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Abstract. Let G be the set of all simple closed geodesics on a five-punctured sphere Σ5 . In
this article, we associate to each γ ∈ G four integers which are read off topologically from γ itself.
These integers have three remarkable applications. First, the geometric intersection number of
any two geodesics in G can be written explicitly in terms of the corresponding integers. Secondly,
there is a homeomorphism of the completion of G onto a 3-sphere lying in R4 whose restriction
to G is written explicitly in terms of these integers. Finally, these integers are related to trace
polynomials of the corresponding transformations in a representation of π1(Σ5) into PSL(2,C) .

Introduction

According to Thurston, the set of all complete simple geodesics on a Riemann
surface can be made into a topological space homeomorphic to a sphere whose
dimension depends on the topology of the surface. By Thurston’s result, the space
G n of complete simple geodesics on an n -punctured sphere Σn with n ≥ 4 is
homeomorphic to a sphere of dimension 2n− 7.

In [4], the author introduced to each simple closed geodesic γ on Σ4 a pair
of integers IX(γ) ≥ 0 and N(γ) whose absolute values are geometric intersection
numbers of γ with a fixed pair of simple curves on Σ4 . With these integers, the
author proved that the geometric intersection number of any two simple closed
geodesics γ and δ on Σ4 is

2|IX(γ)N(δ)− IX(δ)N(γ)|.

The geometric intersection formula above was used to prove the injectivity of a
homeomorphism Ψ of G 4 onto the circle R ∪ {∞} with Ψ(γ) = N(γ)/IX(γ) for
all simple closed geodesics γ . Moreover, if G is a Maskit four-punctured sphere
group, and if g ∈ G represents a simple closed geodesic γ on Σ4 , then the first
two high-order terms of the trace polynomial of g are written explicitly in terms
of IX(γ) and N(γ) .

The aim of this article is to generalize the results in [4] to the case of a
five-punctured sphere.
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Similar trace formulas for once and twice punctured tori are proved using
different methods in [6] and [7] respectively. However, the methods adopted in [4],
[6], [7] and in this article are all based on the cutting sequence technique developed
by Birman and Series [2].

In [7], the trace formulas are obtained by factoring a representation of the first
fundamental group of a twice punctured torus S in SL(2,C) as a representation
of the fundamental groupoid π1,2(S , p1, p2) on S with two basepoints p1 and
p2 , where one basepoint is chosen on each of the two cyclindrical subsurfaces
obtained by cutting along a pair of disjoint curves, one passing through each
of the punctures. The fundamental groupoid π1,2(S , p1, p2) is the groupoid of
homotopy classes of paths in S with endpoints in the set {p1, p2} .

In addition to trace formulas, in [7] Keen, Parker and Series also provide a set
of projective coordinates for the set of all simple closed geodesics on S , called the
π1,2 -coordinates. For every simple loop γ on S , they consider the restriction of
the integral weighted π1 -train track associated with γ to each cylinder, and call
the restricted train track the integral weighted π1,2 -train track associated with γ
by relating it to π1,2(S , p1, p2) . The π1,2 -coordinates are integer functions of the
integral weighted π1,2 -train tracks.

In this article, we shall give a set of projective coordinates to the set G of all
simple closed geodesics on a five punctured sphere Σ5 equipped with a hyperbolic
metric. By using the coordinates, we provide a 3-sphere structure for the set G
of all complete simple geodesics on Σ5 .

To enumerate the set G , we start with a Fuchsian representation G of the first
fundamental group of Σ5 acting on the upper half plane U . The Fuchsian group
G is generated by two parabolic transformations X and Y , and two hyperbolic
transformations S and T .

In Section 2, we introduce four integer functions IX , IY , NS and NT on G .
The integer functions IX and IY are analogues of the integer function IX defined
in [4], and NS and NT are analogues of the integer function N defined in [4].
The values of IX and IY are non-negative. The sign of NS and that of NT
are determined by the symmetry of D , where D is a fundamental domain for G
acting on U with Γ = {S, S−1, T, T−1, X,X−1, Y, Y −1} the set of side pairings.

For every γ ∈ G , the integers IX(γ) , IY (γ) , NS(γ) and NT (γ) are read off
from the lift of γ to D . The lift of γ to D also determines words in elements of
Γ representing γ , which are called Γ-words. We shall write Γ-words representing
geodesics in G in a specific way, and call them cyclic semi-reduced Γ-words. In
Section 2, we shall also relate these cyclic semi-reduced Γ-words to the integer
functions IX , IY , NS and NT .

By use of the integer functions IX , IY , NS and NT , we prove a geometric
intersection formula in Theorem 3.1. The geometric intersection formula says that
if γ and δ are two geodesics in G , then the geometric intersection number of γ
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with δ is

2|IX(γ)NT (δ)− IX(δ)NT (γ)|+ 2|IY (γ)NS(δ)

− IY (δ)NS(γ)|+ |IXY (γ, δ)| − IXY (γ, δ),

where IXY (γ, δ) = {IX(γ)− IY (γ)} · {IX(δ)− IY (δ)} .
As a consequence of the geometric intersection formula, we obtain the geo-

metric intersection numbers of six fixed geodesics in G with an arbitrary geodesic
γ ∈ G . These geometric intersection numbers will be called the elementary inter-
section numbers of γ .

The elementary intersection numbers are used to construct a homeomorphism
Ψ of G onto a 3-sphere ∆ lying in R6 (Theorem 4.3). We start with a function
of G into ∆ which maps each γ ∈ G to the point whose coordinates are the
elementary intersection numbers of γ . Then, by a continuity argument, we extend
the function to obtain a continuous map Ψ from G onto ∆. The injectivity of Ψ
is proved by the geometric intersection formula.

By post composing Ψ by a map from R6 into R4 , we obtain an embedding
Φ of G into R4 with

Φ(γ) =

(
IX(γ)

σ(γ)
,
NT (γ)

σ(γ)
,
IY (γ)

σ(γ)
,
NS(γ)

σ(γ)

)

for every γ ∈ G , where σ(γ) = IX(γ) + |NT (γ)|+ IY (γ) + |NS(γ)| (Theorem 4.4).
In the final section, we first find for each γ ∈ G a cyclic semi-reduced Γ-word

W (γ) to represent it, and write the word explicitly; see Theorem 5.1, Corol-
lary 5.2 and Theorem 5.3. Then, we consider the Maskit embedding of the Teich-
müller space of Σ5 , which is a holomorphic family of Kleinian groups G(µ, ν)
parametrized by a subset M5 of C2 . For every (µ, ν) ∈ M5 , the group G(µ, ν)
uniformizes a five-punctured sphere and three thrice punctured spheres.

For every γ ∈ G , let W (γ;µ, ν) ∈ G(µ, ν) be the image of W (γ) under the
canonical isomorphism of G onto G(µ, ν) . The trace trW (γ;µ, ν) of W (γ;µ, ν)
is a polynomial in µ and ν . For γ ∈ G with m = IX(γ) > 0 or n = IY (γ) > 0,
we prove in Theorem 5.5 that

trW (γ;µ, ν) = ±{µ2mν2n + 4NT (γ)µ2m−1ν2n + 2NS(γ)µ2mν2n−1 + · · ·}
whenever m ≥ n , and

trW (γ;µ, ν) = ±4n−m{µ2mν2n + 4NT (γ)µ2m−1ν2n + 2NS(γ)µ2mν2n−1 + · · ·}
whenever m ≤ n .

Together with the theory of pleating coordinates developed by Keen and Se-
ries [6], the trace formulas given above will be used to describe the shape of M5 .
The work will appear elsewhere.

Acknowledgement. The author would like to thank Professor L. Keen for
her encouragement and for many informative communications. Thanks also go
to the referee who read the original manuscript carefully and made many helpful
comments.
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1. Preliminaries

1.1. The space of complete simple geodesics. Let Σ5 be a 5-punctured
sphere equipped with a hyperbolic metric. A loop on Σ5 with no self intersections
will be called a simple loop. An essential simple loop on Σ5 is a simple loop which
is neither homotopically trivial nor homotopically equivalent to a puncture of Σ5 .
A finite union of pairwise disjoint essential simple loops on Σ5 will be called a
multiple simple loop.

Let G be the set of all free homotopy classes of non-oriented essential simple
loops on Σ5 . Every element of G contains a unique geodesic γ on Σ5 . By abuse
of notation, we shall also use γ for the free homotopy class containing γ .

Let G L be the set of all free homotopy classes of non-oriented multiple simple
loops on Σ5 . It is clear that G is a subset of G L .

Let α be a multiple simple loop on Σ5 . All connected components of α fall
into at most two distinct free homotopy classes. There are integers p ≥ 0 and
q ≥ 0 with p + q > 0 such that α has exactly p connected components freely
homotopic to a γ ∈ G , and has exactly q connected components freely homotopic
to a γ′ ∈ G , where γ 6= γ′ . We shall write [α] = pγ ⊕ qγ ′ , where [α] is the free
homotopy class represented by α . Similarly, the free homotopy class represented
by a curve β on Σ5 will be denoted by [β] .

Let [G ,R+] be the set of all functions from G into the set R+ of all non-
negative real numbers. We provide G with the discrete topology, and provide
[G ,R+] with the compact-open topology. It is well known that [G ,R+] is homeo-
morphic to the product space

∏
γ∈G Rγ

+ , where each Rγ
+ is a copy of R+ .

Two elements f and g of [G ,R+] − {0} are called projectively equivalent
if there is a positive number t such that f = tg . Let P[G ,R+] be the set of all
projective equivalence classes in [G ,R+]−{0} provided with the quotient topology.
Let π be the quotient map of [G ,R+]− {0} onto P[G ,R+] .

For any two curves α1 and α2 on Σ5 , let #(α1 ∩ α2) denote the cardinality
of the intersection α1∩α2 . The geometric intersection number i([α1], [α2]) of [α1]
with [α2] is defined by

i([α1], [α2]) = min{#(α′1 ∩ α′2) : [α′j ] = [αj ] for j = 1, 2}.

It follows immediately from the definition that if [α] = pγ ⊕ qγ ′ , then for any
curve β on Σ5

i([α], [β]) = pi(γ, [β]) + qiγ ′, [β]),

where p and q are non-negative integers with p+ q > 0, and where γ and γ ′ are
disjoint geodesics in G .

Each α ∈ G L induces a function Iα: G −→ R+ given by

Iα(γ) = i(α, γ) for all γ ∈ G .
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Let I : G L −→ [G ,R+] be defined by

I (α) = Iα for all α ∈ G L .

It is a well-known fact that the composition πI is injective; see [5]. This allows
us to identify G L with πI (G L ) .

Let πI (G L ) and πI (G ) denote the closures of πI (G L ) and πI (G ) in

P[G ,R+] , respectively. Poénaru proved that πI (G L ) = πI (G ) , (Theorem 4 of
[5] Exposé 4).

Note that an element L of P[G ,R+] is in πI (G ) if and only if for any l in
[G ,R+]−{0} with π(l) = L there is a sequence {tk}∞k=1 of positive numbers, and
there is a sequence {γk}∞k=1 of geodesics in G such that the sequence {tk Iγk}∞k=1

converges to l . A sequence {lk}∞k=1 in [G ,R+] is called convergent to l ∈ [G ,R+]
if for every γ ∈ G the sequence {lk(γ)}∞k=1 converges in R to l(γ) .

According to Thurston, πI (G ) is homeomorphic to a 3-sphere. In Section 4,
we shall construct a homeomorphism of πI (G ) onto a 3-sphere lying in R4 (see
Theorem 4.4).

1.2. Cyclic reduced words. To enumerate free homotopy classes in G L ,
we consider the action of the fundamental group π1(Σ5) on the upper half plane
U = {z ∈ C : Im z > 0} .

Let G be the subgroup of PSL(2,R) generated by the transformations:

X =




1 6

1 0


 , Y =




1 0

2 1


 , S =




3 4

2 3


 and T =




5 12

2 5


 .

For j = 1, 2, 3, let

C ′j = {z ∈ C : |2z + 2j − 1| = 1} and Cj = {z ∈ C : |2z − (2j − 1)| = 1},

and let

C ′4 = {z ∈ C : Re z = −3} and C4 = {z ∈ C : Re z = 3}.

It is clear that U /G = Σ5 , and that the domain D ⊂ U bounded by Cj and
C ′j , 1 ≤ j ≤ 4, is a fundamental domain for G acting on U . We shall schemati-
cally draw D as a rectangular region shown in Figure 1, where the points on the
boundary of D marked by “×” correspond to punctures of Σ5 .

It is well known that every free homotopy class in G corresponds to a unique
conjugacy class in G . We shall find a representative for each conjugacy class in G
by using Birman and Series’ cutting sequence technique [2].

Let Γ denote the set of all side pairings of D , i.e.,

Γ = {X, X−1, Y, Y −1, S , S−1, T, T−1}.
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S−1

T−1

S

T

Y −1 Y

X−1 X

Figure 1. The fundamental domain D .

For every E ∈ Γ, we label the common side s of D and E(D) by E−1 on the
side inside D , and by E on the side inside E(D) ; see Figure 1. The side s will
be called the E -side of D .

For every g ∈ G , the image g(D) will be called a G -translate of D . We
transport the above side labelling to all G -translates of D .

Let γ be an arbitrary closed curve on Σ5 . Let γ̃ be a lift of γ to U which
projects to γ bijectively, and let z0 ∈ U be an endpoint of γ̃ . Without loss
of generality, assume that there is a g0 ∈ G and there is a ξ0 ∈ D such that
z0 = g0(ξ0) .

We orient γ̃ so that its initial point is z0 . The arc γ̃ cuts in order the G -
translates g0(D) , g1(D) , . . . , gk(D) of D . Then the terminal point of g−1

0 (γ̃) is
g−1

0 ◦ gk(ξ0) , and γ is represented by g = g−1
0 ◦ gk .

For every integer j with 1 ≤ j ≤ k , assume that the common side of gj−1(D)
and gj(D) on the side inside gj(D) is labelled by Ej ∈ Γ. Then

Ej(D) = g−1
j−1

(
gj(D)

)
,

or equivalently Ej = g−1
j−1 ◦ gj . Thus

g = g−1
0 ◦ gk = (g−1

0 ◦ g1) ◦ (g−1
1 ◦ g2) ◦ · · · ◦ (g−1

k−1 ◦ gk) = E1 ◦ E2 ◦ · · · ◦ Ek.

We call E1 ◦ E2 ◦ · · · ◦ Ek a Γ-word representing γ .
From now on, we shall simply write the composition of a function f followed

by the other function g as gf . Thus, we write

E1 ◦ E2 ◦ · · · ◦ Ek =

k∏

j=1

Ej .

A Γ-word
∏k
j=1Ej will be called reduced if Ej 6= E−1

j+1 for 1 ≤ j ≤ k− 1. It

is called cyclically reduced if in addition E1 6= E−1
k .
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Let γ be a simple loop on Σ5 . Using the above notation, for every integer j
with 0 ≤ j ≤ k , let lj be the image of the intersection of γ̃ with gj(D) mapped
by g−1

j , where D is the relative closure of D in U . The union l0 ∪ lk forms a

simple arc in D connecting the E−1
k -side to the E1 -side. We shall simply write

the simple arc as lk . If k > 1 and if 1 ≤ j ≤ k − 1, then lj is a simple arc in D
connecting the E−1

j -side to the Ej+1 -side. Each of these simple arcs l1 , . . . , lk
will be called a strand of γ .

Let α be a multiple simple loop on Σ5 . A strand of a connected component
of α will be also called a strand of α .

A loop on Σ5 will be called reduced if it is represented by a reduced Γ-word. A
multiple simple loop α on Σ5 will be called reduced if every connected component
of α is reduced. It is easy to see that a simple loop or a multiple simple loop on
Σ5 is reduced if and only if every strand of the loop connects two different sides
of D .

If γ ∈ G is a geodesic, then every strand of γ is a hyperbolic geodesic arc, and
thus every strand of γ must connect two different sides of D since D is a geodesic
polygon. This proves that every simple closed geodesic on Σ5 is a reduced loop.
Thus every free homotopy class of multiple simple loops on Σ5 contains a reduced
one.

If γ ∈ G is a geodesic represented by a reduced Γ-word W , then γ is also
represented by an arbitrary cyclic permutation of W . If γ ′ ∈ G is a geodesic
which has the same underlying set as γ but with opposite orientation, then γ ′

is represented by W−1 . Because we are only interested in non-oriented simple
loops, we shall identify all reduced Γ-words which are cyclic permutations of W
or cyclic permutations of W−1 , and call any one of them a cyclic reduced Γ-
word representing γ and its free homotopy class. Every cyclic reduced Γ-word is
cyclically reduced.

Figure 2. From the left to the right: γ11 , γ12 , γ13 , γ21 , γ22 , γ23 .

As examples, let γjk ∈ G be the geodesics given in Figure 2. Each γjk is
represented by a cyclic reduced Γ-word Wjk as follows:

W11 = T,

W21 = S,

W12 = X−1S,

W22 = Y −1T,

W13 = XT−1S,

W23 = S−1Y T.

For simplicity, we shall also write γ11 = γT and γ21 = γS .
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1.3. Subwords and admissible subarcs. The purpose of this subsection is
to find some necessary conditions for cyclic reduced Γ-words representing geodesics
in Ĝ = G − {γS , γT } from the geometry of the corresponding geodesics.

Let γ ∈ Ĝ be a geodesic represented by a cyclic reduced Γ-word W (γ) given
by

W (γ) =

k∏

j=1

Ej .

Note that k > 1 since γ ∈ Ĝ . For any two integers j , l with 1 ≤ j ≤ k and
1 ≤ l ≤ k , the reduced Γ-word

(1) W ′ = Ej · · ·Ej+l−1

will be called a subword of W (γ) , where Ej+i = Ej+i−k whenever 1 ≤ i ≤ l and
i+ j > k .

Now, we shall relate W ′ to γ geometrically. For every i , let li be the strand
of γ connecting the E−1

i−1 -side to the Ei -side, where Ei−1 = Ek if i = 1. Assume
that 1 ≤ l < k , i.e., W ′ 6= W (γ) . We think that W ′ “represents” a subarc γ′

of γ . We choose γ′ to be the projection of the union
⋃j+l−1
i=j li to Σ5 . Each of

the arcs lj , . . . , lj+l−1 is called a strand of γ′ .
The subarc γ′ has two distinct endpoints. One of the two endpoints is the

projection of the endpoint of lj on the E−1
j−1 -side, and the other endpoint is the

projection of the endpoint of lj+l−1 on the Ej+l−1 -side.
The word given in equation (1) is not clear enough to indicate that γ ′ has an

endpoint which is the projection of a point lying on the E−1
j−1 -side. Also, to be

different from cyclic reduced words representing simple closed geodesics, we shall
write the reduced Γ-word representing γ ′ as

(2) ~Ej−1W
′ = ~Ej−1Ej · · ·Ej+l−1,

where ~Ej−1 is to indicate that ~Ej−1W
′ is not cyclic, and one of the endpoints of

γ′ is the projection of a point on the E−1
j−1 -side.

A subarc of a geodesic γ ∈ G will be called admissible if either it is γ itself,
or it is represented by a reduced Γ-word as given in equation (2).

Remark 1.1. Let γ ∈ Ĝ be a geodesic represented by a cyclic reduced Γ-
word W (γ) . From now on, for ε = ±1, E ∈ Γ, E1, E2 ∈ Γ − {E±1} , and an
integer k > 1, we shall write

E1E
ε · · ·Eε︸ ︷︷ ︸
k times

E2 = E1E
kεE2

if above word is a subword of W (γ) .
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By the same reasoning as that in [4, Section 3], there are no admissible subarcs
of γ represented by any one of the following words:

~XεXε,

~XεT kXδ,

~Y εY ε,

~Y εSkY δ,

~T δXεT δ,

~T εSδT ε,

~SδY εSδ,

~SεT δSε,

where ε , δ ∈ {1,−1} , and k 6= 0 is an integer. Thus none of the following is a
subword of W (γ) :

XεXε,

XεT kXδ,

Y εY ε,

Y εSkY δ,

T δXεT δ,

T εSδT ε,

SδY εSδ,

SεT δSε.

S−1

T−1

S

T

Y −1 Y

X−1 X

`

`2
`1

P1

P2

Q1

Q

Figure 3.

Proposition 1.1. Let γ ∈ G be a geodesic represented by a cyclic reduced
Γ -word W , and let k 6= 0 be an integer.

(i) If E1, E2 ∈ {T±1, X±1} , and if E1S
kE2 is a subword of W , then |k| = 1 .

(ii) If E1, E2 ∈ {S±1, Y ±1} , and if E1T
kE2 is a subword of W , then |k| = 1 .

Proof. We shall prove the statement (i). The statement (ii) will follow by a
similar argument.

Assume that k > 0. We choose once for all an orientation on the S−1 -
side. Let ζ be the fixed point of the transformation S−1T . If P and P ′ are
two distinct points lying on the S−1 -side, and if P lies between P ′ and ζ , then
we write P ≺ P ′ . This gives an orientation to the S -side as well. For any two
distinct points Q and Q′ lying on the S -side, if S−1(Q) ≺ S−1(Q′) , then we
write Q ≺ Q′ .

Let γ′ be the admissible subarc of γ represented by ~E1S
kE2 . Let l1 be the

strand of γ′ joining the E−1
1 -side to the S -side with the endpoint Q1 on the

S -side. Let l2 be the strand of γ′ joining the S−1 -side to the E2 -side with the
endpoint P2 on the S−1 -side.
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Suppose that k > 1. Then γ′ has a strand l joining the S−1 -side to the
S -side with the endpoint P1 = S−1(Q1) on the S−1 -side. Let Q be the endpoint
of l on the S -side. Since γ is simple, we have Q1 ≺ Q (see Figure 3). But,
now, we have P1 ≺ P2 . This implies that l2 intersects l which is a contradiction.
Hence, k = 1.

By the same reasoning as above, one proves that k = −1 if k < 0.

1.4. π1 -train tracks. In Section 3, we shall need π1 -train tracks introduced
by Birman and Series (see [1]). A π1 -train track τ on D is a collection of mutually
disjoint simple arcs lj in D with endpoints lying on the sides of D such that

(i) except endpoints each lj is contained in D ,
(ii) each lj joins two distinct sides of D , and
(iii) each pair of distinct sides of D are connected by at most one lj .

A π1 -train track τ on D is called integral weighted if every arc in τ is assigned
a non-negative integer.

Every reduced multiple simple loop α on Σ5 can be associated with an inte-
gral weighted π1 -train track as described below.

We choose for each E ∈ Γ a point P (E) on the E -side of D so that P (E−1)
and P (E) are identified by the transformation E .

For any two distinct E1, E2 ∈ Γ, let nα(E1, E2) be the number of strands of α
connecting the E1 -side to the E2 -side of D . If nα(E1, E2) > 0, then we collapse
all strands of α which connect the E1 -side to the E2 -side into a single arc from
P (E1) to P (E2) weighted by the integer nα(E1, E2) . These weighted arcs form
the required integral weighted π1 -train track τ(α) on D (see [1, Theorem 1.3]).

It is clear that if α and β are freely homotopic reduced multiple simple loops
on Σ5 , then nα(E1, E2) = nβ(E1, E2) whenever E1, E2 ∈ Γ are distinct, and thus
τ(α) = τ(β) . Since every free homotopy class of multiple simple loops on Σ5

contains a reduced one, we may write

n[α](E1, E2) = nα(E1, E2)

whenever α is a reduced multiple simple loop on Σ5 , and call n[α](E1, E2) the
number of strands of [α] connecting the E1 -side to the E2 -side. Similarly, we
write

τ([α]) = τ(α).

Let [α] , [α1] and [α2] be any three elements of G L . If, as subsets of D ,
τ([α]) is the union of τ([α1]) and τ([α2]) , and if there are two fixed non-negative
integers p and q with p+ q > 0 satisfying

n[α](E1, E2) = pn[α1](E1, E2) + qn[α2](E1, E2)

for any two distinct E1, E2 ∈ Γ, then we shall write

[α] = p[α1] + q[α2].

From the definition, we see that [α] = pγ + qγ ′ if [α] = pγ ⊕ qγ′ , where p ≥ 0,
q ≥ 0 are integers with p+ q > 0, and where γ, γ ′ ∈ G are disjoint geodesics.
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2. Four integer functions

In Section 4, we shall construct a homeomorphism Φ of πI (G L ) onto a
3-sphere lying in R4 . For α ∈ G L , the value Φ(α) is written in terms of four
integers IX(α) ≥ 0, IY (α) ≥ 0, NS(α) and NT (α) . The sign of NS(α) and
that of NT (α) are determined by the geometry of α . The integers IX(α) , IY (α) ,
|NS(α)| and |NT (α)| are numbers of strands of α .

The integer functions IX and IY are analogues of the integer function IX
given in [4], and the integer functions NS and NT are analogues of the integer
function N given in [4]. In this section, we shall define the integer functions IX ,
IY , NS and NT , and discuss their properties.

2.1. Elementary intersection numbers. For the construction of the
homeomorphism Φ, we shall start with a homeomorphism Ψ of πI (G L ) onto
a 3-sphere lying in R6 whose value at every α ∈ G L is written in terms of the
geometric intersection numbers of α with the six geodesics γjk given in Figure 2.
These six geometric intersection numbers i(α, γjk) will be called the elementary
intersection numbers of α .

To compute elementary intersection numbers, we consider the projections of
the sides of D to Σ5 . For E ∈ {S, T,X, Y } , the E -side of D projects to Σ5 a
simple curve βE connecting exactly two punctures. Write

IE(α) = i(α, [βE ])

for all α ∈ G L . Note that

IE(α) = #{strands of α which meet the E -side (or the E−1 -side)}.

Thus, we have

(3)
i(α, γ11) = 2IX(α),

i(α, γ12) = 2IT (α),

i(α, γ21) = 2IY (α),

i(α, γ22) = 2IS(α).

We shall prove later that the elementary intersection numbers of α can be
written in terms of IX(α) , IY (α) , NS(α) and NT (α) (see Corollary 3.4). This
allows us to construct the homeomorphism Ψ by use of the functions IX , IY , NS
and NT .

For later use, we extend the integer functions IE to admissible subarcs of
geodesics in G as follows. For E ∈ Γ, and for an arbitrary admissible subarc γ ′

of a geodesic γ ∈ G , let

IE(γ′) = #(strands of γ′ which meet the E -side of D ).

Note that IE(γ) = IE−1(γ) for γ ∈ G and for E ∈ Γ.
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2.2. Cyclic semi-reduced Γ-words. Let γ ∈ Ĝ = G − {γT , γS} be
represented by a cyclic reduced Γ-word W (γ) . We have known that for E ∈
{S, T,X, Y } the integer IE(γ) is the number of strands of γ which meet the
E -side. We may also relate the number IE(γ) to W (γ) as follows

IE(γ) = the total number of the letters E and E−1 appearing in W (γ) .

Therefore, to compute the elementary intersection numbers of γ ∈ Ĝ is equivalent
to finding a cyclic reduced Γ-word representing γ .

In general, it is not easy to write cyclic reduced Γ-words representing geodesics
in G explicitly. Therefore, we shall introduce cyclic semi-reduced Γ-words. Cyclic
semi-reduced Γ-words also work for our purposes. To compute geometric intersec-
tion numbers, we only need a partial description of cyclic semi-reduced Γ-words,
which will be given in Section 2.5. The complete description is given in Section 5.

Figure 4. From the left to the right: α1 , α2 , α3 , α4 , α5 , α6 .

To motivate the definition of cyclic semi-reduced Γ-words, we consider the
geodesics represented by the following cyclic reduced Γ-words:

W1 = XS−1Y,

W4 = X−1SY −1,

W2 = TX−1S−1Y −1S,

W5 = T−1XSY S−1,

W3 = TXT−1S−2Y S,

W6 = T−1X−1TS2Y −1S−1.

Let αj be the geodesic represented by Wj for 1 ≤ j ≤ 6 (see Figure 4). By defining
the zero power E0 of the transformation E to be the identity transformation for
E = S or T , we may rewrite above words as

(4) Wj = T rjXωjT tjSpjY εjSqj ,

where χi = (ri, ωi, ti, pi, εi, qi) are given below:

χ1 = (0, 1, 0,−1, 1, 0),

χ3 = (1, 1,−1,−2, 1, 1),

χ5 = (−1, 1, 0, 1, 1,−1),

χ2 = (1,−1, 0,−1,−1, 1),

χ4 = (0,−1, 0, 1,−1, 0),

χ6 = (−1,−1, 1, 2,−1,−1).

From the word given in (4), we have

IX(αj) = 1, IY (αj) = 1, IS(αj) = |pj |+ |qj | and IT (αj) = |rj |+ |tj |.



Geometric intersection numbers on a five-punctured sphere 85

Now, we define the cyclic semi-reduced Γ-words representing geodesics in Ĝ
as follows. Let γ ∈ Ĝ be a geodesic represented by a cyclic reduced Γ-word
W (γ) . If Y εE or EY ε is a subword of W (γ) with ε = ±1 and E ∈ {X±1, T±1} ,
we shall write

Y εE = Y εS0E and EY ε = ES0Y ε.

Similarly, if E ∈ {Y ±1, S±1} , and if XεE or EXε is a subword of W (γ) , then
we write

XεE = XεT 0E and EXε = ET 0Xε.

The resulting cyclic Γ-word will be called semi-reduced, still denoted by W (γ) .

2.3. Four automorphisms of G L . Let αj be the geodesics given in
Section 2.2, and let Wj be the corresponding cyclic semi-reduced Γ-words. By
considering the symmetry of the fundamental domain D , we realize that for 1 ≤
j ≤ 3 the words Wj+3 are the images of Wj under the automorphism Θ1 of G
defined by

Θ1(E) = E−1 for E ∈ {S, T,X, Y } .

There is another automorphism Θ2 of G obtained from the symmetry of D
defined by

Θ2(S) = T, Θ2(T ) = S, Θ2(X) = Y, Θ2(Y ) = X.

For j = 1 or 2, the automorphism Θj induces an orientation reversing homeo-
morphism of Σ5 onto itself which is also denoted by Θj . If γ ∈ G is a geodesic, let
Θj(γ) denote the free homotopy class in G represented by the image of γ mapped
by Θj . This defines an injective function, still denoted by Θj , of G onto itself
such that if W is a cyclic reduced (or semi-reduced) Γ-word representing γ ∈ G ,
then Θj(γ) is represented by Θj(W ) .

For instance, we have Θ1(αj) = αj+3 for 1 ≤ j ≤ 3. For every integer j with
1 ≤ j ≤ 6, the geodesic Θ2(αj) is represented by the word

Θ2(Wj) = SrjY ωjStjT pjXεjT qj ,

where Wj is the cyclic semi-reduced Γ-word given in (4).
Now, we extend the functions Θ1 and Θ2 to G L by defining

Θj(aγ ⊕ bγ′) = aΘj(γ)⊕ bΘj(γ
′)

for j = 1, 2, where a ≥ 0 and b ≥ 0 are integers with a+ b > 0, and where γ and
γ′ are disjoint geodesics in G .

With the two maps Θ1 and Θ2 , we may simplify the argument on finding
cyclic semi-reduced Γ-words by considering subsets of G which are related by Θ1

and Θ2 . Let

G L +
S = {α ∈ G L : α has no strands joining the S−1 -side to the Y ε -side, ε = ±1},
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and let

G L −
S = Θ1(G L +

S), G L +

T = Θ2(G L −
S) and G L −

T = Θ1(G L +

T ) = Θ2(G L +

S).

For E = S or T , let G +

E = G L +

E ∩ G and G −E = G L −
E ∩ G .

Note that for E = S or T the sets G L +

E and G L −
E are not disjoint since

aγS ⊕ bγT ∈ G L +

E ∩ G L −
E ,

where a ≥ 0 and b ≥ 0 are integers with a+ b > 0.
The following proposition is an immediate consequence of the definition.

Proposition 2.1. If α ∈ G L , then IE(Θ1(α)) = IE(α) for E ∈ {S, T,X, Y }
and

IX
(
Θ2(α)

)
= IY (α),

IS
(
Θ2(α)

)
= IT (α),

IY (Θ2(α)) = IX(α),

IT (Θ2(α)) = IS(α).

Taking a further step to investigate the relations among the geodesics α1 , α2

and α3 , we found that the geodesics α1 , α2 and α3 are related by the automor-
phisms T1 and T2 of G defined by

T1:

T2:

S −→ S,

S −→ S,

T −→ T,

T −→ T,

X −→ X,

X −→ X−1T,

Y −→ Y −1S,

Y −→ Y.

From the definition, we obtain

Θ2T1Θ2 = T2 and Θ1TjΘ1 = T −1
j for j = 1, 2.

For j = 1 or 2, the automorphism Tj induces an orientation preserving
homeomorphism of Σ5 onto itself, denoted by Tj as well. The homeomorphism
T1 interchanges the two punctures on Σ5 corresponding to the fixed point of
Y and the fixed point of Y −1S , and leaves the other punctures invariant. The
homeomorphism T2 interchanges the two punctures on Σ5 corresponding to the
fixed point of X and the fixed point of X−1T , and leaves the other punctures
invariant.

Each Tj also induces an injective function of G onto itself so that if W
is a cyclic reduced (or semi-reduced) Γ-word representing γ ∈ G , then Tj(γ) is
represented by Tj(W ) . Now, α1 , α2 and α3 are related by T1 and T2 as follows:

T1T
−1

2 (α1) = α2 and T1T
−1

2 (α2) = α3.

Like Θ1 and Θ2 , the functions T1 and T2 extend to G L defined by

Tj(aγ ⊕ bγ′) = aTj(γ)⊕ bTj(γ
′), j = 1, 2,

where a ≥ 0 and b ≥ 0 are integers with a + b > 0, and where γ and γ ′ are
disjoint geodesics in G .
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Proposition 2.2. Let α ∈ G L .
(i) If IY (α) = 0 , then T1(α) = α .
(ii) If IX(α) = 0 , then T2(α) = α .
(iii) If k is an integer, and if E = X or Y , then IE

(
T k

1 (α)
)

= IE(α) =

IE
(
T k

2 (α)
)

.

Proof. For the proof of (i) and (ii), it suffices to consider the case where
α ∈ G . Let W be a cyclic semi-reduced Γ-word representing α . If IY (α) = 0,
then Y and Y −1 are not subwords of W , and T1(W ) = W . This proves that α
is invariant under T1 . Similarly, α is invariant under T2 if IX(α) = 0.

Since γ11 and γ21 are invariant under T1 and T2 , we have

i
(
T k
j (α), γm1

)
= i
(
α,T −kj (γm1)

)
= i(α, γm1)

for j,m ∈ {1, 2} . Now, the statement (iii) follows from equation (3).

2.4. Definition of the integer functions NS and NT . Let γ ∈ G be a
geodesic. If γ ∈ G +

S , let

NS(γ) = #(strands of γ joining the S-side and the S−1-side)

+ #(strands of α joining the S-side and the Y ε-side)

for ε = ±1. If γ ∈ G +

T , let

NT (γ) = #(strands of γ joining the T -side and the T−1-side)

+ #(strands of α joining the T−1-side and the Xε-side)

for ε = ±1. For E = S or T , if γ ∈ G −E , let NE(γ) = −NE
(
Θ1(γ)

)
.

From the definition, we have

Proposition 2.3. If γ ∈ Ĝ , then NS(γ) = −NT
(
Θ2(γ)

)
and NT (γ) =

−NS
(
Θ2(γ)

)
.

For two integers a ≥ 0 and b ≥ 0 with a+ b > 0, let

NS(aγS ⊕ bγT ) = a and NT (aγS ⊕ bγT ) = b.

Next, if γ ∈ Ĝ is a geodesic disjoint from γS , let

NS(aγS ⊕ bγ) = a and NT (aγS ⊕ bγ) = bNT (γ).

If γ ∈ Ĝ is a geodesic disjoint from γT , let

NS(aγT ⊕ bγ) = bNS(γ) and NT (aγT ⊕ bγ) = a.

Finally, if γ1 and γ2 are disjoint geodesics in Ĝ , we define

NE(aγ1 ⊕ bγ2) = aNE(γ1) + bNE(γ2) for E = S, T .

To interpret NS(α) and NT (α) geometrically for α ∈ G L , we need
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Lemma 2.4. If γ1 and γ2 are disjoint geodesics in Ĝ , then

NS(γ1)NS(γ2) ≥ 0 and NT (γ1)NT (γ2) ≥ 0.

Proof. We shall prove NT (γ1)NT (γ2) ≥ 0. This implies, by Proposition 2.3,

that NS(γ1)NS(γ2) ≥ 0. First, note that if γ ∈ Ĝ with NT (γ) 6= 0, then
IX(γ) > 0.

Suppose that NT (γ1) > 0 and NT (γ2) < 0. Then γ1 has a strand l1 joining
the T−1 -side to the Xε -side with ε = ±1, and has a strand l′1 joining the X−ε -
side to some E -side with E ∈ {T−1, S±1, Y ±1} so that its endpoint on X−ε -side
is identified with that of l1 on the Xε -side by the transformation Xε .

Similarly, γ2 has a strand l2 joining the T -side to the Xδ -side with δ = ±1,
and has a strand l′2 joining the X−δ -side to some E′ -side with E′ ∈ {T, S±1, Y ±1}
so that its endpoint on the X−δ -side is identified with that of l2 on the Xδ -side
by the transformation Xδ .

Since l1 ∪ l′1 must intersect l2 ∪ l′2 , then i(γ1, γ2) > 0. Contradiction!
Now, for α ∈ G L we have

|NS(α)| = #(strands of α joining the S-side and the S−1-side)

+ #(strands of α joining the Sδ-side and the Y ε-side);

|NT (α)| = #(strands of α joining the T -side and the T−1-side)

+ #(strands of α joining the T δ-side and the Xε-side),

where δ, ε = ±1.

Proposition 2.5. Let α ∈ G L .
(i) If IX(α) > 0 , then NT (α) ≥ 0 whenever α ∈ G L +

T , and NT (α) ≤ 0
whenever α ∈ G L −

T . Thus, NT
(
Θ1(α)

)
= −NT (α) .

(ii) If IY (α) > 0 , then NS(α) ≥ 0 whenever α ∈ G L +

S , and NS(α) ≤ 0
whenever α ∈ G L −

S . Thus, NS
(
Θ1(α)

)
= −NS(α) .

(iii) If IX(α)IY (α) > 0 , then

NS(α) = −NT
(
Θ2(α)

)
and NT (α) = −NS

(
Θ2(α)

)
.

Proof. The statement (ii) will follow from (i) by considering Θ2(α) . The
statement (iii) is a consequence of (i) and (ii). It remains to prove the statement (i).

Write α = aγ1 ⊕ bγ2 , where a ≥ 0 and b ≥ 0 are integers with a + b > 0,
and where γ1 and γ2 are disjoint geodesics in G . If ab = 0, then the statement
(i) holds trivially since IX(α) > 0.

Assume that ab > 0. Since IX(α) > 0, then γ1 6= γT and γ2 6= γT . If
γ1 = γS , then IX(γ2) > 0, and NT (α) = bNT (γ2) . Now, the assertion follows

from the definition of the function NT on Ĝ .
Similarly, the statement (i) is true if γ2 = γS . If γ1 6= γS and γ2 6= γS , the

proof is completed by Lemma 2.4.
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2.5. Relating NS and NT to cyclic semi-reduced Γ-words. Now,
we shall explain how to determine NS(γ) and NT (γ) from a cyclic semi-reduced

Γ-word W representing γ ∈ Ĝ . Note that IX(γ) > 0 or IY (γ) > 0.
If IY (γ) = n > 0, then there are exactly n triples of integers (pi, εi, qi)

with εi = ±1 such that EiS
piY εiSqiE′i is a subword of W for every integer

i ∈ {1, . . . , n} , where Ei, E
′
i ∈ {T±1, X±1, Y ±1} . From Remark 1.1, we have

Ei, E
′
i ∈ {T±1, X±1} for every i . Thus W must be of the form

(5) W =

n∏

i=1

SpiY εiSqiWi,

where each Wi is a semi-reduced Γ-word of the form

Wi =

mi∏

i=1

Eij

with Ei1, Eimi ∈ {T±1, X±1} , and Eij 6= Y ±1 whenever 1 < j < mi .
If IX(γ) = n > 0, then IY (Θ2(γ)) = n , and γ is represented by a cyclic

semi-reduced Γ-word as given in equation (5). Thus γ is represented by a cyclic
semi-reduced Γ-word W of the form

(6) W =
n∏

i=1

T piXεiT qiWi,

where ε = ±1, where pi and qi are integers, and where each Wi is a semi-reduced
Γ-word of the form

Wi =

mi∏

i=1

Eij

with Ei1, Eimi ∈ {S±1, Y ±1} , and Eij 6= X±1 whenever 1 < j < mi .
Before continuing our discussion, we shall find necessary conditions for the

integers pi and qi given in (5) and (6).

Lemma 2.6. Let ε = ±1 , let p and q be integers, let γ ∈ Ĝ , and let W be
a cyclic semi-reduced Γ -word representing γ .

(i) If W ′ = ESpY εSqE′ is a subword of W with E,E ′ ∈ {X±, T±} , then

−1 ≤ (p+ q)ε ≤ 0.

Moreover, p ≤ 0 and q ≥ 0 when γ ∈ G +

S , and p ≥ 0 and q ≤ 0 when γ ∈ G −S .
(ii) If W ′ = ET pXεT qE′ is a subword of W with E,E ′ ∈ {Y ±, S±} , then

−1 ≤ (p+ q)ε ≤ 0.

Moreover, p ≥ 0 and q ≤ 0 when γ ∈ G +

T , and p ≤ 0 and q ≥ 0 when γ ∈ G −T .
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Proof. For the proof of (i), we may assume that ε = 1 and γ ∈ G +

S . By the
definition of G +

S , we have p ≤ 0 and q ≥ 0.
We rewrite W ′ as W ′ = ES−pY εSqE′ = ES−pY SqE′ , where p ≥ 0 and

q ≥ 0. If q > p , then T −2p
1 (W ′) = EY Sq−pE′ is a subword of T −2p

1 (W ) , and
T −2p

1 (γ) is not simple. Contradiction!
If p > q+1, then T −2q

1 (W ′) = ES−p+qY E′ . This implies that T −2q
1 (γ) has

a strand joining the S -side to the S−1 -side, and has a strand joining the Y −1 -side
to the E′ -side with E′ ∈ {T±, X±} . This is impossible. Therefore, q ≤ p ≤ q+1.

By considering T2 , the statement (ii) will follow by a similar argument.

Proposition 2.7. Let γ ∈ Ĝ be a geodesic, and let W be a cyclic semi-
reduced Γ -word representing γ .

(i) If W is of the form given in equation (5), then NS(γ) =
∑n
i=1(qi − pi) .

(ii) If W is of the form given in equation (6), then NT (γ) =
∑n
i=1(pi − qi) .

Proof. From Proposition 2.3, the statement (ii) follows from the statement (i).
On the other hand, since NS

(
Θ1(γ)

)
= −NS(γ) , we may assume that γ ∈ G +

S .
Thus pi ≤ 0 and qi ≥ 0 for all i by Lemma 2.6.

For every i , let γi be the admissible subarc of γ represented by ~EiWiE
′
i ,

where

Ei =

{
S if qi > 0,
Y εi if qi = 0,

and E′i =

{
S−1 if pi < 0,
Y εi+1 if pi = 0.

From the definition of Wi , we know that each γi neither has strands connecting
the S -side to the Y -side, nor has strands connecting the S -side to the Y −1 -side.
From Proposition 1.1, each γi has no strands joining the S -side and the S−1 -side.
Thus NS(γ) is completely determined by the subwords SpiY εiSqi , 1 ≤ i ≤ n .

Using notation given in equation (5), for every i let γ ′i be the admissible

subarc represented by ~E(i−1)mi−1
SpiY εiSqi , and let

N
(1)
i = #(strands of γ′i connecting the S-side and the S−1-side),

N
(2)
i = #(strands of γ′i connecting the S-side and the Y -side)

+ #(strands of γ′i connecting the S-side and the Y −1-side).

Since −1 ≤ (pi + qi)εi ≤ 0 for every i , then

(N
(1)
i , N

(2)
i ) =

{
(qi − pi − 2, 2) if qi − pi > 2,
(0, qi − pi) if qi − pi ≤ 2.

Thus

NS(γ) =
n∑

i=1

(N
(1)
i +N

(2)
i ) =

n∑

i=1

(qi − pi).

At the end of this section, we shall investigate how the integers NS(T k
j (γ))

and NT
(
T k
j (γ)

)
relate to the integers NS(γ) and NT (γ) for j = 1 or 2, where

k 6= 0 is an integer.
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Proposition 2.8. Let γ ∈ G , and let k be an arbitrary integer. Then
(i) NS

(
T k

1 (γ)
)

= NS(γ) + kIY (γ) and NS
(
T k

2 (γ)
)

= NS(γ) ;

(ii) NT
(
T k

1 (γ)
)

= NT (γ) and NT
(
T k

2 (γ)
)

= NT (γ)− kIX(γ) .

Proof. The proposition holds trivially for γ = γT and for γ = γS . In the
following, we assume that γ ∈ Ĝ .

Since Θ2T1Θ2 = T2 , then the equations in (ii) follow from that given in (i)
by Proposition 2.1 and Proposition 2.3.

Now, we shall only prove the equations given in (i) for k = ±1. Then the
proof of the proposition is completed by applying mathematical induction to |k| .

If IY (γ) = 0, then NS(γ) = 0. From Proposition 2.2, we have IY
(
T k
j (γ)

)
= 0

for j = 1, 2. Thus NS
(
T k
j (γ)

)
= 0, and the equations in (i) hold.

Let IY (γ) = n > 0. Assume that γ ∈ G +

S . Then γ is represented by a cyclic
semi-reduced Γ-word W of the form

W =
n∏

i=1

S−piY εiSqiWi,

where ε = ±1, pi ≥ 0, qi ≥ 0 are integers, and where each Wi is a semi-reduced
Γ-word as given in equation (5). Since

T1(W ) =
n∏

i=1

S−p
′
iY −εiSq

′
iWi and T −1

1 (W ) =
n∏

i=1

S−p
′′
i Y −εiSq

′′
i Wi,

with p′i + q′i = pi + qi + 1 and p′′i + q′′i = pi + qi− 1, from Proposition 2.7 we have

NS(T1(γ)) =
n∑

i=1

(p′i + q′i) = n+
n∑

i=1

(pi + qi) = NS(γ) + IY (γ) and

NS(T −1
1 (γ)) =

n∑

i=1

(p′′i + q′′i ) = −n+

n∑

i=1

(pi + qi) = NS(γ)− IY (γ).

Let W ′i = T2(Wi) and W ′′i = T −1
2 (Wi) for every i . By the definition of Wi

and that of T2 , we easily see that W ′i and W ′′i have the same form as Wi has.
Since

T2(W ) =
n∏

i=1

S−piY εiSqiW ′i and T −1
2 (W ) =

n∏

i=1

S−piY εiSqiW ′′i ,

then

NS
(
T2(γ)

)
= NS(T −1

2 (γ)) =

n∑

i=1

(pi + qi) = NS(γ).
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If γ ∈ G −S , then Θ1(γ) ∈ G +

S , and

NS
(
T1(γ)

)
= −NS

(
Θ1T1(γ)

)
= −NS

(
T −1

1 Θ1(γ)
)

= −{NS
(
Θ1(γ)

)
− IY

(
Θ1(γ)

)
} = NS(γ) + IY (γ);

NS
(
T −1

1 (γ)
)

= −NS
(
Θ1T

−1
1 (γ)

)
= −NS

(
T1Θ1(γ)

)

= −
{
NS
(
Θ1(γ)

)
+ IY

(
Θ1(γ)

)}
= NS(γ)− IY (γ);

NS
(
T k

2 (γ)
)

= −NS
(
Θ1T

k
2 (γ)

)
= −NS

(
T −k2 Θ1(γ)

)

= −NS
(
Θ1(γ)

)
= NS(γ) for k = ±1.

3. Geometric intersection numbers

In this section, we shall prove the geometric intersection formula (see Theo-
rem 3.1). The geometric intersection formula will be used to prove the injectivity
of a homeomorphism Ψ of πI (G L ) onto a 3-sphere. The homeomorphism Ψ
will be constructed with elementary intersection numbers. From the geometric
intersection formula, we obtain the elementary intersection numbers of geodesics
in G . Then we will get elementary intersection numbers of α ∈ G L .

3.1. The geometric intersection formula. The main work of this sub-
section is to prove the following theorem:

Theorem 3.1 (Geometric intersection formula). If γ1 and γ2 are two simple
closed geodesics on Σ5 , then

i(γ1, γ2) = 2|IX(γ1)NT (γ2)− IX(γ2)NT (γ1)|+ 2|IY (γ1)NS(γ2)− IY (γ2)NS(γ1)|
+ |IXY (γ1, γ2)| − IXY (γ1, γ2),

where IXY (γ1, γ2) = {IX(γ1)− IY (γ1)} · {IX(γ2)− IY (γ2)} .

As a consequence of the geometric intersection formula, we obtain the ele-
mentary intersection numbers of geodesics in G as follows.

Corollary 3.2. If γ ∈ G , then

i(γ, γ12) = 2|NT (γ)|+ |IY (γ)− IX(γ)|+ IY (γ)− IX(γ),

i(γ, γ13) = 2|NT (γ)− IX(γ)|+ |IY (γ)− IX(γ)|+ IY (γ)− IX(γ),

i(γ, γ22) = 2|NS(γ)|+ |IX(γ)− IY (γ)|+ IX(γ)− IY (γ), and

i(γ, γ23) = 2|NS(γ)− IY (γ)|+ |IX(γ)− IY (γ)|+ IX(γ)− IY (γ).

Proof of the geometric intersection formula. It is easy to see that the geometric
intersection formula is valid if γ1 or γ2 is in {γT , γS} . It remains to prove the

formula for γ1, γ2 ∈ Ĝ .
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For every integer k , write Fk = T −k2 T k
1 . From Proposition 2.8, we obtain

IXY (γ1, γ2) = IXY
(
Fk(γ1), Fk(γ2)

)
,

IX(γ1)NT (γ2)−IX(γ2)NT (γ1) = IX
(
Fk(γ1)

)
NT
(
Fk(γ2)

)
−IX

(
Fk(γ2)

)
NT
(
Fk(γ1)

)
,

IY (γ1)NS(γ2)−IY (γ2)NS(γ1) = IY
(
Fk(γ1)

)
NS
(
Fk(γ2)

)
−IY

(
Fk(γ2)

)
NS
(
Fk(γ1)

)

for all integers k . From Proposition 2.2 and Proposition 2.8, there is an integer
k > 0 such that

NT
(
Fk(γj)

)
≥ 2IX(γj) = 2IX

(
Fk(γj)

)
and NS

(
Fk(γj)

)
≥ 2IY (γj) = 2IY

(
Fk(γj)

)

for j = 1, 2; thus we may assume that

NT (γj) ≥ 2IX(γj) and NS(γj) ≥ 2IY (γj).

Figure 5. From the left to the right: τ1 , τ2 , τ3 .

If β ∈ Ĝ is a geodesic with NT (β) ≥ 2IX(β) and NS(β) ≥ 2IY (β) , then β
lies in G +

S ∩ G +

T , and β can be written as

β = pγS + qγT + rτ1 + sτ2 or β = pγS + qγT + rτ1 + sτ3,

where p , q , r and s are non-negative integers with p+ q + r + s > 0, and where
τ1 , τ2 and τ3 are geodesics represented by the following cyclic reduced Γ-words
(see Figure 5):

W (τ1) = S−1Y −1STXT−1, W (τ2) = S−1TXT−1 and W (τ3) = S−1Y −1ST.

Let G L 1 be the set of all elements of G L of the form pγS +qγT +rτ1 +sτ2 ,
and let G L 2 be the set of all elements of G L of the form pγS + qγT + rτ1 + sτ3 ,
where p , q , r and s are non-negative integers with p+ q + r + s > 0.

Let D be the fundamental domain for G given in Section 1.2. Let R denote
the reflection in the imaginary axis. Let l∗ be the semi-circle contained in D
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joining the fixed point of S−1T to the fixed point of TS−1 . Note that l∗ is
invariant under R . Let

P ∗ be the point of intersection of l∗ with the imaginary axis,

D+ be the connected component of D − l∗ lying above l∗ ,

D− be the connected component of D − l∗ lying below l∗ ,

Σ+

5 and Σ−5 be the projections of D+ and D− to Σ5 , respectively,

S +

4 be the four-punctured sphere obtained from D+ − {P ∗} by identifying
the boundary points of D+ − {P ∗} via X , T and R ,

S −
4 be the four-punctured sphere obtained from D− − {P ∗} by identifying

the boundary points of D− − {P ∗} via Y , S and R , and

γ∗ be the projection of l∗ to Σ5 , which is the common boundary of Σ+

5 and
Σ−5 . The free homotopy class containing γ∗ is also denoted by γ∗ .

The fixed point ζ of S−1T projects to a puncture ζ+ on S +

4 , and projects to a
puncture ζ− on S −

4 . Let [ζ+] denote the free homotopy class of simple loops on
S +

4 enclosing ζ+ , and let [ζ−] denote the free homotopy class of simple loops on
S −

4 enclosing ζ− . It is obvious that i([ζ+], α) = 0 for all free homotopy classes
α of multiple simple loops on S +

4 , and that i([ζ−], β) = 0 for all free homotopy
classes β of multiple simple loops on S −

4 .

ζ

τ+

1

τ−

1

P ∗

ζ

τ+

2

τ−

2

P ∗

ζ

τ+

3

τ−

3

P ∗

Figure 6. τ+

j and τ−j for j = 1, 2, 3 .

For any reduced simple loop α in the free homotopy class γ ∈ G , let

α+ = α ∩ Σ+

5 and α− = α ∩ Σ−5 .

We shall call a connected component of the lift of α+ to D a strand of α+ , and
call a connected component of the lift of α− to D a strand of α− . Let

γ+ = {α+ : α is a reduced simple loop in the free homotopy class γ} and

γ− = {α− : α is a reduced simple loop in the free homotopy class γ}.

See Figure 6 for examples of γ+ and γ− . When there is no risk of confusion, we
shall also use γ+ and γ− to represent any curve in them. Since the geodesic γT
is disjoint from Σ−5 , we shall also write γ+

T = γT . Similarly, write γ−S = γS .
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If γ = aγT + bγS + cτ1 + dτ2 is an arbitrary geodesic in Ĝ ∩ G L 1 , then γ−

has 2d strands whose union is homotopic to d copies of τ−2 . We shall call such
strands τ−2 -type strands of γ− .

If γ = aγT + bγS + cτ1 + dτ3 is an arbitrary geodesic in Ĝ ∩ G L 2 , then γ+

has 2d strands whose union is homotopic to d copies of τ+

3 . We shall call such
strands τ+

3 -type strands of γ+ .

Let γ ∈ Ĝ ∩ (G L 1 ∪ G L 2) be a geodesic, and write

γ = aγT + bγS + cτ1 + dτ2 or γ = aγT + bγS + cτ1 + dτ3.

Then i(γ, γ∗) = 2(c+ d) since

i(aγT + bγS + cτ1 + dτ2, γ
∗) = 2(c+ d) = i(aγT + bγS + cτ1 + dτ3, γ

∗).

Set k = c + d . Every simple closed curve α in the homotopy class γ is
homotopic to a simple loop α̂ with the following properties:

(i) The lift of α̂ to D intersects l∗ − {P ∗} at P1, . . . , Pk , P ′1, . . . , P
′
k with

P ′j = R(Pj) .
(ii) The endpoints of strands of α̂ coincide with that of α . Then α̂+ projects

to S +

4 a multiple simple loop α̃+ , and α̂− projects to S −
4 a multiple simple

loop α̃− . Let γ̃+ denote the free homotopy class of multiple simple loops on S +

4

represented by α̃+ , and let γ̃− denote the free homotopy class of multiple simple
loops on S −

4 represented by α̃− .
If γ = aγT + bγS + cτ1 + dτ2 with c+ d > 0, then

γ̃+ = aγT + (c+ d)τ̃+

1 and γ̃− = {bγS + cτ̃−1 } ⊕ d[ζ−].

If γ = aγT + bγS + cτ1 + dτ3 with c+ d > 0, then

γ̃+ = {aγT + cτ̃+

1 } ⊕ d[ζ+] and γ̃− = bγS + (c+ d)τ̃−1 .

Now we are in the position to compute i(γ1, γ2) for γ1, γ2 ∈ Ĝ ∩ (G L 1 ∪
G L 2) . Without loss of generality, we may assume that all points of intersection
of γ1 and γ2 are not on γ∗ .

Case 1. Assume that γ1, γ2 ∈ Ĝ ∩ G L 1 . Clearly, IXY (γ1, γ2) ≥ 0 and
|IXY (γ1, γ2)| − IXY (γ1, γ2) = 0. By applying suitable homotopy maps to γ1 and
γ2 , we may assume that τ−2 -type strands of γ−1 are disjoint from γ2 , and that
τ−2 -type strands of γ−2 are disjoint from γ1 . Then by Theorem 2.6 of [4] we obtain

i(γ1, γ2) = i(γ+

1 , γ
+

2 ) + i(γ−1 , γ
−
2 ) = i(γ̃+

1 , γ̃
+

2 ) + iγ̃−1 , γ̃
−
2 )

= 2|IX(γ1)NT (γ2)− IX(γ2)NT (γ1)|+ 2|IY (γ1)NS(γ2)− IY (γ2)NS(γ1)|
= 2|IX(γ1)NT (γ2)− IX(γ2)NT (γ1)|+ 2|IY (γ1)NS(γ2)− IY (γ2)NS(γ1)|

+ |IXY (γ1, γ2)| − IXY (γ1, γ2).

Case 2. If γ1, γ2 ∈ Ĝ ∩ G L 2 , then Θ1Θ2(γ1) and Θ1Θ2(γ2) are both in

Ĝ ∩ G L 1 , and the geometric intersection formula is valid for this case by Propo-
sition 2.1.
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Case 3. Assume that γ1 ∈ Ĝ ∩ G L 1 and γ2 ∈ Ĝ ∩ G L 2 . Write

γ1 = aγT + bγS + cτ1 + dτ2 and γ2 = a′γT + b′γS + c′τ1 + d′τ3,

where dd′ > 0. Clearly, IXY (γ1, γ2) < 0 and

|IXY (γ1, γ2)| − IXY (γ1, γ2) = 2dd′.

Write the union of τ−2 -type strands of γ−1 as dτ−2 , and write the union of τ+

3 -type
strands of γ+

2 as d′τ+

3 .
To compute i(dτ−2 , γ

−
2 ) + i(γ+

1 , d
′τ+

3 ) , we need the orientation on the S -side
and that on the S−1 -side (see the proof of Proposition 1.1). Also, we need an
orientation to the T -side and an orientation to the T−1 -side.

Recall that ζ is the fixed point of the transformation S−1T . If P and P ′

are two distinct points on the T−1 -side, and if P lies between ζ and P ′ , then
we write P ≺ P ′ . For any two distinct points Q and Q′ on the T -side, if
T−1(Q) ≺ T−1(Q′) , then we write Q ≺ Q′ .

Let m = a′ + 2c′ + d′ and n = b′ + 2c′ + 2d′ . Let

P1 ≺ · · · ≺ Pm be the endpoints of strands of γ2 on the T -side,

Q1 ≺ · · · ≺ Qn be the endpoints of the strands of γ2 on the S -side,

L
(2)
j be the strand of γ2 with Pj an endpoint, 1 ≤ j ≤ d′ ,

l
(2)
j be the strand of γ2 with Qj an endpoint, 1 ≤ j ≤ d′ ,
A1 ≺ · · · ≺ Ad be the first d points on the S -side where the lift of γ1 meets,

A′j be the point on the S−1 -side identified with Aj by S−1 , 1 ≤ j ≤ d ,

L
(1)
j be the strand of γ1 with A′j an endpoint, 1 ≤ j ≤ d , and

l
(1)
j be the strand of γ1 with Aj an endpoint, 1 ≤ j ≤ d .

Note that L
(1)
j connects the S−1 -side to the T -side, and each l

(1)
j connects

the S -side to the T -side. Let Bj be the endpoint of l
(1)
j on the T -side. It is clear

that B1 ≺ · · · ≺ Bd .

ζ
c′

c′

c′ c′ a′

c′+d′ c′+d′

d′

d′

b′

P ∗

L
(1)
j

L
(2)
j

`
(1)
j`

(2)
j

Figure 7.
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Without loss of generality, we assume that i(γ+

1 , d
′τ+

3 ) = 0, and that the

union L of all L
(1)
j is disjoint from γ2 (see Figure 7). Then

Pd′ ≺ B1 ≺ · · · ≺ Bd ≺ Pd′+1 and Qd′ ≺ A1 ≺ · · · ≺ Ad ≺ Qd′+1.

This implies that each l
(1)
j intersects all L

(2)
i and all l

(2)
i transversally. Then

i(dτ−2 , γ
−
2 ) = 2dd′.

By Theorem 2.6 of [4] again, we complete the proof of Theorem 3.1 as follows:

i(γ1, γ2) = i(γ+

1 , γ
+

2 ) + i(γ−1 , γ
−
2 )

= i(γ̃+

1 , γ̃
+

2 ) + i(γ̃−1 , γ̃
−
2 ) + i(dτ−2 , γ

−
2 ) + i(γ+

1 , d
′τ+

3 )

= i
(
aγT + (c+ d)τ̃+

1 , a
′γT + c′τ̃+

1

)

+ i
(
bγS + cτ̃−1 , b

′γS + (c′ + d′)τ̃−1
)

+ 2dd′

= 2|IX(γ1)NT (γ2)− IX(γ2)NT (γ1)|+ 2|IY (γ1)NS(γ2)− IY (γ2)NS(γ1)|
+ |IXY (γ1, γ2)| − IXY (γ1, γ2).

3.2. Elementary intersection numbers of multiple simple loops. In
the rest of this section, we shall prove the following proposition.

Proposition 3.3. If α ∈ G L , and if k is an integer, then

i
(
T k
j (α), γ11

)
= i(α, γ11), i

(
T k
j (α), γ21

)
= i(α, γ21) for j = 1, 2,

i
(
T k

1 (α), γ1j

)
= i(α, γ1j), i

(
T k

2 (α), γ2j

)
= i(α, γ2j) for j = 2, 3,

i
(
T k

2 (α), γ12

)
= 2|NT (α)− kIX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α),

i
(
T k

2 (α), γ13

)
= 2|NT (α)− (k + 1)IX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α),

i
(
T k

1 (α), γ22

)
= 2|NS(α) + kIY (α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α), and

i
(
T k

1 (α), γ23

)
= 2|NS(α) + (k − 1)IY (α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α).

By letting k = 0 in the last four equations of the above proposition, we have

Corollary 3.4 (Elementary intersection numbers). If α ∈ G L , then

i(α, γ12) = 2|NT (α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α),

i(α, γ13) = 2|NT (α)− IX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α),

i(α, γ22) = 2|NS(α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α), and

i(α, γ23) = 2|NS(α)− IY (α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α).
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Lemma 3.5. Let γ and γ′ ∈ Ĝ be disjoint geodesics, and let α = aγ ⊕ bγ ′ ,
where a ≥ 0 and b ≥ 0 are integers with a+ b > 0 . Then for all integers k

NT
(
T k

1 (α)
)

= NT (α),

NS
(
T k

2 (α)
)

= NS(α),

NT
(
T k

2 (α)
)

= NT (α)− kIX(α),

NS
(
T k

1 (α)
)

= NS(α) + kIY (α).

Proof. Since NE(α) = aNE(γ) + bNE(γ′) for E = S or T , from Proposi-
tion 2.8 we obtain

NT
(
T k

1 (α)
)

= aNT
(
T k

1 (γ)
)

+ bNT
(
T k

1 (γ′)
)

= aNT (γ) + bNT (γ′) = NT (α) and

NT
(
T k

2 (α)
)

= aNT
(
T k

2 (γ)
)

+ bNT
(
T k

2 (γ′)
)

= a{NT (γ)− kIX(γ)}+ b{NT (γ′)− kIX(γ′)} = NT (α)− kIX(α).

Similarly, NS
(
T k

2 (α)
)

= NS(α) and NS
(
T k

1 (α)
)

= NS(α) + kIY (α) .

Lemma 3.5. If γ and γ′ are two disjoint geodesics in Ĝ , then
(
NT (γ)− IX(γ)

)(
NT (γ′)− IX(γ′)

)
≥ 0,

(
NT (γ) + IX(γ)

)(
NT (γ′) + IX(γ′)

)
≥ 0,

(
NS(γ)− IY (γ)

)(
NS(γ′)− IY (γ′)

)
≥ 0,

(
NS(γ) + IY (γ)

)(
NS(γ′) + IY (γ′)

)
≥ 0.

Proof. We shall prove that
(
NT (γ) − IX(γ)

)(
NT (γ′) − IX(γ′)

)
≥ 0. The

other three inequalities will follow by a similar argument.
From Lemma 2.4, we have NT (γ)NT (γ′) ≥ 0, then

(
NT (γ)− IX(γ)

)(
NT (γ′)− IX(γ′)

)
≥ 0 when NT (γ) ≤ 0.

Now, consider the case where NT (γ) ≥ 0, and suppose that
(
NT (γ)− IX(γ)

)(
NT (γ′)− IX(γ′)

)
< 0.

Without loss of generality, we assume that

NT (γ) > IX(γ) and 0 ≤ NT (γ′) < IX(γ′).

There is a strand l1 of γ joining the X -side to the T−1 -side, and there is a
strand l2 of γ joining the X−1 -side to the T−1 -side.

Let m = IX(γ′) > 0. There exist m strands L1, . . . , Lm of γ′ with endpoints
on the X−1 -side.

If every Lj connects the X−1 -side to the T−1 -side, then NT (γ′) ≥ m =
IX(γ′) . This is a contradiction to the assumption. Therefore, there is an integer
j such that Lj connects the X−1 -side to the E -side with E 6= T−1 . This implies
Lj ∩ (l1 ∪ l2) 6= ∅ . This is impossible since γ and γ ′ are disjoint.
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Lemma 3.7. Let γ, γ′ ∈ G be two disjoint geodesics, and let α = aγ ⊕ bγ ′ ,
where a ≥ 0 and b ≥ 0 are integers with a+ b > 0 . Then

{IX(γ)− IY (γ)} · {IX(γ′)− IY (γ′)} ≥ 0,

and thus

|IX(α)− IY (α)|+ IX(α)− IY (α) = a{|IX(γ)− IY (γ)|+ IX(γ)− IY (γ)}
+ b{|IX(γ′)− IY (γ′)|+ IX(γ′)− IY (γ′)};

|IY (α)− IX(α)|+ IY (α)− IX(α) = a{|IY (γ)− IX(γ)|+ IY (γ)− IX(γ)}
+ b{|IY (γ′)− IX(γ′)|+ IY (γ′)− IX(γ′)}.

Proof. If γ ∈ {γT , γS} or γ′ ∈ {γT , γS} , then

{IX(γ)− IY (γ)} · {IX(γ′)− IY (γ′)} = 0.

In the following, we assume that γ, γ ′ ∈ Ĝ .
Now, choose an integer k > 0 such that

NT
(
T −k2 T k

1 (γ)
)
≥ 2IX(γ) = 2IX

(
T −k2 T k

1 (γ)
)
,

NS
(
T −k2 T k

1 (γ)
)
≥ 2IY (γ) = 2IY

(
T −k2 T k

1 (γ)
)
,

NT
(
T −k2 T k

1 (γ′)
)
≥ 2IX(γ′) = 2IX

(
T −k2 T k

1 (γ′)
)
,

NS
(
T −k2 T k

1 (γ′)
)
≥ 2IY (γ′) = 2IY

(
T −k2 T k

1 (γ′)
)
.

Since for E = X or Y

IE
(
T −k2 T k

1 (α)
)

= aIE
(
T −k2 T k

1 (γ)
)

+ bIE
(
T −k2 T k

1 (γ′)
)

= aIE(γ) + bIE(γ′) = IE(α),

we may assume that

NT (γ) ≥ 2IX(γ), NS(γ) ≥ 2IY (γ), NT (γ′) ≥ 2IX(γ′), NS(γ′) ≥ 2IY (γ′).

Let G L 1 and G L 2 be the subsets of G L given in the proof of Theorem 3.1.
If γ and γ′ both are in G L 1 , write

γ = pγS + qγT + rτ1 + sτ2 and γ′ = p′γS + q′γT + r′τ1 + s′τ2.

Then
{IX(γ)− IY (γ)} · {IX(γ′)− IY (γ′)} = ss′ ≥ 0.

Similarly,
{IX(γ)− IY (γ)} · {IX(γ′)− IY (γ′)} ≥ 0

if γ and γ′ both are in G L 2 .
Finally, assume that γ ∈ G L 1 and γ′ ∈ G L 2 , and write

γ = pγS + qγT + rτ1 + sτ2 and γ′ = p′γS + q′γT + r′τ1 + s′τ3.

If ss′ > 0, then i(γ, γ′) > 0. This is impossible. Thus ss′ = 0. This implies that
both γ and γ′ are either in G L 1 or in G L 2 , and completes the proof.
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Proof of Proposition 3.3. It follows from equation (3) and Proposition 2.2,
we have

i
(
T k
j (α), γ11

)
= i(α, γ11), i

(
T k
j (α), γ21

)
= i(α, γ21) for j = 1, 2.

Since γ1j is invariant under T1 , and since γ2j is invariant under T2 for
j = 2, 3, then

i
(
T k

1 (α), γ1j

)
= i
(
α,T −k1 (γ1j)

)
= i(α, γ1j), and

i
(
T k

2 (α), γ2j

)
= i
(
α,T −k2 (γ2j)

)
= i(α, γ2j).

It remains to prove the last four equations given in the proposition. In the
following, a and b are assumed to be non-negative integers with a+ b > 0.

If α = aγS ⊕ bγT , then α is invariant under Tj for j = 1, 2, and IE(α) = 0
for E = X , Y . Thus the equations hold trivially.

Let γ ∈ Ĝ be a geodesic disjoint from γS . If α = aγ ⊕ bγS , then

IY (γ) = 0 = IY (α), NS(γ) = 0 and NS(α) = b.

Since IY (γ) = 0, then γ is invariant under T1 , and so is α . From Corollary 3.2
and Lemma 3.7, we have

|IX(α)− IY (α)|+ IX(α)− IY (α) = 2aIX(γ)

and

i
(
T k

1 (α), γ22

)
= ai(γ, γ22) + bi(γS , γ22) = 2aIX(γ) + 2b

= 2|NS(α) + kIY (α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α);

i
(
T k

1 (α), γ23

)
= ai(γ, γ23) + bi(γS , γ23) = 2aIX(γ) + 2b

= 2|NS(α) + (k − 1)IY (α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α).

Since γS is invariant under T2 , and i(γS , γ1j) = 0 for j = 1, 2, then

i
(
T k

2 (α), γ1j

)
= ai

(
T k

2 (γ), γ1j

)
.

Since IX(α) = aIX(γ) , and since NT (α) = aNT (γ) , from Corollary 3.2 and
Lemma 3.5 we have

i
(
T k

2 (α), γ12

)
= 2|NT (α)− kIX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α);

i
(
T k

2 (α), γ13

)
= 2|NT (α)− (k + 1)IX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).

By a similar argument as above, one proves that the last four equations hold
for α = aγ ⊕ bγT , where γ ∈ Ĝ is a geodesic disjoint from γT .
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Finally, we consider the free homotopy classes α = aγ ⊕ bγ ′ , where γ and γ′

are disjoint geodesics in Ĝ . If ab = 0, the equations hold trivially by Corollary 3.2.
Assume that a > 0 and b > 0. Then IX(α)IY (α) > 0. Otherwise, say

IY (α) = 0, we have IY (γ) = IY (γ′) = 0. This is impossible since any two distinct
simple closed geodesics on a four-punctured sphere must meet (see [4, Theorem 2.5]
and [4, Theorem 2.6]).

Note that the last three equations given in the proposition follow from the
equation

i
(
T k

2 (α), γ12

)
= 2|NT (α)− kIX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).

Since
i
(
T k

2 (α), γ13

)
= i
(
T k

2 (α),T −1
2 (γ12)

)
= i
(
T k+1

2 (α), γ12

)
,

then

i
(
T k

2 (α), γ13

)
= 2|NT (α)− (k + 1)IX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).

Because T k
1 = Θ2T k

2 Θ2 , from Propositions 2.1 and 2.4 we obtain

i
(
T k

1 (α), γ22

)
= i
(
Θ2T

k
2 Θ2(α), γ22

)
= i
(
T k

2 Θ2(α),Θ2(γ22)
)

= i
(
T k

2 Θ2(α), γ12

)

= 2|NT
(
Θ2(α)

)
− kIX

(
Θ2(α)

)
|+ |IY

(
Θ2(α)

)
− IX

(
Θ2(α)

)
|

+ IY
(
Θ2(α)

)
− IX

(
Θ2(α)

)

= 2| −NS(α)− kIY (α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α)

= 2|NS(α) + kIY (α)|+ |IX(α)− IY α)|+ IX(α)− IY (α)

and

i
(
T k

1 (α), γ23

)
= i
(
T k

1 (α),T1(γ22)
)

= i
(
T k−1

1 (α), γ22

)

= 2|NS(α) + (k − 1)IY (α)|+ |IX(α)− IY (α)|+ IX(α)− IY (α).

Now, we shall prove the equation

i(T k
2 (α), γ12) = 2|NT (α)− kIX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).

From Proposition 2.8, Lemma 3.5 and Lemma 3.7, we obtain

i
(
T2(α), γ12

)
= ai

(
T2(γ), γ12

)
+ bi

(
T2(γ′), γ12

)

= 2a|NT
(
T2(γ)

)
|+ 2b|NT

(
T2(γ′)

)
|

+ a
{
|IY
(
T2(γ)

)
− IX

(
T2(γ)

)
|+ IY

(
T2(γ)

)
− IX

(
T2(γ)

)}

+ b
{
|IY
(
T2(γ′)

)
− IX

(
T2(γ′)

)
|+ IY

(
T2(γ′)

)
− IX

(
T2(γ′)

)}

= 2a|NT (γ)− IX(γ)|+ 2b|NT (γ′)− IX(γ′)|
+ a{|IY (γ)− IX(γ)|+ IY (γ)− IX(γ)}
+ b{|IY (γ′)− IX(γ′)|+ IY (γ′)− IX(γ′)}

= 2|a{NT (γ)− IX(γ)}+ b{NT (γ′)− IX(γ′)}|
+ |IY (α)− IX(α)|+ IY (α)− IX(α)

= 2|NT (α)− IX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).
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If k > 1, by Lemma 3.5 we have

i
(
T k

2 (α), γ12

)
= 2|NT

(
T k−1

2 (α)
)
− IX

(
T k−1

2 (α)
)
|

+ |IY
(
T k−1

2 (α)
)
− IX

(
T k−1

2 (α)
)
|

+ IY
(
T k−1

2 (α)
)
− IX

(
T k−1

2 (α)
)

= 2|NT (α)− kIX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).

By the same reasoning as above, one shows

i
(
T −1

2 (α), γ12

)
= 2|NT (α) + IX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).

Thus for k > 1

i
(
T −k2 (α), γ12

)
= 2|NT

(
T −k+1

2 (α)
)
− IX

(
T −k+1

2 (α)
)
|

+ |IY
(
T −k+1

2 (α)
)

+ IX
(
T −k+1

2 (α)
)
|

+ IY
(
T −k+1

2 (α)
)
− IX

(
T −k+1

2 (α)
)

= 2|NT (α) + kIX(α)|+ |IY (α)− IX(α)|+ IY (α)− IX(α).

4. A homeomorphism of πI (G ) onto a 3-sphere

Now, we are ready to construct a homeomorphism of πI (G ) onto a 3-sphere.
Let Π = {(r1, r2, . . . , r6) ∈ R6

+ : r1 + r2 + · · ·+ r6 = 1} , and let C = Π1∪Π2∪Π3 ,
where

Π1 = {(r1, r2, r3) ∈ R3
+ : r2 + r3 = r1},

Π2 = {(r1, r2, r3) ∈ R3
+ : r1 + r3 = r2},

Π3 = {(r1, r2, r3) ∈ R3
+ : r1 + r2 = r3}.

Following Poénaru ([5], Exposé 4), we shall first construct a function Ψ of
I (G L ) into (C × C ) ∩Π so that its extension to π−1πI (G L ) satisfies

Ψ(t Iα) = Ψ(Iα) for α ∈ G L and for t > 0.

Thus Ψ induces a function on πI (G L ) , also denoted by Ψ.
By using a continuity argument, we extend Ψ to πI (G ), and prove that Ψ is

a homeomorphism of πI (G ) onto a 3-sphere lying in R6 (Theorem 4.3). Finally,
by postcomposing Ψ by a function from R6 into R4 , we will get a homeomorphism
of πI (G ) into a 3-sphere lying in R4 (Theorem 4.4).

4.1. The definition of Ψ on G L . For integers i ∈ {1, 2} and j ∈ {1, 2, 3} ,
and for α ∈ G L , let

xij(α) =
i(α, γij)

λ(α)
, where λ(α) =

2∑

i=1

3∑

j=1

i(α, γij),
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and let ψ1: G L −→ R6
+ be defined by

ψ1(α) =
(
x11(α), x12(α), x13(α), x21(α), x22(α), x23(α)

)
.

Note that the image of ψ1 lies in Π since
∑2
i=1

∑3
j=1 xij(α) = 1 for all α ∈ G L .

To construct a function of G L into (C × C ) ∩Π, we form the sum

ρ(α) = 2{IX(α)+IY (α)+ |NT (α)|+ |NT (α)−IX(α)|+ |NS(α)|+ |NS(α)−IY (α)|}.
From Corollary 3.4, we have 0 < ρ(α) ≤ λ(α) for all α ∈ G L , and

ρ(α)

λ(α)
= 1− 4|IX(α)− IY (α)|

λ(α)
= 1− 2|x11(α)−X21(α)|.

Thus |x11(α)− x21(α)| < 1
2 for all α ∈ G L , and the image of ψ1 is contained in

the set E = {(r1, r2, r3, r4, r5, r6) ∈ Π : |r1 − r4| < 1
2} .

Let
E + = {(r1, r2, r3, r4, r5, r6) ∈ Π : 0 ≤ r1 − r4 <

1
2} and

E − = {(r1, r2, r3, r4, r5, r6) ∈ Π : 0 ≤ r4 − r1 <
1
2}.

Let ψ2: E −→ R6 be defined by ψ2(r1, r2, r3, r4, r5, r6) = (t1, t2, t3, t4, t5, t6) ,
where

tj =





rj
1− 2(r1 − r4)

for j = 1, 2, 3, 4 and (r1, r2, r3, r4, r5, r6) ∈ E +,

rj − r1 + r4

1− 2(r1 − r4)
for j = 5, 6 and (r1, r2, r3, r4, r5, r6) ∈ E +,

rj
1− 2(r4 − r1)

for j = 1, 4, 5, 6 and (r1, r2, r3, r4, r5, r6) ∈ E −,

rj + r1 − r4

1− 2(r4 − r1)
for j = 2, 3 and (r1, r2, r3, r4, r5, r6) ∈ E −.

It is clear that ψ2 is continuous on E with

ψ2(E +) ⊂ Π+ = {(t1, t2, t3, t4, t5, t6) ∈ Π : t1 ≥ t4} and

ψ2(E −) ⊂ Π− = {(t1, t2, t3, t4, t5, t6) ∈ Π : t1 ≤ t4}.
A direct computation proves that ψ2 is an injective function onto Π with the
inverse ψ−1

2 (t1, t2, t3, t4, t5, t6) = (r1, r2, r3, r4, r5, r6) ∈ E , where

rj =





tj
1 + 2(t1 − t4)

for j = 1, 2, 3, 4, and (t1, t2, t3, t4, t5, t6) ∈ Π+,

tj + t1 − t4
1 + 2(t1 − t4)

for j = 5, 6, and (t1, t2, t3, t4, t5, t6) ∈ Π+,

tj
1 + 2(t4 − t1)

for j = 1, 4, 5, 6, and (t1, t2, t3, t4, t5, t6) ∈ Π−,

tj − t1 + t4
1 + 2(t4 − t1)

for j = 2, 3, and (t1, t2, t3, t4, t5, t6) ∈ Π−.
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This proves that ψ2 is a homeomorphism of E onto Π.
Let Ψ be the composition of ψ1 followed by ψ2 . We shall prove that Ψ maps

G L into ∆ = (C × C ) ∩Π. For α ∈ G L , write

(
ξ11(α), ξ12(α), ξ13(α), ξ21(α), ξ22(α), ξ23(α)

)

= ψ2

(
x11(α), x12(α), x13(α), x21(α), x22(α), x23(α)

)
.

From the definition of ρ(α) , we have

ξ11(α) =
2IX(α)

ρ(α)
, ξ12(α) =

2|NT (α)|
ρ(α)

, ξ13(α) =
2|NT (α)− IX(α)|

ρ(α)
,

ξ21(α) =
2IY (α)

ρ(α)
, ξ22(α) =

2|NS(α)|
ρ(α)

, ξ23(α) =
2|NS(α)− IY (α)|

ρ(α)
.

For simplicity, write NT = NT (α) , NS = NS(α) , IX = IX(α) , IY = IY (α) , and
ξij = ξij(α) for all α ∈ G L . Then

NT ≤ 0 =⇒ ξ11 + ξ12 = ξ13,

0 ≤ NT ≤ IX =⇒ ξ11 − ξ12 = ξ13,

NT ≥ IX =⇒ −ξ11 + ξ12 = ξ13,

NS ≤ 0 =⇒ ξ21 + ξ22 = ξ23,

0 ≤ NS ≤ IY =⇒ ξ21 − ξ22 = ξ23,

NS ≥ IY =⇒ −ξ21 + ξ22 = ξ23.

Therefore, Ψ(G L ) ⊂ ∆.

4.2. A homeomorphism of ∆ onto a 3-sphere. In this subsection, we
shall prove that ∆ = (C × C ) ∩Π is homeomorphic to a 3-sphere.

Let A be the invertible linear transformation of R3 onto itself carrying the
vectors (1, 0, 1), (1, 1, 0) and (0, 1, 1) to the vectors (1, 0, 1),

(
− 1

2 ,
1
2

√
3, 1
)

and(
− 1

2 ,− 1
2

√
3, 1
)

in this order. The matrix representation of A is

A =




1
2 −1 1

2
1
2

√
3 0 − 1

2

√
3

1
2

1
2

1
2


 with the inverse A−1 =




1
3

√
3
−1 2

3−2
3 0 2

3
1
3 −

√
3
−1 2

3


 .

Let C ′ = A(C ) . Note that if (x1, x2, x3) = A(r1, r2, r3) ∈ C ′ , then x3 ≥ 0. Let

L1 = {(t, 0, t) ∈ R3 : t ≥ 0},
L2 =

{(
− 1

2 t,
1
2

√
3 t, t

)
∈ R3 : t ≥ 0

}
and

L3 =
{(
− 1

2 t,− 1
2

√
3 t, t

)
∈ R3 : t ≥ 0

}
.

By a direct computation, one proves easily that Π′1 = A(Π1) lies on the plane
x1+
√

3x2 = x3 bounded by L1 and L2 , Π′2 = A(Π2) lies on the plane 2x1+x3 = 0
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bounded by L2 and L3 , and Π′3 = A(Π3) lies on the plane
√

3x2 + x3 = x1

bounded by L1 and L3 . By the definition, C ′ = Π′1 ∪ Π′2 ∪ Π′3 . Let J be the
linear transformation of R6 onto itself represented by the following matrix

(
A 0
0 A

)
.

Then J is a homeomorphism of R6 onto itself with

Π′ = J(Π) = {(x1, x2, x3, x4, x5, x6) ∈ R6 : x3 + x6 = 1
2},

and J(∆) = (C ′ × C ′) ∩Π′ = ∆′ .
It is clear that the orthogonal projection η: R3 −→ R2 defined by

η(x1, x2, x3) = (x1, x2)

restricted to C ′ is a homeomorphism onto R2 . Then the projection φ: R6 −→ R4

defined by

φ(x1, x2, x3, x4, x5, x6) =
(
η(x1, x2, x3), η(x4, x5, x6)

)

restricted to C ′ × C ′ is a homeomorphism onto R2 ×R2 ∼= R4 . Let

B = (C ′ × C ′) ∩ {(x1, x2, x3, x4, x5, x6) ∈ R6 : x3 + x6 ≤ 1
2}.

Now, we shall prove that φ(B) is bounded and convex, and has non-empty interior.
This implies that φ(B) is homeomorphic to the closed unit ball

{(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 ≤ 1}.

By the definition of B , as a subspace of C ′ × C ′ , the boundary of B is ∆′ , then
φ(∆′) is homeomorphic to a 3-sphere, and so is ∆.

Let R be the rotation in R3 with the matrix representation




cos 2
3π − sin 2

3π 0
sin 2

3π cos 2
3π 0

0 0 1


 =



− 1

2 − 1
2

√
3 0

1
2

√
3 − 1

2 0
0 0 1


 .

Then
Π′j ×Π′k = Rj−1(Π′1)×Rk−1(Π′1) = (Rj−1 ×Rk−1)(Π′1 ×Π′1)

for j, k ∈ {1, 2, 3} , where Rj−1 × Rk−1 is the linear transformation of R6 onto
itself represented by the following matrix

(
Rj−1 0

0 Rk−1

)
.
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It easy to see that

(Rj−1 ×Rk−1)(0, 0, r, 0, 0, s) = (0, 0, r, 0, 0, s)

for any two real numbers r and s . Since the normal vector (0, 0, 1, 0, 0, 1) of Π′

is invariant under Rj−1×Rk−1 , and since the point (0, 0, 1
4 , 0, 0,

1
4 ) of Π′ is fixed

by Rj−1 ×Rk−1 , then Π′ is invariant under Rj−1 ×Rk−1 , and thus

φ(B) =
3⋃
j=1

3⋃
k=1

φ
(
(Rj−1 ×Rk−1)(V )

)
,

where

V = {(x1, x2, x3, x4, x5, x6) ∈ Π′1 ×Π′1 : x3 + x6 ≤ 1
2}

= {(x1, x2, x3, x4, x5, x6) ∈ Π′1 ×Π′1 : x1 +
√

3x2 + x4 +
√

3x5 ≤ 1
2}.

Clearly, V is bounded. This proves that φ(B) is bounded since Rj−1 × Rk−1 is
a Euclidean isometry.

To prove the convexity of φ(B) , we consider any two distinct points Q and
Q′ of B with coordinates (x1, x2, x3, x4, x5, x6) and (x′1, x

′
2, x
′
3, x
′
4, x
′
5, x
′
6) respec-

tively. Let

P1 = (x1, x2, x3), P2 = (x4, x5, x6), P ′1 = (x′1, x
′
2, x
′
3) and P ′2 = (x′4, x

′
5, x
′
6),

and let PjP ′j denote the line segment connecting Pj to P ′j for j = 1, 2. The

vertical plane in R3 containing PjP ′j intersects C ′ in a polygonal curve σj with
parametric equation fj(t) , 0 ≤ t ≤ 1, so that fj(0) = Pj and fj(1) = P ′j . Note

that η(σj) = η(PjP ′j) . The curve

L = {(f1(t), f2(t)) ∈ R3 ×R3 : 0 ≤ t ≤ 1}

lies on C ′ × C ′ connecting Q to Q′ , and φ(L) is a line segment in φ(B) with
φ(Q) and φ(Q′) as its endpoints. Therefore, φ(B) is convex.

Note that (Π′1 ×Π′1) ∩Π′ is contained in the hyperplane in R6 of equation

x1 +
√

3x2 + x4 +
√

3x5 = 1
2 ,

then the distance from the origin to (Π′1×Π′1)∩Π′ is at least 1/4
√

2. This implies
that φ(B) contains the closed ball centered at the origin with radius 1/4

√
2, and

φ(B) has non-empty interior. The proof is complete.
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4.3. The extension of Ψ to πI (G ) . Now, we are going to extend the
map Ψ to πI (G ) = πI (G L ).

For every α ∈ G L , we define xij(Iα) = xij(α) . Since each xij is homoge-
neous, then xij extends naturally to π−1πI (G L ) defined by xij(t Iα) = xij(Iα)
for all t > 0 and for all α ∈ G L . Thus each xij induces a well-defined map, also
denoted by xij , on πI (G L ) defined by xij

(
π(Iα)

)
= xij(Iα) .

For an arbitrary L ∈ π−1πI (G ), there is a sequence {tn}∞n=1 of positive
numbers, and there is a sequence {γn}∞n=1 in G such that {tn Iγn}∞n=1 converges
to L . Thus

tni(γn, γij) = tn Iγn(γij)→ L (γij)

as n→∞ for i = 1, 2 and for j = 1, 2, 3. This implies

lim
n→∞

xij(tn Iγn) =
L (γij)∑2

k=1

∑3
l=1 L (γkl)

for i = 1, 2 and for j = 1, 2, 3. Let λ: π−1πI (G ) −→ R+ be defined by

λ(L ) =
2∑

k=1

3∑

l=1

L (γkl) for all L ∈ π−1πI (G ),

and let xij : π
−1πI (G ) −→ R+ be defined by

xij(L ) =
L (γij)∑2

k=1

∑3
l=1 L (γkl)

for all L ∈ π−1πI (G ) .

It is easy to see that each xij is continuous on π−1πI (G ) with xij(tL ) = xij(L )

for all t > 0 and for all L ∈ π−1πI (G ).
Since the restriction of π to π−1πI G ) is a quotient map onto πI (G ), then

each xij extends to πI (G ) a continuos map given by xij
(
π(L )

)
= xij(L ) for L

in π−1πI (G ). This gives a continuous map of πI (G ) into R6
+ whose restriction

to G L is ψ1 . We also use ψ1 for this continuous map on πI (G ), and let
Ψ = ψ2ψ1 as before.

Proposition 4.1. The function Ψ maps πI (G ) continuously onto ∆ .

Clearly, Ψ is a continuous map of πI (G ) into Π. Since Ψ(G ) ⊂ ∆, and
since ∆ is closed in R6 , then Ψ

(
πI (G )

)
⊂ ∆.

To complete the proof of Proposition 4.1, we have to show that Ψ
(
πI (G L )

)

is dense in ∆ since Ψ is continuous and πI (G ) = πI (G L ) is compact.
A point (r1, r2, r3, r4, r5, r6) of Q6 will be called a rational point, where Q is

the set of all rational numbers.
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Lemma 4.2. Every rational point of Π ∩ (Π2 ×Π2) lies in Ψ
(
πI (G L )

)
.

Proof. Let (v1/u, v2/u, v3/u, v4/u, v5/u, v6/u) be any rational point of (Π2×
Π2) ∩Π, where u > 0 and all vj ≥ 0 are even integers. Note that

2(v2 + v5) = u, v1 + v3 = v2 and v4 + v6 = v5.

We want to show that there are non-negative integers a , b , c and d with a+ b+
c+ d > 0 such that

(
v1

u
,
v2

u
,
v3

u
,
v4

u
,
v5

u
,
v6

u

)
=

{
Ψ
(
T −1

1 T2(aγT + bγS + cτ1 + dτ2)
)

if v1 ≥ v4,

Ψ
(
T −1

1 T2(aγT + bγS + cτ1 + dτ3)
)

if v1 ≤ v4,

where τ1 , τ2 and τ3 are the geodesics given in the proof of Theorem 3.1.
Let α = T −1

1 T2(aγT + bγS + cτ1 + dτ2) . From Proposition 3.3 and Corol-
lary 3.4, we have

IX(α) = c+ d,

NT (α) = a+ c+ d,

IY (α) = c,

NS(α) = b+ c, and

ρ(α) = 2(2a+ 2b+ 4c+ 2d).

If v1 ≥ v4 , by solving the following equations for a , b , c and d

2(c+ d) = 2IX(α) = v1,

2(a+ c+ d) = 2NT (α) = v2,

2c = 2IY (α) = v4,

2(b+ c) = 2NS(α) = v5,

we have

a = 1
2 (v2 − v1), b = 1

2 (v5 − v4), c = 1
2v4 and d = 1

2 (v1 − v4).

A direct computation gives ρ(α) = 2(v2 + v5) = u ,

2|NT (α)− IX(α)| = v2 − v1 = v3 and 2|NS(α)− IY (α)| = v5 − v4 = v6.

This proves

Ψ(α) =

(
v1

u
,
v2

u
,
v3

u
,
v4

u
,
v5

u
,
v6

u

)
.

Next, assume that v1 ≤ v4 . Let α be given as above such that

Ψ(α) =

(
v4

u
,
v5

u
,
v6

u
,
v1

u
,
v2

u
,
v3

u

)
.
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Since T2Θ2 = Θ2T1 , Θ1T
−1

1 = T1Θ1 and Θ1T
−1

2 = T2Θ1 , then

T −1
1 T2(aγT + bγS + cτ1 + dτ3) = T −1

1 T2Θ1Θ2(aγT + bγS + cτ1 + dτ2)

= Θ1Θ2T2T
−1

1 (aγT + bγS + cτ1 + dτ2)

= Θ1Θ2T
−1

1 T2(aγT + bγS + cτ1 + dτ3)

= Θ1Θ2(α).

Let β = Θ1Θ2(α) . It follows immediately from Proposition 2.1 that

IX(β) = IY (α), IY (β) = IXα), NT (β) = NS(α) and NS(β) = NT (α)

and

Ψ(β) =
(
ξ21(α), ξ22(α), ξ23(α), ξ11(α), ξ12(α), ξ13(α)

)
=

(
v1

u
,
v2

u
,
v3

u
,
v4

u
,
v5

u
,
v6

u

)
.

Proof of Proposition 4.1. We shall prove that Ψ
(
πI (G L )

)
is dense in ∆

by showing that every rational point of ∆ is in Ψ
(
πI (G L )

)
, and this completes

the proof.
Let ζ = (v1/u, v2/u, v3/u, v4/u, v5/u, v6/u) be an arbitrary rational point of

∆, where u > 0 and all vj ≥ 0 are even integers. There are non-negative integers
m and n such that

mv1 ≤ v2 < (m+ 1)v1 and nv4 ≤ v5 < (n+ 1)v4.

Let

ζ1 =

(
v1

u
,
v2

u
,
v3

u

)
and ζ2 =

(
v4

u
,
v5

u
,
v6

u

)
.

Set v′j = vj for j = 1, 4, set

v′2 =

{
v2 + (m+ 1)v1 if ζ1 ∈ Π1 ∪Π2,
−v2 + (m+ 1)v1 if ζ1 ∈ Π3,

v′3 =

{
v2 +mv1 if ζ1 ∈ Π1 ∪Π2,
−v2 +mv1 if ζ1 ∈ Π3,

v′5 =

{
v5 + (n+ 1)v4 if ζ2 ∈ Π1 ∪Π2,
−v5 + (n+ 1)v4 if ζ2 ∈ Π3,

v′6 =

{
v5 + nv4 if ζ2 ∈ Π1 ∪Π2,
−v5 + nv4 if ζ2 ∈ Π3,

and set w =
∑6
j=1 v

′
j . Then w > 0 and all v′j ≥ 0 are even integers,

|v′2 − (m+ 1)v1| = v2, |v′5 − (n+ 1)v4| = v5,
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and

|v′2 − (m+ 2)v1| =
{
|v2 − v1| = v3 if ζ1 ∈ Π1 ∪Π2,
| − v2 − v1| = v3 if ζ1 ∈ Π3,

|v′5 − (n+ 2)v4| =
{
|v5 − v4| = v6 if ζ2 ∈ Π1 ∪Π2,
| − v5 − v4| = v6 if ζ2 ∈ Π3.

As v′2 = v′1 + v′3 and v′5 = v′4 + v′6 , the point (v′1/w, v
′
2/w, v

′
3/w, v

′
4/w, v

′
5/w, v

′
6/w)

is a rational point in Π ∩ (Π2 ×Π2) .
From the proof Lemma 4.2 we know that there is an α ∈ G L with NT (α) ≥

IX(α) and NS(α) ≥ IY (α) such that

2IX(α) = v′1,

2NT (α) = v′2,

2{NT (α)− IX(α)} = v′3,

2IY (α) = v′4,

2NS(α) = v′5,

2{NS(α)− IY (α)} = v′6.

Let α′ = T m+1
2 T −n−1

1 (α) . From Lemma 3.5,

2IX(α′) = 2IX(α) = v1,

2IY (α′) = 2IY (α) = v4,

2|NT (α′)| = |2{NT (α)− (m+ 1)IX(α)}| = |v′2 − (m+ 1)v1| = v2,

2|NT (α′)− IX(α′)| = |2{NT (α)− (m+ 2)IX(α)}| = |v′2 − (m+ 2)v1| = v3,

2|NS(α′)| = |2{NS(α)− (n+ 1)IY (α)}| = |v′5 − (n+ 1)v4| = v5,

2|NS(α′)− IY (α′)| = |2{NS(α)− (n+ 2)IY (α)}| = |v′5 − (n+ 2)v4| = v6.

Thus Ψ(α′) = ζ .

4.4. The injectivity of Ψ. So far, we have proved that Ψ maps πI (G )
onto the 3-sphere ∆. Next, we shall prove that Ψ is injective on πI (G ) . This
proves the following theorem.

Theorem 4.3. The map Ψ is a homeomorphism of πI (G ) onto ∆ , and
then πI (G ) is homeomorphic to a 3 -sphere.

Since ψ2 is a homeomorphism of E onto Π, it remains to show that ψ1 is
injective on πI (G ).

Let L1,L2 ∈ π−1πI (G ) with ψ1

(
π(L1)

)
= ψ1

(
π(L2)

)
. There exist se-

quences {tn} and {sn} of positive numbers, and there exist sequences {αn} and
{βn} of elements in G such that

lim
n→∞

tn Iαn = L1 and lim
n→∞

sn Iβn = L2.
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Set p = λ(L1)/λ(L2). By assumption, for i = 1, 2 and for j = 1, 2, 3, we have

L1(γij) = pL2(γij), or, equivalently, lim
n→∞

tn Iαn(γij) = lim
n→∞

psn Iβn(γij).

We shall complete the proof by showing that

lim
n→∞

tn Iαn(γ) = lim
n→∞

psn Iβn(γ) for all γ ∈ G .

Since

lim
n→∞

tnIX(αn) = lim
n→∞

tn Iαn(γ11) = lim
n→∞

psn Iβn(γ11) = lim
n→∞

psnIX(βn), and

lim
n→∞

tnIY (αn) = lim
n→∞

tn Iαn(γ21) = lim
n→∞

psn Iβn(γ21) = lim
n→∞

psnIY (βn),

then, by using the geometric intersection formula, we only have to show that

lim
n→∞

tn|IX(αn)NT (γ)− IX(γ)NT (αn)|= lim
n→∞

psn|IX(βn)NT (γ)− IX(γ)NT (βn)|
and

lim
n→∞

tn|IY (αn)NS(γ)− IY (γ)NS(αn)|= lim
n→∞

psn|IY (βn)NS(γ)− IY (γ)NS(βn)|.

To simplify notation, set An = tnIX(αn) , Bn = psnIX(βn) , Cn = tnNT (αn) ,
Dn = psnNT (βn) , I = IX(γ) and N = NT (γ) . Thus

lim
n→∞

An = lim
n→∞

Bn and lim
n→∞

|Cn| = lim
n→∞

|Dn|.

It is clear that

lim
n→∞

Cn = lim
n→∞

Dn if lim
n→∞

|Cn| = lim
n→∞

|Dn| = 0.

If
lim
n→∞

|Cn| = lim
n→∞

|Dn| 6= 0,

by the continuity of Ψ we may choose αn and βn so that CnDn > 0, and then
we also have

lim
n→∞

Cn = lim
n→∞

Dn.

The inequality
∣∣|AnN − CnI| − |BnN −DnI|

∣∣ ≤ |An −Bn| · |N |+ |Cn −Dn| · I
proves that

lim
n→∞

{|AnN − CnI| − |BnN −DnI|} = 0,

or equivalently,

lim
n→∞

tn|IX(αn)NT (γ)− IX(γ)NT (αn)| = lim
n→∞

psn|IX(βn)NT (γ)− IX(γ)NT (βn)|.

By the same reasoning, one shows that

lim
n→∞

tn|IY (αn)NS(γ)− IY (γ)NS(αn)| = lim
n→∞

psn|IY (βn)NS(γ)− IY (γ)NS(βn)|.

The proof is complete.
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4.5. An embedding of h πI (G ) into R4 . Let C = Π1 ∪Π2 ∪Π3 be the
set given at the beginning of this section, and let ϕ: C −→ R2 be defined by

ϕ(r1, r2, r3) =

{
(r1, r2) if (r1, r2, r3) ∈ Π1 ∪Π2,
(r1,−r2) if (r1, r2, r3) ∈ Π3.

It is easy to see that (r1, r2, r3) ∈ (Π1 ∪ Π2) ∩ Π3 if and only if r2 = 0. This
implies that ϕ is continuous on C . Moreover, ϕ is injective as proved below.

Let (r1, r2, r3) and (t1, t2, t3) be two points of C , ϕ(r1, r2, r3) = ϕ(t1, t2, t3) .
By the definition, we have r1 = t1 . Also, we see easily that r2 = 0 if and only
if t2 = 0. If r2 = 0, then (r1, r2, r3), (t1, t2, t3) ∈ Π3 , and thus (r1, r2, r3) =
(t1, t2, t3) . Assume that r2t2 6= 0, i.e. r2 > 0 and t2 > 0. Then either

(r1, r2) = ϕ(r1, r2, r3) = ϕ(t1, t2, t3) = (t1, t2), or

(r1,−r2) = ϕ(r1, r2, r3) = ϕ(t1, t2, t3) = (t1,−t2),

and thus (r1, r2, r3) = (t1, t2, t3) . Therefore, ϕ is injective.
By the definition of Π1 , Π2 and Π3 , we obtain the inverse of ϕ immediately

given by ϕ−1(t1, t2) = (t1, |t2|, |t1 − t2|) for all (t1, t2) ∈ ϕ(C ) .
Since r1 + r2 + r4 + r5 > 0 whenever (r1, r2, r3, r4, r5, r6) ∈ ∆, then the

function ψ3: ∆ −→ R4 defined by

ψ3(r1, r2, r3, r4, r5, r6) =

(
ϕ(r1, r2, r3)

r1 + r2 + r4 + r5
,

ϕ(r4, r5, r6)

r1 + r2 + r4 + r5

)

is continuous on ∆. We shall prove that ψ3 is injective.
Let (r1, r2, r3, r4, r5, r6) and (t1, t2, t3, t4, t5, t6) be any two points of ∆ with

ψ3(r1, r2, r3, r4, r5, r6) = ψ3(t1, t2, t3, t4, t5, t6).

Write
ϕ(r1, r2, r3) = (r′1, r

′
2),

ϕ(r4, r5, r6) = (r′4, r
′
5),

ϕ(t1, t2, t3) = (t′1, t
′
2) and

ϕ(t4, t5, t6) = (t′4, t
′
5).

Then rj = r′j and tj = t′j for j = 1, 4; rj = |r′j | and tj = |t′j | for j = 2, 5;

r3 = |r′1 − r′2|, r6 = |r′4 − r′5|, t3 = |t′1 − t′2|, t6 = |t′4 − t′5|.
Let

p =
r1 + r2 + r4 + r5

t1 + t2 + t4 + t5
=
r′1 + |r′2|+ r′4 + |r′5|
t′1 + |t′2|+ t′4 + |t′5|

.

By assumption, r′j = pt′j for j = 1, 2, 4, 5. Since
∑6
j=1 rj =

∑6
j=1 tj = 1, then

1 = r′1 + |r′2|+ |r′1 − r′2|+ r′4 + |r′5|+ |r′4 − r′5|
= p{t′1 + |t′2|+ |t′1 − t′2|+ t′4 + |t′5|+ |t′4 − t′5|} = p.

Therefore, (r1, r2, r3, r4, r5, r6) = (t1, t2, t3, t4, t5, t6) .
From Theorem 4.3 together with the above discussion, we have shown the

following theorem.
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Theorem 4.4. The composition Φ of Ψ followed by ψ3 is a homeomorphism
of πI (G ) onto a 3 -sphere lying in R4 . Moreover,

Φ(α) =

(
IX(α)

σ(α)
,
NT (α)

σ(α)
,
IY (α)

σ(α)
,
NS(α)

σ(α)

)
for all α ∈ G L ,

where σ(α) = IX(α) + |NT (α)|+ IY (α) + |NS(α)| .

5. Words for geodesics in Ĝ and their traces

In this section, we consider the Maskit embedding M5 of the Teichmüller
space of Σ5 , which is a family of regular B -groups G(µ, ν) parametrized by
complex numbers µ and ν . Each G(µ, ν) representing a five-punctured sphere
and three thrice-punctured spheres. The regular set Ω(µ, ν) of G(µ, ν) has a
unique simply connected component Ω0(µ, ν) invariant under G(µ, ν) such that

Ω0(µ, ν)/G(µ, ν) is a five-punctured sphere. Every geodesic γ ∈ Ĝ corresponds
to a cyclic semi-reduced Γ-word W (γ;µ, ν) in G(µ, ν) . The trace trW (γ;µ, ν) is
a polynomial in µ and ν . The main work of this section is to compute the high
order terms of the trace polynomials trW (γ;µ, ν) . This section is a part of the
author’s Ph.D. thesis [3].

5.1. Cyclic semi-reduced Γ-words for geodesics in Ĝ . In this subsec-
tion, we shall give a complete description of cyclic semi-reduced Γ-words repre-
senting geodesics in Ĝ . Furthermore, we shall write them in exactly two canonical
forms. This reduces the difficulty of computing the high-order terms of the trace
polynomials trW (γ;µ, ν) .

From Proposition 2.7 and [4, Theorem 3.2], we have

Theorem 5.1. Let γ ∈ Ĝ . If IY (γ) = 0 , then γ is represented by a cyclic
semi-reduced Γ -word of the form

m∏

i=1

T riXωiT tiSδi ,

where δi, ωi ∈ {1,−1} , m = IX(γ) = IS(γ) , and ri and ti are integers satisfying
the following conditions:

(i) −1 ≤ (ri + ti)ωi ≤ 0 and −1 ≤ (ri+1 + ti)δi ≤ 0 , where rm+1 = r1 .

(ii) |ri|, |ti| ∈ {r, r + 1} , where r = min{|ri|, |ti| : i = 1, . . . ,m} .

(iii) ri ≥ 0 , ti ≤ 0 whenever γ ∈ G +

T , and ri ≤ 0 , ti ≥ 0 whenever γ ∈ G −T .

(iv)
∑m
i=1(ri − ti) = NT (γ) .

By considering the function Θ2 , we have
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Corollary 5.2. Let γ ∈ Ĝ . If IX(γ) = 0 , then γ is represented by a cyclic
semi-reduced Γ -word of the form

n∏

i=1

SpiY εiSqiT δi ,

where δi, εi ∈ {1,−1} , n = IY (γ) = IT (γ) , and pi and qi are integers satisfying
the following conditions:

(i) −1 ≤ (pi + qi)εi ≤ 0 and −1 ≤ (pi+1 + qi)δi ≤ 0 , where pn+1 = p1 .
(ii) |pi|, |qi| ∈ {p, p+ 1} , where p = min{|pi|, |qi| : i = 1, . . . , n} .
(iii) pi ≤ 0 , qi ≥ 0 whenever γ ∈ G +

S , and pi ≥ 0 , qi ≤ 0 whenever γ ∈ G −S .
(iv)

∑n
i=1(qi − pi) = NS(γ) .

In the following, we assume that γ ∈ Ĝ with IX(γ)IY (γ) > 0. From Propo-
sition 2.1, we may assume that γ ∈ G +

S with IX(γ) ≥ IY (γ) . Let IY (γ) = n .
Then γ is represented by a cyclic semi-reduced Γ-word W of the form

W =

n∏

i=1

S−piY εiSqiWi,

where εi = ±1, where pi ≥ 0 and qi ≥ 0 are integers, and where each Wi is a
semi-reduced Γ-word as given in equation (5). Since

T 2
1 (W ) =

n∏

i=1

S−pi−1Y εiSqi+1Wi,

by considering the geodesic T 2
1 (γ) we may assume that pi > 0 and qi > 0 for

all i .
Now, we shall determine the subwords Wi . Note that each Wi is always

followed by S−1 since pi+1 > 0 for each i , where pn+1 = p1 . Consider the

admissible subarc γi represented by the reduced word W̃i = ~SWiS
−1 . Note that

IX(γi) = IX−1(γi) > 0, IY (γi) = IY −1(γi) = 0 and IS−1(γi) = 2 + IS(γi),

for every i , and that

IX(γ) =

n∑

i=1

IX(γi).

To simplify notation, for every fixed i we write a = mi and write

W̃i = ~SE1 · · ·EaS−1.

Let l be the strand of γi joining the S−1 -side to the E1 -side, and let l′ be the
strand of γi joining the E−1

a -side to the S−1 -side. Let P0 and P ′0 be the endpoints
of l and l′ on the S−1 -side respectively, and let Q0 be the point on the S -side
such that Q0 = S(P0) .
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Claim. If P is the endpoint of a strand of γi on the S−1 -side, and if P 6= P0

and P 6= P ′0 , then P ≺ P0 and P ≺ P ′0 .

Proof of the claim. Note that such a point P exists only when IS−1(γi) > 2.
Let Q = S(P ) . Then Q is an endpoint of a strand L of γi connecting the S -side
to the E -side for some E ∈ {X±1, T±1} .

If P0 ≺ P , then Q0 ≺ Q . By the definition of Wi and that of Q0 , the point
Q0 is an endpoint of a strand L0 of γ connecting the S -side and the E ′ -side with
E′ ∈ {S−1, Y ±1} . This implies that L0 intersects L . This is impossible since γ
is simple. Hence, P ≺ P0 . Similarly, P ≺ P ′0 . The proof of the claim is complete.

ζ

`1

ˆ̀
Pk

P2

P1

Q2

Figure 8.

Let Pk ≺ · · · ≺ P1 be all the points where the lift of γi to D meets the S−1 -
side, where k = IS−1(γi) ≥ 2. From the above claim, we have {P1, P2} = {P0, P

′
0} .

Let l1 be the strand of γi with P1 an endpoint, and let A1 be the other
endpoint of l1 . Note that A1 lies on the E -side for some E ∈ {X±1, T±1} . Let

Q2 = S(P2) . Since IY (γi) = IY −1(γi) = 0, there is a simple arc l̂ ⊂ D joining Q2

to A1 which is disjoint from all strands of γi except possibly l1 (see Figure 8).

Let γ̂i be the curve on Σ5 obtained from γi by replacing l1 by l̂ . Clearly,
γ̂i is a simple loop in Ĝ with IY (γ̂i) = 0 and IX(γ̂i) = IX(γi) .

By Theorem 5.1, the free homotopy class [γ̂i] is represented by a cyclic semi-

reduced Γ-word Ŵi of the form

Ŵi =

m′i∏

j=1

T rijXωijT tijSδij ,

where m′i = IX([γ̂i]) = IX(γi) , and rij , tij , ωij and δij are integers satisfying
the conditions given in Theorem 5.1.

Let γ̂i be oriented so that the initial point of the projection of l̂ to Σ5 is the
projection of A1 , and the terminal point is the projection of Q2 . We write Ŵi so
that Ŵi represents the oriented closed curve γ̂i . Then δim′

i
= 1, and

W̃i = ~S

(m′i∏

j=1

T rijXωijT tijSδ
′
ij

)
S−1,
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where δ′im′
i

= 0 and δ′ij ∈ {1,−1} for 1 ≤ j < m′i , and thus

(7) W =

n∏

i=1

S−piY εiSqi
(m′i∏

j=1

T rijXωijT tijSδ
′
ij

)
.

Theorem 5.3. Let γ ∈ Ĝ with m = IX(γ) > 0 and n = IY (γ) > 0 .
(A) If m ≥ n , then γ is represented by a cyclic semi-reduced Γ -word W (γ)

of the form

W (γ) =
n∏

i=1

SpiY εiSqi
(mi∏

j=1

T rijXωijT tijSδij
)
,

where εi, ωij ∈ {1,−1} , mi > 0 , and pi , qi , rij , tij and δij are integers satisfying
the following conditions:

(i)
∑n
i=1mi = m .

(ii) For 1 ≤ i ≤ n , δimi = 0 , and if mi > 1 , then |δij | = 1 for 1 ≤ j < mi .
(iii) For 1 ≤ i ≤ n ,

−1 ≤ (pi + qi)εi ≤ 0 and |pi|, |qi| ∈ {p, p+ 1},

where p = min{|pi|, |qi| : 1 ≤ i ≤ n} . Moreover, pi ≤ 0 , qi ≥ 0 for all i when
γ ∈ G +

S , and pi ≥ 0 , qi ≤ 0 for all i when γ ∈ G −S .
(iv) For 1 ≤ i ≤ n and 1 ≤ j ≤ mi ,

−1 ≤ (rij + tij)ωij ≤ 0 and |rij |, |tij | ∈ {r, r + 1},

where r = min{|rij |, |tij | : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} . Moreover, rij ≤ 0 , tij ≥ 0
when γ ∈ G −T , and rij ≥ 0 , tij ≤ 0 when γ ∈ G +

T .
(v) NS(γ) =

∑n
i=1(qi − pi) and NT (γ) =

∑n
i=1

∑mi
j=1(rij − tij) .

(B) If n ≥ m , then γ is represented by a cyclic semi-reduced Γ -word W (γ)
of the form

W (γ) =
m∏

i=1

T riXωiT ti
( ni∏

j=1

SpijY εijSqijT δij
)
,

where εij , ωi ∈ {1,−1} , ni > 0 , and ri , ti , pij , qij and δij are integers satisfying
the following conditions:

(i)
∑m
i=1 ni = n .

(ii) For 1 ≤ i ≤ m , δini = 0 , and if ni > 1 , then δij = ±1 for 1 ≤ j < ni .
(iii) For 1 ≤ i ≤ m ,

−1 ≤ (ri + ti)ωi ≤ 0 and |ri|, |ti| ∈ {r, r + 1},

where r = min{|ri|, |ti| : 1 ≤ i ≤ m} . Moreover, ri ≤ 0 , ti ≥ 0 for all i when
γ ∈ G −T , and ri ≥ 0 , ti ≤ 0 for all i when γ ∈ G +

T .
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(iv) For 1 ≤ i ≤ m and 1 ≤ j ≤ ni ,

−1 ≤ (pij + qij)εij ≤ 0 and |pij |, |qij | ∈ {p, p+ 1},

where p = min{|pij |, |qij | : 1 ≤ i ≤ m, 1 ≤ j ≤ ni} . Moreover, pij ≤ 0 , qij ≥ 0
when γ ∈ G +

S , and pij ≥ 0 , qij ≤ 0 when γ ∈ G −S .
(v) NT (γ) =

∑m
i=1(ri − ti) and NS(γ) =

∑m
i=1

∑ni
j=1(qij − pij) .

Remark 5.1. If IX(γ) = IY (γ) = n , then

W (γ) =
n∏

i=1

SpiY εiSqiT riXωiT ti .

Proof of Theorem 5.3. From Propositions 2.1 and 2.3, the assertion (B) will
follow from (A) by considering the geodesic Θ2(γ) . Thus, we shall assume that
m ≥ n . On the other hand, since IE

(
Θ1(γ)

)
= IE(γ) for E ∈ {X,Y } , we may

assume that γ ∈ G +

S .
Let W be a cyclic semi-reduced Γ-word representing γ . Then T 2

1 (W ) is of
the form as given in equation (7):

T 2
1 (W ) =

n∏

i=1

S−piY εiSqi
(mi∏

j=1

T rijXωijT tijSδij
)

with pi > 0 and qi > 0 for all i , and thus

W =
n∏

i=1

S−p
′
iY εiSq

′
i

(mi∏

j=1

T rijXωijT tijSδij
)
,

where p′i = pi − 1 ≥ 0 and q′i = qi − 1 ≥ 0 for i = 1, . . . , n .
It follows from Proposition 2.7 that

NS(γ) =

n∑

i=1

(q′i − p′i) and NT (γ) =

n∑

i=1

mi∑

j=1

(rij − tij).

This proves condition (v).
It remains to prove that if γ is represented by the word W given in (A), then

(iii) ′ |pi|, |qi| ∈ {p, p+ 1} for 1 ≤ i ≤ n , and
(iv) ′ |rij |, |tij | ∈ {r, r + 1} for 1 ≤ i ≤ n and 1 ≤ j ≤ mi ,

where

p = min{|pi|, |qi| : 1 ≤ i ≤ n} and r = min{|rij |, |tij | : 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.
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Note that the other conditions follow from Lemma 2.6.
We shall prove condition (iii) ′ . Condition (iv) ′ will follow by a similar ar-

gument. By applying a cyclic permutation to the word W , we may assume that
p = min{|p1|, |q1|} . By considering W−1 , we may assume that ε1 = 1.

Without loss of generality, we assume that γ ∈ G +

S , and write

W =
n∏

i=1

S−piY εiSqi
(mi∏

j=1

T rijXωijT tijSδij
)
, pi, qi ≥ 0 for all i .

Since q1 − p1 = (q1 − p1)ε1 ≤ 0, then p = q1 .
There is nothing to prove if n = 1. Assume that n > 1. Suppose that there

is an i0 > 1 such that max{pi0 , qi0} > p+ 1.

T −2p
1 (W ) =

n∏

i=1

S−p
′
iY εiSq

′
i

(mi∏

j=1

T rijXωijT tijSδij
)
,

where p′i = pi − p and q′i = qi − p for all i .
Let γ′ = T −2p

1 (γ) . Since q′1 = q1 − p = 0, then γ′ has a strand join-
ing the Y −1 -side to the E -side for some E ∈ {X±, T±} . On the other hand,
max{p′i0 , q′i0} > 1, then γ′ has a strand joining the S -side to the S−1 -side. This
is impossible! The proof is complete.

5.2. Trace polynomials. In what follows, let G be the subgroup of
PSL(2,C) generated by the following four parabolic transformations:

S =

(
1 0
1 1

)
, T =

(
1 4
0 1

)
,

X =

(
1 + 4i 16

1 1− 4i

)
and Y =

(
1 + 4i 4

4 1− 4i

)
.

By using Maskit’s first combination theorem ([8, Theorem VII.C.2]), one can prove
that G is a regular B -group representing a five-punctured sphere and three thrice
punctured spheres. The regular set of G has a simply connected component Ω0

invariant under G such that Ω0/G = Σ5 . Such a Kleinian group G will be called
a Maskit five-punctured group.

There is a connected and simply connected fundamental domain D for G act-
ing on Ω0 (see Figure 9) with Γ = {S±1, T±1, X±1, Y ±1} the set of side pairings.
The domain D may be schematically drawed as in Figure 1 with sides labelled as
before. Thus every geodesic in G is represented by a cyclic semi-reduced Γ-word
given in Theorem 5.1, Corollary 5.2 or Theorem 5.3.

Now, we consider the quasiconformal conjugates of G . Let f be a quasiconfor-
mal automorphism of Ĉ such that fGf−1 is a Kleinian group. If f is normalized
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−2 + 4i

−2

2 + 4i

2

4i

0

i

Figure 9. The fundamental domain D .

to fix 0, 1 and ∞ , then fGf−1 is the subgroup of PSL(2,C) generated by S , T ,
Xµ and Yν , where

Xµ =

(
1 + µ −µ2

1 1− µ

)
and Yν =

(
1 + 2ν 4
−ν2 1− 2ν

)

with complex numbers µ and ν satisfying |µ| ≥ 1, |ν| ≥ 1
2 and |µν + 2| ≥ 1.

For any two non-zero complex numbers µ and ν , let G(µ, ν) be the subgroup
of PSL(2,C) generated by S , T , Xµ and Yν . We refer to the set M5 of all
(µ, ν) ∈ C2 with Imµ > 0 and Im ν > 0 such that G(µ, ν) is a Maskit five-
punctured group as the Maskit embedding of the Teichmüller space of Σ5 .

For every (µ, ν) ∈M5 , let ρ(µ,ν): G −→ G(µ, ν) be the isomorphism defined
by

ρ(µ,ν)(S) = S, ρ(µ,ν)(T ) = T, ρ(µ,ν)(X) = Xµ and ρ(µ,ν)(Y ) = Yν .

For every γ ∈ Ĝ , let W (γ) ∈ G be a cyclic semi-reduced Γ-word representing γ ,
and let W (γ;µ, ν) = ρ(µ,ν)

(
W (γ)

)
. Write the trace polynomial trW (γ;µ, ν) as

F (γ;µ, ν) = trW (γ;µ, ν) = a1µ
rνs + a2µ

r−1νs + a3µ
rνs−1 +O(r + s− 2),

where a1 6= 0, a2 and a3 are integers, and where O(r+ s− 2) is a polynomial in
µ and ν of degree ≤ r + s− 2. We call a1µ

rνs + a2µ
r−1νs + a3µ

rνs−1 the high
order terms of F (γ;µ, ν) .



120 Yungyen Chiang

If IY (γ) = 0 and IX(γ) = m > 0, then from [4, Theorem 3.4] we have

(8) F (γ;µ, ν) = ±{µ2m + 4NT (γ)µ2m−1}+O(µ2m−2),

where O(µ2m−2) is a polynomial in µ of degree ≤ 2m− 2.
If IX(γ) = 0 and IY (γ) = n > 0, then from Lemma 5.4(ii) given below we

have

(9) F (γ;µ, ν) = ±4n{ν2n + 2NS(γ)ν2n−1}+O(ν2n−2),

where O(ν2n−2) is a polynomial in ν of degree ≤ 2n− 2.

Lemma 5.4. If γ ∈ Ĝ with IX(γ) = m and IY (γ) = n , then
(i) F

(
Θ1(γ);µ, ν

)
= F (γ;−µ,−ν) ,

(ii) F
(
Θ2(γ);µ, ν

)
= F (γ;−2ν,− 1

2µ) ,

(iii) F
(
T1(γ);µ, ν

)
= (−1)nF (γ;µ, ν + 1) ,

(iv) F
(
T −1

1 (γ);µ, ν
)

= (−1)nF (γ;µ, ν − 1) ,

(v) F
(
T2(γ);µ, ν

)
= (−1)mF (γ;µ− 2, ν) , and

(vi) F
(
T −1

2 (γ);µ, ν
)

= (−1)mF (γ;µ+ 2, ν) .

Proof. Let

C1 =

(
i 0
0 −i

)
and C2 =

(
0 −2i

1/2i 0

)
,

and let χj(A) = CjAC
−1
j for all A ∈ PSL(2,C) . Set ρj = χjΘj . A direct

computation gives

ρj(S) = S,

ρ1(Yν) = Y−ν ,

ρj(T ) = T,

ρ2(Xµ) = X−2ν ,

ρ1(Xµ) = X−µ,

ρ2(Yν) = Y−µ/2.

By a similar argument as that in the proof of Lemma 3.3 of [4], the assertions (i)
and (ii) will follow.

Since the transformations S , T and Xµ are invariant under T1 , and since

T1(Yν) = Y −1
ν S = −Yν+1 and T −1

1 (Yν) = SY −1
ν = −Yν−1,

then (iii) and (iv) are valid. From (ii) and (iii), we have

F
(
T2(γ);µ, ν

)
= F

(
Θ2T1Θ2(γ); ν, µ

)
= F

(
T1Θ2(γ);−2ν,− 1

2µ
)

= (−1)IY
(

Θ2(γ)
)
F
(
Θ2(γ);−2ν,− 1

2µ+ 1
)

= (−1)mF (γ;µ− 2, ν).

This proves (v). Similarly, the equation given in (vi) will follow from (ii) and (iv).
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In the rest of this section, we shall compute the high-order terms of F (γ;µ, ν)

for γ ∈ Ĝ with IX(γ)IY (γ) > 0.
Let IX(γ) = m and IY (γ) = n . Assume that m ≥ n , and that γ ∈ G −T .

Then γ is represented by a cyclic semi-reduced Γ-word given below:

W =
n∏

i=1

SpiY εiSqi
(mi∏

j=1

T−rijXωijT tijSδij
)
,

where rij , tij ≥ 0. Note that

NT (γ) = −
n∑

i=1

mi∑

j=1

(rij + tij) and NS(γ) =
n∑

i=1

(qi − pi).

For integers r ≥ 0, t ≥ 0, p and q , and for ω, δ, ε ∈ {1,−1} , we have:

T−rXωT t =

(
ωµ+ 1− 4rω −ωµ2 + 4(r + t)ωµ+ const.

ω −ωµ+ 1 + 4tω

)
,

SpY εSq =

(
2εν + 1 + 4εq 4ε

−εν2 + 2ε(p− q)ν + const. −2εν + 1 + 4εp

)
,

T−rXωT tSδ =

(
−ωδµ2 + (1 + 4(r + t)δ)ωµ+ const. −ωµ2 + 4(r + t)ωµ+ const.

−ωδµ+ const. −ωµ+ 1 + 4tω

)
.

For i = 1, . . . , n , let ξi = ωi1 when mi = 1, let

ξi =

(mi∏

j=1

ωij

)(mi−1∏

j=1

δij

)
when mi > 1, λi = 4

mi∑

j=1

(rij + tij),

and let

Wi =

mi∏

j=1

T−rijXωijT tijSδij =

(
ai(µ) bi(µ)
ci(µ) di(µ)

)
.

If mi = 1, then

ai(µ) = ξi(µ+ const.) = ξi(µ
2mi−1 + · · ·),

bi(µ) = −ξi(µ2 − λiµ+ const.) = −ξi(µ2mi − λiµ2mi−1 + · · ·),
ci(µ) = ξi = ξi(µ

2mi−2 + · · ·), and

di(µ) = −ξi(µ+ const.) = −ξi(µ2mi−1 + · · ·).
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By induction, one can show that for mi ≥ 1

ai(µ) = (−1)miξi(−µ2mi−1 + · · ·),
bi(µ) = (−1)miξi(µ

2mi − λiµ2mi−1 + · · ·),
ci(µ) = (−1)miξi(−µ2mi−2 + · · ·), and

di(µ) = (−1)miξi(µ
2mi−1 + · · ·).

For every i = 1, . . . , n , let

SpiY εiSqiWi =

(
ãi(µ, ν) b̃i(µ, ν)
c̃i(µ, ν) d̃i(µ, ν)

)
,

and for every n let

n∏

i=1

SpiY εiSqiWi =

(
An(µ, ν) Bn(µ, ν)
Cn(µ, ν) Dn(µ, ν)

)
.

A direct computation gives:

deg ãi = 2mi, deg b̃i = 2mi + 1 = deg c̃i, deg d̃i = 2mi + 2

and

d̃i(µ, ν) = (−1)mi−1ξiεi
(
ν2µ2mi − λiν2µ2mi−1 + 2(qi − pi)νµ2mi + · · ·

)
.

By applying induction to n , we have

degAn(µ, ν) = 2(n− 1) + 2
n∑

i=1

mi,

degBn(µ, ν) = 2n− 1 + 2

n∑

i=1

mi = degCn(µ, ν),

degDn(µ, ν) = 2n+ 2

n∑

i=1

mi,

and the high-order terms of Dn(µ, ν) are determined by

n∏

i=1

d̃i(µ, ν) =
n∏

i=1

(−1)mi−1ξiεi(ν
2µ2mi − λiν2µ2mi−1 + 2(qi − pi)νµ2mi + · · ·).

Since F (γ;µ, ν) = An(µ, ν) +Dn(µ, ν) and degAn(µ, ν) < degDn(µ, ν)− 1, then
the high-order terms of F (γ;µ, ν) are determined by Dn(µ, ν) .
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For any two polynomials

f(µ, ν) = a1µ
rνs + a2µ

r−1νs + a3µ
rνs−1 + · · · and

g(µ, ν) = b1µ
r′νs

′
+ b2µ

r′−1νs
′
+ b3µ

r′νs
′−1 + · · · ,

the high-order terms of the polynomial f(µ, ν)g(µ, ν) is

a1b1µ
r+r′νs+s

′
+ (a1b2 + a2b1)µr+r

′−1νs+s
′
+ (a1b3 + a3b1)µr+r

′
νs+s

′−1.

Thus, we have

F (γ;µ, ν) = ±
{
ν2nµ2m −

( n∑

i=1

λi

)
ν2nµ2m−1 + 2

( n∑

i=1

(qi − pi)
)
µ2mν2n−1 + · · ·

}

= ±{µ2mν2n + 4NT (γ)µ2m−1ν2n + 2NS(γ)µ2mν2n−1 + · · ·}.

From Proposition 2.1 and Lemma 5.4, the above equations are also valid for
γ ∈ G +

T with IX(γ) ≥ IY (γ) .
If n = IY (γ) ≥ IX(γ) = m , then, by Proposition 2.1 and Lemma 5.4 again,

we have

F (γ;µ, ν) = F
(
Θ2(γ);−2ν,− 1

2µ
)

= ±4n−m{µ2mν2n + 4NT (γ)µ2m−1ν2n + 2NS(γ)µ2mν2n−1 + · · ·}.

Summing up above discussion together with equations (8) and (9), we have
proved the following theorem.

Theorem 5.5 (trace formula). Let γ ∈ Ĝ with IX(γ) = m and IY (γ) = n .
If m ≥ n , then

F (γ;µ, ν) = ±{µ2mν2n + 4NT (γ)µ2m−1ν2n + 2NS(γ)µ2mν2n−1 + · · ·}.

If m ≤ n , then

F (γ;µ, ν) = ±4n−m{µ2mν2n + 4NT (γ)µ2m−1ν2n + 2NS(γ)µ2mν2n−1 + · · ·}.
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