ5,1) < l(ζ4,1) .

From Claim 2, Q′2,3 , c′5 are both strictly outside p2,4 , d(c′5, p2,4) > d(c′3, p2,4) .
Since d(c′5, c4) = l(ζ4,5) ≤ l(ζ2,3) = d(c2, c

′
3) , Q′5,4 is strictly outside p2,4 . As with

part (iii), we can conclude that either l(ζ0,3) < l(ζ0,2) or l(ζ5,1) < l(ζ4,1) .

(v) We suppose that max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5) and show that either
l(ζ0,2) < l(ζ1,2) or l(ζ4,0) < l(ζ4,1) . From Claim l, c′3 , c′5 are both strictly outside
p2,4 and so c2 and c4 are strictly inside p0,2 and p4,0 respectively.
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Consider ⊥ c0c1 , ⊥ c′′1c0 . Either ⊥ c0c1 is outside p0,2 or ⊥ c′′1c0 is out-
side p4,0 . So either c2 is strictly closer to c0 than to c1 or c4 is strictly closer to
c0 than to c′′1 . That is either l(ζ0,2) < l(ζ1,2) or l(ζ4,0) < l(ζ4,1) .

(vi) We suppose that l(ζ2,5) ≤ l(ζ3,5) , l(ζ3,4) ≤ l(ζ4,5) and show that l(ζ0,2) <
l(ζ1,2) or l(ζ4,0) < l(ζ4,1) . From Claim 2, c′3 and c′5 are both strictly outside p2,4 .
As with part (v) we can conclude that either l(ζ0,2) < l(ζ1,2) or l(ζ4,0) < l(ζ4,1) .

(vii) We suppose that max{l(ζ2,5), l(ζ3,4)} ≤ l(ζ3,5), l(ζ2,3) = l(ζ4,5) and that
ζ0,2 , ζ4,0 are both shortest arcs and show that l(ζ1,3) < l(ζ3,4) or l(ζ5,1) < l(ζ2,5) .

By hypothesis l(ζ2,3) = l(ζ4,5) and so O \ Γ has rotational symmetry R
exchanging boundary components ζ2,3 , ζ4,5 and fixing ζ0,1 , p2,4 setwise. Gluing
along ζ0,1 to recover O \ ζ2,3 ∪ ζ4,5 , this symmetry is respected, exchanging cone
points c0 , c1 . In the universal cover, the rotational symmetry of O \ζ2,3∪ζ4,5 lifts
to a rotational symmetry R such that R(ζ2,3) = ζ4,5 , R(ζ0,1) = ζ ′0,1 , R(c0) = c′1
and R(p2,4) = p2,4 .

By Claim 1, ⊥ c2c′3 and ⊥ c′5c4 are both strictly outside p2,4 .
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Figure 19. Arcs and lift for (vii)

Either (a) c2 , c4 are both strictly inside p2,4 or (b) one of c2 , c4 is out-
side p2,4 . We shall give the argument for (b); a similar argument holds for (a).
We suppose c2 is outside p2,4 and show that l(ζ1,3) < l(ζ3,4) . (If c4 is outside
p2,4 , the same argument shows that l(ζ5,1) < l(ζ2,5) .)

Claim 3. c4 is inside p2,4 and d(c2, p2,4) ≤ d(c4, p2,4) < l(ζ4,5)/2.
Consider the bisector ⊥ c0c′1 . By rotational symmetry ⊥ c0c

′
1 passes through

the midpoint of p2,4 . As ζ0,2 is a shortest arc, c2 ∈ ζ2,3 is to the c0 side of ⊥ c0c′1 .
So either ζ2,3 is strictly to the c0 side of ⊥ c0c′1 or ⊥ c0c′1 intersects ζ2,3 outside
p2,4 , beyond c2 .

By rotational symmetry, the former corresponds to ζ4,5 3 c4 lying strictly
to the c′1 side of ⊥ c0c

′
1 . This contradicts ζ4,0 being a shortest arc. So ⊥ c0c

′
1

intersects ζ2,3 (respectively ζ4,5 ) outside (inside) p2,4 , beyond c2 (between p2,4 ,
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c4 ). As ⊥ c′5c4 is strictly outside p2,4 , d(c4, p2,4) < d(c′5, p2,4) and so d(c4, p2,4) <
l(ζ4,5)/2. This completes the claim.

By rotational symmetry R(c4 ) is outside p2,4 and d(c2, p2,4) ≤ d
(
R(c4), p2,4

)

< l(ζ2,3)/2.

Claim 4. d
(
R(c4), c′1

)
≤ d
(
R(c4), c4

)
.

We show that d(c4, c0) ≤ d
(
c4, R(c4)

)
, which by rotational symmetry is equiv-

alent. By hypothesis ζ4,0 is a shortest arc and so d(c4, c0) = l(ζ4,0) ≤ l(ζ2,4) =
d(c4, c2) . By Claim 3 and by inspection d(c4, c2) ≤ d

(
c4, R(c4)

)
.

Now c′3 is outside p2,4 such that d(c′3, p2,4) = l(ζ2,3)+d(c2, p2,4) > l(ζ2,3)/2 >
d
(
R(c4), p2,4

)
. So by Claim 4 and by inspection, d(c′3, c

′
1) = l(ζ1,3) < l(ζ3,4) =

d(c′3, c4) .

We extend the arc set K∪Λ by H = ∪ηl where ηl is between c1 , c3 crossing
only κ0,l ⊂ K .

Theorem 3.6. Either l(κ0,1) < l(η4) or l(κ0,5) < l(κ3,5) or l(λ2) < l(λ0) .
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c1
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c2
c3

c3
c4

c4

c5
c5

c′
5

c′
3

λ0

λ0

λ2

λ2

κ3,5

κ0,5

κ0,1

η4

η4

P1P4P5 P ′

5

Figure 20. Application, arcs and lift of Ω in Theorem 3.6

Consider Ai1 ,Bj1 with i1 = 3, j1 = 3 and b4 = a2 , b3 ∈ {a5, a6} , b2 = a4 ,
b1 = a1 such that c ∈ O3 ; see Figure 20. Since A ′2 = α1, β1 is a chain, α2 is
a shortest arc. We set α1 = κ2,3 , α2 = κ3,5 , α3 = λ0 , β1 = κ2,4 , β2 = κ1,4 ,
β3 = η4 . This arc set extends uniquely to the arc set K ∪ Λ ∪ H . Both A ′3 =
α1, α2, λ1 , A ′′3 = α1, α2, λ3 are chains, so l(λ0) ≤ min{l(λ1), l(λ3)} . Since α1 is
a shortest arc, Theorem 2.12 implies min{l(λ1), l(λ3)} ≤ l(λ2) . So l(λ0) ≤ l(λ2) .
By Theorem 3.6 either l(κ0,1) < l(η4) or l(κ0,5) < l(κ3,5) or l(λ2) < l(λ0) . As
B′3 = β1, β2, κ0,1 is a chain and α2 = κ3,5 is a shortest arc, we have a contradiction.

Proof. We suppose l(η4) ≤ l(κ0,1) , l(κ3,5) ≤ l(κ0,5) and show that l(λ2) <
l(λ0) . Cut O open along κ1,5 ∪ κ1,4 ∪ λ2 and consider O ′2 , the component not
containing c2 . Cut O ′2 open along κ3,0 so as to obtain an annulus. Making a
further cut along κ3,5 we obtain a simply connected domain Ω. Choose a lift of
Ω in the universal cover of the annulus O ′2 \ κ3,0 .

Label the geodesics around the boundary of Ω by κ3,0 , κ3,5 , λ2 , κ1,4 , κ1,5 ,
κ′3,5 , in cyclic order. Give the other geodesics having non-trivial intersection with
Ω the same labels as on O . In the same cyclic order, label orbits of cone points
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around the boundary of Ω by c0 , c3 , c5 , c4 , c1 , c′5 , c′3 . Let P5 , P4 , P1 , P ′5
denote the perpendiculars to κ3,0 from c5 , c4 , c1 , c′5 respectively.

Now: l(η4) ≤ l(κ0,1) implies that P1 is closer to c3 than to c0 and l(κ3,5) ≤
l(κ0,5) implies that P ′5 is closer to c′3 than to c0 . It follows that d(P1, P

′
5) ≥

l(κ3,0) .
The perpendiculars lie in the order P5, P4, P1, P

′
5 and so d(P4, P

′
5) > d(P1, P

′
5)

and hence d(P5, P4) < l(κ3,0) . So the κ3,0 edge of the birectangle Q2,3 is strictly
shorter than the κ3,0 edge of the birectangle Q0,3 . Therefore l(λ2) < l(λ0) .

Theorem 3.7. If l(λ0) ≤ 1(λ2) , l(κ0,1) ≤ min{l(κ0,l), l(κ3,l), l(ηl)} and
l(κ1,2) = l(κ3,0) ≤ min{l(κ1,l), l(κ2,l), l(κ3,l)} , for l = 4, 5 , then O is the octahe-
dral orbifold.

Consider Ai1 ,Bj1 with i1 = 2, j1 = 3 and a3 ∈ {b1, b2} , {a2, a1} = {b5, b6} ;
see Figure 21. Suppose a3 = b1 . Set α1 = κ3,0 , α2 = κ0,1 , β1 = κ1,2 , β2 = κ2,5 ,
β3 = λ0 . This arc set extends uniquely to the arc set K ∪ Λ ∪ H . Each one
of B′3 = β1, β2, λ2 , A ′2 = α1, κ0,l , A ′′2 = α1, κ3,l , A ′′′2 = α1, ηl is a chain so
l(λ0) ≤ l(λ2) , l(κ0,1) ≤ {l(κ0,l), l(κ3,l), l(ηl)} for l = 4, 5. Also κ3,0 = α1 ,
κ1,2 = β1 are both shortest arcs, so we can apply Theorem 3.7: O is the octahedral
orbifold. This gives a contradiction since minimal chains on Oct lie in its set of
shortest arcs, which contains no crossing arcs. Likewise for a3 = b2 .
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κ3,4 κ3,4
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κ2,5

κ2,4

κ1,2

Figure 21. Applications and arc set for Theorem 3.7

Proof. Let Γ = κ1,2 ∪λ2∪κ3,0 a distinguished disjoint triple of arcs. Let p3,1

denote the common perpendicular between κ3,0 , κ1,2 . The pair of pants O \Γ has
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a rotational symmetry R exchanging κ1,2 , κ3,0 and fixing λ0 , λ2 , p3,1 setwise.
Gluing along λ2 so as to recover O \ κ1,2 ∪ κ3,0 this symmetry is respected. So
R exchanges the birectangles Q0,1 ↔ Q0,3 , Q2,1 ↔ Q2,3 . That is, Q0,1 , Q0,3

(respectively Q2,1 , Q2,3 ) are isometric.
As we have observed many times above, since l(λ0) ≤ l(λ2) the κ3,0 edge

of Q0,3 is shorter than the κ3,0 edge of Q2,3 . Here we observe that l(λ0) ≤
l(λ2) implies that 6 clQ0,1 ≥ 6 clQ2,1 . Summing angles we have that 6 c4Q0,3 +
6 c5Q0,3 ≥ 6 c4Q2,3 + 6 c5Q2,3 .

The set κ1,2∪P4,1∪P4,3∪κ3,0∪P5,3∪P5,1 divides O into a pair of hexagons
Hk ⊃ λk for k = 0, 2. We have shown that both hexagons have rotational
symmetry and that the κ1,2 , κ3,0 edges of H0 are shorter than the κ1,2 , κ3,0

edges of H2 . It follows that the κ1,2 , κ3,0 edges of H0 are shorter than l(κ1,2) =
l(κ3,0) . Also 6 c4H0 = 6 c4Q0,1 + 6 c4Q0,3 ≥ 6 c4Q2,1 + 6 c4Q2,3 = 6 c4H2 . Since
6 c4H0 + 6 c4H2 = π it follows that 6 c4H0 = 6 c5H0 ≥ π/2.

Note. The hypotheses are symmetric up to an exchange of labels: κk,4 ↔ κk,5
for k = 0, 1, 2, 3; c4 ↔ c5 ; and η4 ↔ η5 . So we may suppose that l(P4,1) =
l(P5,3) ≥ l(P4,3) = l(P5,1) .

Cut O open along κ1,2 ∪ κ1,4 ∪ κ3,4 ∪ κ3,0 ∪ κ0,5 ∪ κ2,5 to obtain a pair of
simply connected domains Ω0,Ω2 containing λ0, λ2 respectively. Take a lift of
Ω0 to the universal cover of the pair of pants O \ Γ. Without confusion use the
same labels for geodesics having non-trivial intersection with Ω0 , for orbits of
cone points lying on the boundary of Ω0 , for the common perpendicular between
κ1,2, κ3,0 , for the perpendiculars from c4, c5 to κ1,2, κ3,0 and for the rotational
symmetric of hexagon H0 bounded by κ1,2 ∪ P4,1 ∪ P4,3 ∪ κ3,0 ∪ P5,3 ∪ P5,1 . We
may suppose that H0 has a bottom, a top, a left and a right, so that κ1,2 is the
bottom, κ3,0 is the top, c4 to the left and c5 is to the right. Label the unlabelled
vertices of H0 : h1 , h2 , h0 , h3 in anticlockwise order, beginning from bottom
left.

The main part of the proof has two parts. The first part is to establish

Claim 1. c1 is strictly between P4,1 , P5,1 .
For c1 to the left of P4,1 we show that l(κ0,4) < l(κ0,1) . For c1 right of P5,1

a similar argument shows that l(κ0,5) < l(κ0,1) .
We use a different pants decomposition of O . Let Γ′ = κ3,0 ∪ κ1,4 ∪ κ2,5 .

Label the common perpendiculars associated to this pants decomposition by p0,4 ,
p4,5 and p5,0 . Cut open along Γ′ , κ1,2 , κ3,4 and κ0,5 so as to obtain two simply
connected domains: Ω0 , Ω2 , as above. Again take a lift of Ω0 and use the same
labels as before, with the additional labelling for the common perpendiculars to Γ′ .
So κ1,4 ∪ p4,5 ∪ κ2,5 ∪ p5,0 ∪ κ3,0 ∪ p0,4 bounds a right hexagon. Let p denote the
common perpendicular to κ1,4, p5,0 .

As c1 is to the left of P4,1 , 6 c1c4h3 ≥ 6 h1c4h3 = 6 c4H0 ≥ π/2. So c4 is to
the p4,5 side of p0,4 or equivalently, ⊥ c1c4 is closer to p4,5 than to p0,4 . Now p
is closer to p0,4 than to p4,5 , as l(κ3,0) ≤ l(κ2,5) and using the geometry of right
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hexagons. It follows that ⊥ c1c4 lies to the p4,5 side of p and so ⊥ c1c4 does not
intersect κ3,0 and hence l(κ0,4) < l(κ0,1) . This completes the claim.
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h1 h2

h3

c1 c2

c4
c5

c4
c5

p0,4 p5,0

p4,5

κ3,0
κ3,0

κ1,2

x y

R(x)
R(y)

ϕ
ϕ′

ϕ′′

ψ ψ′

Figure 22. Claims 1 and 2.

In the second part, we show that l(κ0,4) ≤ l(κ0,1) or l(κ0,5) ≤ l(κ0,1) with
equality if and only if a certain set of conditions are satisfied. At the end we show
that this set of conditions implies that O is the octahedral orbifold.

The argument we use depends upon the positions of c0, c1 : each part (i)–(viii)
corresponds to a different configuration. However each part uses the following
construction together with the angle comparison we establish in Claim 2.

For each part we define x to be a point on κ1,2 strictly between P4,1, P5,1 .
We define y to be the point on κ1,2 to the right of x such that d(x, y) = l(κ1,2) .
Label angles so that ϕ = 6 h1c4x , ψ = 6 c4xh1 , ψ′ = 6 h2xc5 , ϕ′ = 6 xc5h2 ,
ϕ′′ = 6 h2c5y . Let m1,2 (respectively m3,0 ) denote the midpoint of h1, h2 (re-
spectively h3, h0 ).

Claim 2. For (i), (ii), (iv), (v): 6 R(x)c4x ≥ π/2−ψ and for (iii), (vi), (vii),
(viii): 6 R(x)c5x ≥ π/2− ψ′ .

By rotational symmetry we have 6 R(x)c4x = 6 R(x)c5x . Below we show that
6 R(x)c5x ≥ π/2 − ψ′ for (i)–(viii). For (i), (ii), (iv), (v) the point x is to the
left of m1,2 . So d(x, P4,1) ≤ d(x, P5,1) . Since l(P4,1) ≥ l(P5,1) , it follows that
ψ ≥ ψ′ . So the claim follows from the argument below.

Firstly: ϕ ≤ ϕ′′ . Since d(x, y) = l(κ1,2) ≥ d(P4,1P5,1) it follows that
d(P4,1, x) ≤ d(P5,1, y) . Also l(P4,1) ≥ l(P5,1) .

Next: ϕ′ +ϕ′′ ≤ ψ′ . For (i), (ii), (iii), (v)(a), (viii) (respectively (v)(b), (vi))
we have that y is to the right of c2 which is to the right of P5,1 (R(y) is to the left
of c3 which is to the left of P4,3 ). It follows that d(y, c5) ≥ d(c2, c5) = l(κ2,5) ≥
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l(κ1,2) = d(y, x) (d
(
R(y), c4

)
≥ d(c3, c4) = l(κ3,4) ≥ l(κ3,0) = d

(
R(y), R(x)

)
).

This is equivalent to ϕ′ + ϕ′′ ≤ ψ′ .
For (iv), (vii) we have that x is to the left of c1 which is to the left of P5,1 .

It follows that d(x, c5) ≥ d(c1, c5) = l(κ1,5) ≥ l(κ1,2) = d(x, y) . Also x is to the
right of m1,2 and so d(x, P5,1) ≤ d(m1,2, P5,1) = d(P4,1, P5,1)/2 ≤ l(κ1,2)/2. So
d(y, P5,1) ≥ d(x, P5,1) , d(y, c5) ≥ d(x, c5) ≥ d(x, y) . Again, this is equivalent to
ϕ′ + ϕ′′ ≤ ψ′ .

So 6 R(x)c4x = 6 c4H0−(ϕ+ϕ′) ≥ π/2−(ϕ+ϕ′) ≥ π/2−(ϕ′′+ϕ′) ≥ π/2−ψ′
and we are done.

Note. It is an elementary exercise to show that m1,2 is to the right of p3,1

and that P0,1 (the perpendicular from c0 to κ1,2 ) is strictly between P4,1, P5,1 .

First: c1 to the left of p3,1 .

(i): P0,1 to the left of c1 .

Let x = c1 . By inspection, 6 c0c4x ≥ 6 R(x)c4x and by Claim 2, 6 R(x)c4x ≥
π/2 − ψ . Also by inspection, π/2 − ψ ≥ 6 c0xc4 . So 6 c0c4c1 ≥ 6 c0c1c4 or
equivalently d(c0, c4) ≤ d(c0, c1) : l(κ0,4) ≤ l(κ0,1) .

(ii): P0,1 between c1 , p3,1 .

Let x = P0,1 ∩ κ1,2 . By inspection, 6 c0c4x ≥ 6 R(x)c4x and by Claim 2,
6 R(x)c4x ≥ π/2−ψ = 6 c0xc4 . So d(c0, c4) ≤ d(c0, x) . Now x is the closest point
on κ1,2 to c0 so d(c0, x) ≤ d(c0, c1) : l(κ0,4) ≤ l(κ0,1) .

(iii): P0,1 to the right of p3,1 .

Again let x = P0,1∩κ1,2 . By inspection, 6 c0c5x ≥ 6 R(x)c5x and by Claim 2,
6 R(x)c5x ≥ π/2 − ψ′ = 6 c0xc5 . So d(c0, c5) ≤ d(c0, x) ≤ d(c0, c1) : l(κ0,5) ≤
l(κ0,1) .

Next: c1 to the right of p3,1 .

(iv): c0 to the left of p3,1 , min{d(c0, p3,1), d(c1, p3,1)} ≥ d(m1,2, p3,1) .

Let x = m1,2 . By inspection, 6 c0c4x ≥ 6 R(x)c4x and by Claim 2, 6 R(x)c4x
≥ π/2−ψ . Again by inspection, π/2−ψ ≥ 6 c0c4x . So d(c0, c4) ≤ d(c0, x) . Now
d(c0, x) = d(c0,m1,2) ≤ d(c0, c1) : l(κ0,4) ≤ l(κ0,1) .

(v): c0 to the left p3,1 , min{d(c0, p3,1), d(c1, p3,1)} ≤ d(m1,2, p3,1) .

Either: (a) d(c1, p3,1) ≤ d(c0, p3,1) or (b) d(c0, p3,1) ≤ d(c1, p3,1) .

For (a) (respectively (b)) let x = c1
(
R(c0)

)
. By inspection, 6 c0c4x ≥

6 R(x)c4x and by Claim 2, 6 R(x)c4x ≥ π/2−ψ . Again by inspection, π/2−ψ ≥
6 c0c4x . So d(c0, c4) ≤ d(c0, c1) : l(κ0,4) ≤ l(κ0,1) .

(vi): P0,1 between p3,1, c1 and to the left of m1,2 .

Let x = P0,1 ∩κ1,2 . If c3 is to the right of P4,3 we show that either l(κ3,4) <
l(κ0,1) or l(η4) < l(κ0,1) .

Suppose c3 is between P4,3 , m3,0 . So d(c4, c3) ≤ d(c4,m3,0) . As m1,2 is
to the right of x , d(c5,m1,2) ≤ d(c5, x) . Since c3 is to the right of P4,3 , c0
is to the right of P5,3 . We can apply the same argument as in Claim 1 since
l(κ1,2) ≤ l(κ3,4) : κ1,2 lies strictly to the c5 side of ⊥ c0c5 . In particular d(c5, x) <
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d(c0, x) . Again d(c0, x) ≤ d(c0, c1) . That is d(c4, c3) ≤ d(c4,m3,0) = d(c5,m1,2) ≤
d(c5, x) < d(c0, x) ≤ d(c0, c1) : l(κ3,4) < l(κ0,1) .

Next: c3 to the right of m3,0 . So ⊥ c3c0 is to the right of P5,3 and κ1,2 lies
strictly to the c3 side of ⊥ c3c0 , d(c3, c1) < d(c0, c1) : l(η4) < l(κ0,1) .

So: c3 is stricly to the left of P4,3 . By inspection, 6 c0c5x ≥ 6 R(x)c5x and
by Claim 2, 6 R(x)c5x ≥ π/2 − ψ′ = 6 c0xc5 . So d(c0, c5) ≤ d(c0, x) ≤ d(c0, c1) :
l(κ0,5) ≤ l(κ0,1) .

(vii): P0,1 between p3,1 , c1 and to the right of m1,2 .
Let x = P0,1 ∩ κ1,2 . By inspection, 6 c0c5x ≥ 6 R(x)c5x and by Claim 2,

6 R(x)c5x ≥ π/2− ψ′ = 6 c0xc5 . Again it follows that l(κ0,5) ≤ l(κ0,1) .
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Figure 23. Configurations of c0 and c1

(viii): P0,1 to the right of c1 : use the same argment as for (iii).
For each one of (i)–(viii): if l(P4,1) > l(P5,1) then ϕ < ϕ′′ and so l(κ0,4) <

l(κ0,1) or l(κ0,4) < l(κ0,1) . Likewise if l(λ0) < l(λ2) then d(P4,1, P5,1) < l(κ1,2) .
So we may assume that l(P4,1) = l(P5,1) and l(λ0) = l(λ2) , d(P4,1, P5,1) = l(κ1,2) .
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Moreover l(P4,1) = l(P5,1) implies m1,2 = p3,1 ∩ κ1,2 , m3,0 = p3,1 ∩ κ3,0 and
l(λ0) = l(λ2) implies 6 c4H0 = π/2.

Consider (i). If l(κ2,5) > l(κ1,2) then ϕ′ + ϕ′′ < Ψ′ and so l(κ0,4) < l(κ0,1) .
So we may assume l(κ2,5) = l(κ1,2) . Also if x = c1 is strictly to the left of p3,1 then
6 c0c4x > 6 R(x)c4x and so l(κ0,4) < l(κ0,1) . So we may assume c1 = p3,1 ∩ κ1,2 .
Likewise 6 c0c4x > 6 R(x)c4x if c0 is strictly to the left of p3,1 . So we may assume
c0 = p3,1 ∩ κ3,0 .

Checking through the proof of Claim 2 we now have l(κ0,4) = l(κ0,1) . Indeed
since l(P4,1) = l(P5,1) the hexagon H0 has reflective symmetries in p3,1 and λ0 .
As both c1 = p3,1 ∩ κ1,2 , c0 = p3,1 ∩ κ3,0 so l(κ0,4) = l(κ0,5) = l(κ1,4) = l(κ1,5) .
Similarly for arcs on H2 , which is isometric to H0 by an orientation preserving
isometry. It follows that each arc κ∗,∗ is the same length. As the arc set K has
the combinatorial edge pattern of an octahedron, it is now not hard to show that
O must be the octahedral orbifold.

We can argue similarly for each of the other parts (ii)–(viii).
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