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Abstract. Let ¢4 be the set of all simple closed geodesics on a five-punctured sphere Y5 . In
this article, we associate to each v € & four integers which are read off topologically from ~ itself.
These integers have three remarkable applications. First, the geometric intersection number of
any two geodesics in ¢ can be written explicitly in terms of the corresponding integers. Secondly,
there is a homeomorphism of the completion of 4 onto a 3-sphere lying in R* whose restriction
to ¢ is written explicitly in terms of these integers. Finally, these integers are related to trace
polynomials of the corresponding transformations in a representation of 71(X5) into PSL(2,C).

Introduction

According to Thurston, the set of all complete simple geodesics on a Riemann
surface can be made into a topological space homeomorphic to a sphere whose
dimension depends on the topology of the surface. By Thurston’s result, the space
4, of complete simple geodesics on an n-punctured sphere 3, with n > 4 is
homeomorphic to a sphere of dimension 2n — 7.

In [4], the author introduced to each simple closed geodesic v on ¥4 a pair
of integers Ix () > 0 and N(vy) whose absolute values are geometric intersection
numbers of v with a fixed pair of simple curves on ¥,. With these integers, the
author proved that the geometric intersection number of any two simple closed

geodesics v and § on Y4 is
2[Ix (y)N(6) = Ix (6)N (7)].

The geometric intersection formula above was used to prove the injectivity of a
homeomorphism ¥ of ¢, onto the circle R U {oo} with ¥(vy) = N(v)/Ix(y) for
all simple closed geodesics . Moreover, if G is a Maskit four-punctured sphere
group, and if g € G represents a simple closed geodesic v on Y4, then the first
two high-order terms of the trace polynomial of g are written explicitly in terms
of Ix(v) and N(v).

The aim of this article is to generalize the results in [4] to the case of a
five-punctured sphere.
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Similar trace formulas for once and twice punctured tori are proved using
different methods in [6] and [7] respectively. However, the methods adopted in [4],
[6], [7] and in this article are all based on the cutting sequence technique developed
by Birman and Series [2].

In [7], the trace formulas are obtained by factoring a representation of the first
fundamental group of a twice punctured torus . in SL(2,C) as a representation
of the fundamental groupoid 7 2(-,p1,p2) on . with two basepoints p; and
p2, where one basepoint is chosen on each of the two cyclindrical subsurfaces
obtained by cutting along a pair of disjoint curves, one passing through each
of the punctures. The fundamental groupoid mq 2(-#,p1,p2) is the groupoid of
homotopy classes of paths in . with endpoints in the set {p1,p2}.

In addition to trace formulas, in [7] Keen, Parker and Series also provide a set
of projective coordinates for the set of all simple closed geodesics on ., called the
m,2-coordinates. For every simple loop 7 on .7, they consider the restriction of
the integral weighted m;-train track associated with + to each cylinder, and call
the restricted train track the integral weighted 7 o-train track associated with ~y
by relating it to 1 2(-,p1,p2). The m 2-coordinates are integer functions of the
integral weighted m; o-train tracks.

In this article, we shall give a set of projective coordinates to the set ¢ of all
simple closed geodesics on a five punctured sphere 5 equipped with a hyperbolic
metric. By using the coordinates, we provide a 3-sphere structure for the set ¢
of all complete simple geodesics on X5 .

To enumerate the set ¢, we start with a Fuchsian representation G of the first
fundamental group of Y5 acting on the upper half plane % . The Fuchsian group
G is generated by two parabolic transformations X and Y, and two hyperbolic
transformations S and 7.

In Section 2, we introduce four integer functions Iy, Iy, Ng and N7 on ¥.
The integer functions Ix and Iy are analogues of the integer function Ix defined
in [4], and Ng and Np are analogues of the integer function N defined in [4].
The values of Ix and Iy are non-negative. The sign of Ng and that of Np
are determined by the symmetry of &, where ¥ is a fundamental domain for G
acting on % with I' = {S, S5 T,T71, X, X1 Y, Y !} the set of side pairings.

For every v € ¢4, the integers Ix(7y), Iy (y), Ns(v) and Np(vy) are read off
from the lift of v to Z. The lift of v to & also determines words in elements of
I' representing v, which are called I"'-words. We shall write I"-words representing
geodesics in ¢ in a specific way, and call them cyclic semi-reduced I'-words. In
Section 2, we shall also relate these cyclic semi-reduced I'-words to the integer
functions Ix, Iy, Ng and Nr.

By use of the integer functions Ix, Iy, Ng and Ny, we prove a geometric
intersection formula in Theorem 3.1. The geometric intersection formula says that
if v and § are two geodesics in ¢, then the geometric intersection number of ~
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with § is
2/Ix (v)N7(9) — Ix(8)Nr(v)| + 2[Iy (7)Ns(6)
— Iy (&) Ns ()| + Ixy (v,9)| — Ixy (v, 9),

where Ixy (v,0) = {Ix(v) = Iy (7)} - {Ix(6) — Iy (d)}.

As a consequence of the geometric intersection formula, we obtain the geo-
metric intersection numbers of six fixed geodesics in ¢ with an arbitrary geodesic
v € 4. These geometric intersection numbers will be called the elementary inter-
section numbers of ~.

The elementary intersection numbers are used to construct a homeomorphism
U of 4 onto a 3-sphere A lying in RS (Theorem 4.3). We start with a function
of ¢4 into A which maps each v € ¢ to the point whose coordinates are the
elementary intersection numbers of «v. Then, by a continuity argument, we extend
the function to obtain a continuous map ¥ from ¢ onto A. The injectivity of W
is proved by the geometric intersection formula.

By post composing ¥ by a map from RS into R*, we obtain an embedding
® of 4 into R* with

() = (Ix(v) Nr(v) Iy (v) Ns(v))
o(y) " o(v) T o(v) " o(v)
for every v € 4, where o(v) = Ix(y)+ |Nr(v)|+ Iy () + |Ns(v)| (Theorem 4.4).

In the final section, we first find for each v € ¢ a cyclic semi-reduced I'-word
W(v) to represent it, and write the word explicitly; see Theorem 5.1, Corol-
lary 5.2 and Theorem 5.3. Then, we consider the Maskit embedding of the Teich-
miiller space of Y5, which is a holomorphic family of Kleinian groups G(u,v)
parametrized by a subset .#5 of C2. For every (u,v) € .#5, the group G(u,v)
uniformizes a five-punctured sphere and three thrice punctured spheres.

For every v € ¢, let W(~;u,v) € G(u,v) be the image of W(+) under the
canonical isomorphism of G onto G(u,v). The trace tr W(~; u,v) of W(vy;p,v)
is a polynomial in p and v. For v € ¢4 with m = Ix(y) >0 or n = Iy(y) > 0,
we prove in Theorem 5.5 that

tr W (y; p, v) = £{p®™v*" + ANp () p* " %™ 4 2Ng (7)™t ..}
whenever m > n, and
tr W (y; p, v) = £4" 71?02 4 AN () > 2 4 2Ng (7)) 2P )
whenever m < n.
Together with the theory of pleating coordinates developed by Keen and Se-

ries [6], the trace formulas given above will be used to describe the shape of 5.
The work will appear elsewhere.
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comments.
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1. Preliminaries

1.1. The space of complete simple geodesics. Let Y5 be a 5-punctured
sphere equipped with a hyperbolic metric. A loop on X5 with no self intersections
will be called a simple loop. An essential simple loop on Y5 is a simple loop which
is neither homotopically trivial nor homotopically equivalent to a puncture of 5.
A finite union of pairwise disjoint essential simple loops on Y5 will be called a
multiple simple loop.

Let ¢ be the set of all free homotopy classes of non-oriented essential simple
loops on 5. Every element of ¢4 contains a unique geodesic v on 5. By abuse
of notation, we shall also use v for the free homotopy class containing ~.

Let 4.2 be the set of all free homotopy classes of non-oriented multiple simple
loops on ¥5. It is clear that ¢ is a subset of ¥.Z.

Let a be a multiple simple loop on 5. All connected components of « fall
into at most two distinct free homotopy classes. There are integers p > 0 and
qg > 0 with p4+ g > 0 such that o has exactly p connected components freely
homotopic to a v € 4, and has exactly ¢ connected components freely homotopic
toa ' € ¢, where v # +'. We shall write [a] = py ® ¢7', where [a] is the free
homotopy class represented by «. Similarly, the free homotopy class represented
by a curve 8 on X5 will be denoted by [f].

Let [¢,R,] be the set of all functions from ¢ into the set R, of all non-
negative real numbers. We provide ¢ with the discrete topology, and provide
[, R, ]| with the compact-open topology. It is well known that [¢,R.,] is homeo-
morphic to the product space [] ey R, where each R is a copy of R, .

Two elements f and g of [4,R,] — {0} are called projectively equivalent
if there is a positive number ¢t such that f = tg. Let P[¢,R.] be the set of all
projective equivalence classes in [¢, R, ]—{0} provided with the quotient topology.
Let 7 be the quotient map of [4,R,] — {0} onto P[¥,R,].

For any two curves a1 and ag on X5, let #(ay Nas) denote the cardinality
of the intersection oy Nag. The geometric intersection number i([ay], [az]) of [aq]
with [as] is defined by

i([oa], [a2]) = min{#(a] Nab) : [a;] = [oj] for j =1,2}.

It follows immediately from the definition that if [o] = py @ ¢7’, then for any
curve 3 on Y5

i([o, [8]) = pi(y, [6]) + qi/, [6]),

where p and ¢ are non-negative integers with p+¢ > 0, and where v and +' are
disjoint geodesics in ¥¢.
Each a € 9. induces a function [,: ¢ — R, given by

Io(7) =i(a,y) foral ye¥.
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Let .: 9 — [4,R,] be defined by
F(a)=1, forall a9 ?.

It is a well-known fact that the composition 7.# is injective; see [5]. This allows
us to identify ¥ with 7.7 (9.2).

Let 7.7(9%) and 7.7 (%) denote the closures of 7.7 (4.%) and 7.4(¥) in
P[¥,R.], respectively. Poénaru proved that 7. (49.¢) = n.#(¥), (Theorem 4 of
[5] Exposé 4).

Note that an element .Z of P[¢,R,] is in 7.#(¥) if and only if for any [ in
[¥4,R,]—{0} with 7(l) = £ there is a sequence {t;}7>; of positive numbers, and
there is a sequence {7;}32, of geodesics in ¢ such that the sequence {t;1,,}72,
converges to [. A sequence {l}%2; in [¢,R,] is called convergent to | € [4,R,]
if for every v € ¢ the sequence {l;(y)}72,; converges in R to (7).

According to Thurston, 7. (%) is homeomorphic to a 3-sphere. In Section 4,
we shall construct a homeomorphism of 7.7 (%) onto a 3-sphere lying in R* (see
Theorem 4.4).

1.2. Cyclic reduced words. To enumerate free homotopy classes in 4.7,
we consider the action of the fundamental group 71(X5) on the upper half plane
U ={z€C:Imz>0}.

Let G be the subgroup of PSL(2,R) generated by the transformations:

1 6 10 3 4 5 12
X = Y = , S= and T =

Y

1 0 2 1 2 3 2 5
For j =1,2,3, let
Ci={2€C:224+2j-1=1} and Cj={zcC:[2z2—(2j - 1)| =1},
and let
C,={2€C:Rez=-3} and Cy={z€ C:Rez =3}

It is clear that % /G = X5, and that the domain ¥ C % bounded by C; and
C’;-, 1 <j <4, is a fundamental domain for G acting on % . We shall schemati-
cally draw & as a rectangular region shown in Figure 1, where the points on the
boundary of 2 marked by “x” correspond to punctures of 5.

It is well known that every free homotopy class in ¢ corresponds to a unique
conjugacy class in G. We shall find a representative for each conjugacy class in G
by using Birman and Series’ cutting sequence technique [2].

Let I' denote the set of all side pairings of Z, i.e.,

r={x,xtvy,y?'s st rr1"'}
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X1 X

T-1! T

S—1 S

Yyt Y

Figure 1. The fundamental domain 2.

For every E € T', we label the common side s of 2 and E(%2) by E~! on the
side inside &, and by E on the side inside F(Z); see Figure 1. The side s will
be called the E-side of Z.

For every g € G, the image ¢(%) will be called a G-translate of 2. We
transport the above side labelling to all G-translates of Z.

Let v be an arbitrary closed curve on 5. Let 4 be a lift of v to % which
projects to v bijectively, and let zg € % be an endpoint of 4. Without loss
of generality, assume that there is a go € G and there is a §, € Z such that

20 = go(&o)-
We orient 4 so that its initial point is zy. The arc 7 cuts in order the G-
translates go(2), 91(2), ..., gr(2) of 2. Then the terminal point of g;*(7) is

95 0 gr(&), and ~y is represented by g = g5 ' o gk
For every integer j with 1 < j <k, assume that the common side of ¢;_1(2)
and g;(2) on the side inside g;(2) is labelled by E; € I'. Then

E;(D) = 93‘_—11 (gj(D)),
or equivalently F; = g].__l1 og;. Thus
9=9y"ogk=10(95"ogq)o(gi 0og2) 0 0(gp i 0gk) =E10Fs0-0E}.
We call E1 0 FEyo0---0E; a I'-word representing ~.

From now on, we shall simply write the composition of a function f followed
by the other function g as ¢gf. Thus, we write

k
EyoEyo0---0Ey =[] E;.
j=1

A T-word []5_, E; will be called reduced if E; # E;}; for 1<j<k—1.1
is called cyclically reduced if in addition Ey # E}; L
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Let ~ be a simple loop on ¥5. Using the above notation, for every integer j
with 0 < j < k, let [; be the image of the intersection of 4 with g;(%) mapped
by gj_l, where 2 is the relative closure of 2 in % . The union Iy Ul forms a
simple arc in 2 connecting the B, !_side to the F;-side. We shall simply write
the simple arc as ;. If k> 1 andif 1 <j <k —1, then [; is a simple arc in 9
connecting the Ej_l—side to the E;i1-side. Each of these simple arcs [y, ..., I
will be called a strand of ~.

Let a be a multiple simple loop on 5. A strand of a connected component
of a will be also called a strand of «.

A loop on Y5 will be called reduced if it is represented by a reduced I'-word. A
multiple simple loop a on 5 will be called reduced if every connected component
of « is reduced. It is easy to see that a simple loop or a multiple simple loop on
Y5 is reduced if and only if every strand of the loop connects two different sides
of 9.

If v € ¢4 is a geodesic, then every strand of ~ is a hyperbolic geodesic arc, and
thus every strand of v must connect two different sides of & since ¥ is a geodesic
polygon. This proves that every simple closed geodesic on Y5 is a reduced loop.
Thus every free homotopy class of multiple simple loops on X5 contains a reduced
one.

If v € 4 is a geodesic represented by a reduced I'-word W, then ~ is also
represented by an arbitrary cyclic permutation of W. If 7/ € ¢ is a geodesic
which has the same underlying set as ~ but with opposite orientation, then ~’
is represented by W~!. Because we are only interested in non-oriented simple
loops, we shall identify all reduced I'-words which are cyclic permutations of W
or cyclic permutations of W =1, and call any one of them a cyclic reduced T -
word representing v and its free homotopy class. Every cyclic reduced I'-word is

cyclically reduced.

Figure 2. From the left to the right: ~v11, Y12, Y13, Y21, Y22, Y23 -

As examples, let v, € 4 be the geodesics given in Figure 2. Each v;j is
represented by a cyclic reduced I'-word Wj;, as follows:

Wi =T, Wyep=X"1'S Wy3=XT"!S,
Wo1 =38, Wa=Y"1T, Wy=S51YT.

For simplicity, we shall also write v11 = v and 721 = vs.
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1.3. Subwords and admissible subarcs. The purpose of this subsection is
to find some necessary conditions for cyclic reduced I'-words representing geodesics
in Y =9 — {vs,vr} from the geometry of the corresponding geodesics.

Let v € 4 bea geodesic represented by a cyclic reduced I'-word W (~) given
by

k
W) =] &

Note that £ > 1 since v € 4 . For any two integers j, [ with 1 < j < k and
1 <1 <k, the reduced I'-word

1) W= B By
will be called a subword of W (), where E;y; = Ej+;_, whenever 1 <14 <[ and
t+j>k.

Now, we shall relate W’ to v geometrically. For every i, let I; be the strand
of v connecting the F,_ 11 -side to the FE;-side, where F;_1 = E} if i = 1. Assume
that 1 <[ < k, i.e., W/ # W(y). We think that W’ “represents” a subarc 7’
of 7. We choose v’ to be the projection of the union Uzi;_l l; to X5. Each of
the arcs [, ..., [j4—1 is called a strand of v

The subarc 4" has two distinct endpoints. One of the two endpoints is the
projection of the endpoint of [; on the E;_ll -side, and the other endpoint is the
projection of the endpoint of [;;;_1 on the E;;_;-side.

The word given in equation (1) is not clear enough to indicate that +’ has an
endpoint which is the projection of a point lying on the E]__l1 -side. Also, to be
different from cyclic reduced words representing simple closed geodesics, we shall
write the reduced I'-word representing /' as

(2) E; AW'=E; \Ej-- Ej 1,

where Ej,l is to indicate that quW’ is not cyclic, and one of the endpoints of
~" is the projection of a point on the E;_ll -side.

A subarc of a geodesic v € ¢4 will be called admissible if either it is  itself,
or it is represented by a reduced I'-word as given in equation (2).

Remark 1.1. Let v € 4 be a geodesic represented by a cyclic reduced I'-
word W (7). From now on, for ¢ = +1, E € T, E;,E, € I' — {E*'}, and an
integer £ > 1, we shall write

E\E°---E°Ey = E1E*E,
N———

k times

if above word is a subword of W (7).
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By the same reasoning as that in [4, Section 3], there are no admissible subarcs
of ~ represented by any one of the following words:

XEXE, ?EYE) f(SXET(S, §6Y655,
XeTkX®,  yesky?®, Tesore,  §eTdse

where €, 6 € {1,—1}, and k # 0 is an integer. Thus none of the following is a
subword of W (~):

XeXe, Yeye, T°X°T°, S°vese,
XeTkx0  yesky® 1e80Te,  SeTOSE.

X1 X
T 4 QT
14
- @)
Py Q
Y1 Y
Figure 3.

Proposition 1.1. Let v € 4 be a geodesic represented by a cyclic reduced
I'-word W, and let k # 0 be an integer.

(i) If By, By € {T*", X*'} and if E,S*FE, is a subword of W, then |k| = 1.

(ii) If Ey, By € {S*1, Y1} and if E\T*E, is a subword of W, then |k| = 1.

Proof. We shall prove the statement (i). The statement (ii) will follow by a
similar argument.

Assume that k& > 0. We choose once for all an orientation on the S—!-
side. Let ¢ be the fixed point of the transformation S~'7. If P and P’ are
two distinct points lying on the S~!-side, and if P lies between P’ and (, then
we write P < P’. This gives an orientation to the S-side as well. For any two
distinct points @Q and Q' lying on the S-side, if S71(Q) < S71(Q’), then we
write Q < Q’.

Let 7' be the admissible subarc of 7 represented by E1S¥E,. Let I5 be the
strand of < joining the E| !_side to the S-side with the endpoint @Q; on the
S-side. Let Iy be the strand of 4/ joining the S~!-side to the Fs-side with the
endpoint P, on the S~!-side.
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Suppose that k& > 1. Then 7/ has a strand [ joining the S~!-side to the
S-side with the endpoint P; = S71(Q1) on the S~!-side. Let @ be the endpoint
of [ on the S-side. Since ~ is simple, we have Q1 < @ (see Figure 3). But,
now, we have P; < P,. This implies that [5 intersects [ which is a contradiction.
Hence, k£ =1.

By the same reasoning as above, one proves that k = —1 if k < 0.

1.4. m;-train tracks. In Section 3, we shall need 7y -train tracks introduced
by Birman and Series (see [1]). A mq-train track 7 on Z is a collection of mutually

disjoint simple arcs [; in ¢ with endpoints lying on the sides of 2 such that

(i) except endpoints each [; is contained in 2,
(ii) each [; joins two distinct sides of 2, and
(ili) each pair of distinct sides of & are connected by at most one ;.

A 7y -train track 7 on Z is called integral weighted if every arc in 7 is assigned
a non-negative integer.

Every reduced multiple simple loop a on X5 can be associated with an inte-
gral weighted m-train track as described below.

We choose for each E € T' a point P(E) on the E-side of 2 so that P(E~1)
and P(E) are identified by the transformation E.

For any two distinct Ey, Es € ', let n,(E1, E2) be the number of strands of «
connecting the Fj-side to the Ey-side of Z. If n,(FE1, E2) > 0, then we collapse
all strands of o which connect the FE;-side to the FEs-side into a single arc from
P(E;) to P(Es) weighted by the integer n,(FE1, F3). These weighted arcs form
the required integral weighted 7 -train track 7(«) on 2 (see [1, Theorem 1.3]).

It is clear that if o and [ are freely homotopic reduced multiple simple loops
on Y5, then ny(E1, E2) = ng(E1, Ey) whenever Eq, Ey € I' are distinct, and thus
7(a) = 7(B). Since every free homotopy class of multiple simple loops on X5
contains a reduced one, we may write

Nia)(E1, B2) = no(E1, Es)

whenever « is a reduced multiple simple loop on Y5, and call nj)(E1, Ea) the
number of strands of [a] connecting the Ej-side to the Fs-side. Similarly, we

write
7([a]) = 7(a).
Let [a], [a1] and [az] be any three elements of ¥.%. If, as subsets of 7,

7([c]) is the union of 7([a1]) and 7([az]), and if there are two fixed non-negative
integers p and ¢ with p + ¢ > 0 satisfying

nia)(E1, B2) = pnja,)(E1, E2) + qnj,)(E1, E2)
for any two distinct E7, E5 € ', then we shall write
[a] = plaa] + glov].

From the definition, we see that [a] = py + ¢y’ if [o] = py @ ¢, where p > 0,
g > 0 are integers with p + ¢ > 0, and where ~v,v" € 4 are disjoint geodesics.
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2. Four integer functions

In Section 4, we shall construct a homeomorphism & of 7.#(4.%) onto a
3-sphere lying in R*. For a € 4., the value ®(«) is written in terms of four
integers Ix(a) > 0, Iy(a) > 0, Ng(a) and Np(a). The sign of Ng(a) and
that of Np(«) are determined by the geometry of «. The integers Ix(a), Iy («),
|INs(a)| and |Np(«)| are numbers of strands of «.

The integer functions Ix and [y are analogues of the integer function Ix
given in [4], and the integer functions Ng and Np are analogues of the integer
function N given in [4]. In this section, we shall define the integer functions I,
Iy, Ng and Ny, and discuss their properties.

2.1. Elementary intersection numbers. For the construction of the
homeomorphism @, we shall start with a homeomorphism ¥ of 7. (¥.%) onto
a 3-sphere lying in R® whose value at every a € 4.% is written in terms of the
geometric intersection numbers of a with the six geodesics v, given in Figure 2.
These six geometric intersection numbers i(«,v;;) will be called the elementary
intersection numbers of a.

To compute elementary intersection numbers, we consider the projections of
the sides of 2 to X5. For E € {S,T,X,Y}, the E-side of 2 projects to X5 a
simple curve §g connecting exactly two punctures. Write

Ip(e) = i(a, [BB])
for all o € 4.2 . Note that
Ip(a) = #{strands of a which meet the E-side (or the E~!-side)}.

Thus, we have

i(o,y11) = 2Ix(a), i(a,v21) = 21y (@),

(3) i(a,y12) = 2Ip(a), (e, v22) = 2Ig(c).
We shall prove later that the elementary intersection numbers of a can be
written in terms of Ix(«), Iy(a), Ng(a) and Np(a) (see Corollary 3.4). This
allows us to construct the homeomorphism ¥ by use of the functions I'x, Iy, Ng
and Nrp.

For later use, we extend the integer functions Ir to admissible subarcs of
geodesics in ¢ as follows. For E € T, and for an arbitrary admissible subarc ~’
of a geodesic v € ¥, let

Ig(y'") = #(strands of «" which meet the E-side of 2).

Note that Ig(y) = I[g-1(7) for y € 4 and for £ €T.
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2.2. Cyclic semi-reduced I'-words. Let v € G =9 — {yr,vs} be
represented by a cyclic reduced I'-word W(+y). We have known that for E €
{S,T,X,Y} the integer Ig(7y) is the number of strands of 7 which meet the
E-side. We may also relate the number Ig(7y) to W(y) as follows

I () = the total number of the letters E and E~! appearing in W (7).

Therefore, to compute the elementary intersection numbers of v € G is equivalent
to finding a cyclic reduced I'-word representing ~.

In general, it is not easy to write cyclic reduced I'-words representing geodesics
in ¢4 explicitly. Therefore, we shall introduce cyclic semi-reduced I'-words. Cyclic
semi-reduced I'-words also work for our purposes. To compute geometric intersec-
tion numbers, we only need a partial description of cyclic semi-reduced I'-words,
which will be given in Section 2.5. The complete description is given in Section 5.

g Y

Figure 4. From the left to the right: a1, as, a3, a4, a5, ag.

)
.

To motivate the definition of cyclic semi-reduced I'-words, we consider the
geodesics represented by the following cyclic reduced I'-words:

Wy, = XSy, Wo =TX 1857y ~1S, W3 =TXT'S72YS,
Wy=X"18Yy"1, Wy=T"'XSYs ! We=T"1X"1T7s*y 151

Let a; be the geodesic represented by W, for 1 < j < 6 (see Figure 4). By defining
the zero power E° of the transformation E to be the identity transformation for
E =S5 or T, we may rewrite above words as

(4) W, =T" X% Tt SPiyei S
where x; = (r;,wi, ti, pi,€i,q;) are given below:

X1 = (0, 1,0,—-1,1,0), x2 = (1,-1,0,—1,—1, 1),
X3 = (17 17 _1, _27 17 1)7 X4 = (07 _1707 17 _170)7
X5 = (_17 1707 17 17 _1)7 X6 = (_15 _17 1727 _L _1)

From the word given in (4), we have

Ix(aj) =1, Iy(aj) =1, Is(az)=Ip;l+1lg;| and Ir(cy) = [rj|+|t;].
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Now, we define the cyclic semi-reduced I'-words representing geodesics in 7
as follows. Let v € ¢4 be a geodesic represented by a cyclic reduced I'-word
W(y). If YEE or EY* is a subword of W (y) with ¢ = +1 and E € {X*! T*!},
we shall write

YSE=YS°E and EY®=FES'Y".

Similarly, if £ € {Y*! S*1} and if X°FE or EX¢ is a subword of W (v), then
we write
X°E = X°T°E and EX°® = FET°X®,

The resulting cyclic I'-word will be called semi-reduced, still denoted by W (7).

2.3. Four automorphisms of ¢¥.Z. Let o; be the geodesics given in
Section 2.2, and let W, be the corresponding cyclic semi-reduced I'-words. By
considering the symmetry of the fundamental domain &, we realize that for 1 <
J < 3 the words Wj;3 are the images of W; under the automorphism ©; of G
defined by

0.1(E)=E""' for E€{S,T,X,Y}.

There is another automorphism ©s of G obtained from the symmetry of ¥
defined by

02(S) =T, O5(T)=S5, ©:(X)=Y, O,(Y)=X.

For j =1 or 2, the automorphism ©; induces an orientation reversing homeo-
morphism of X5 onto itself which is also denoted by ©;. If v € ¢ is a geodesic, let
©,(y) denote the free homotopy class in ¢ represented by the image of v mapped
by ©;. This defines an injective function, still denoted by ©;, of ¢ onto itself
such that if W is a cyclic reduced (or semi-reduced) I"-word representing v € ¢,
then ©;(y) is represented by ©;(W).

For instance, we have 0O1(«;) = a;j43 for 1 < j < 3. For every integer j with
1 < j <6, the geodesic Oz(a;) is represented by the word

@Q(WJ) — ST‘j ij SthijEjTQj,

where W; is the cyclic semi-reduced I'-word given in (4).
Now, we extend the functions ©; and ©s to ¥.Z by defining

0j(ay ®by') = aB;(v) @ bO;(v")

for j = 1,2, where a > 0 and b > 0 are integers with a4 b > 0, and where v and
~" are disjoint geodesics in 4.

With the two maps ©; and ©,, we may simplify the argument on finding
cyclic semi-reduced I'-words by considering subsets of ¢ which are related by 01
and ©,. Let

G2t ={a €94% : a has no strands joining the S~'-side to the Y*-side, ¢ = +1},
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and let
GLg = @1(%@), G Ly = @g(gfg) and Y.L, = @1(543}) = @2(%.,%;).

For E=Sor T,let 94 =92, NY and ¥y = 9L, NY.
Note that for E =S or T the sets ¥.¢}, and ¥4.¥ 5, are not disjoint since

ays ®byr € 9L NG Ly,

where a > 0 and b > 0 are integers with a +b > 0.
The following proposition is an immediate consequence of the definition.

Proposition 2.1. If « € 9.7, then Ig(0:(«)) = Ig(«a) for E € {S,T,X,Y}

and
Ix(©2(q)) = Iy(a), Iy(O2(a)) = Ix(«),
IS (@2(&>) = IT(Oé), IT(@Q(CY)) = Is(()é).
Taking a further step to investigate the relations among the geodesics a1, as

and asg, we found that the geodesics a7, as and a3 are related by the automor-
phisms 77 and % of G defined by

F: S— S, T —T, X—X, Yy — Y~ ls,
Tp: S —S, T —T, X-—X'T, Y -—Y.

From the definition, we obtain
07102 =% and 0,70, =7 for j=1,2.

For j = 1 or 2, the automorphism .7; induces an orientation preserving
homeomorphism of X5 onto itself, denoted by .7; as well. The homeomorphism
71 interchanges the two punctures on Yj corresponding to the fixed point of
Y and the fixed point of Y15, and leaves the other punctures invariant. The
homeomorphism 7 interchanges the two punctures on Y5 corresponding to the
fixed point of X and the fixed point of X ~!T', and leaves the other punctures
invariant.

Each 7 also induces an injective function of ¢ onto itself so that if W
is a cyclic reduced (or semi-reduced) I'-word representing v € ¢, then 7;(7) is
represented by 7;(W). Now, a1, as and a3 are related by .77 and % as follows:

%%_l(al) =y and 9192_1(042) = 3.
Like ©; and ©4, the functions .77 and % extend to ¥.% defined by
Tilay @ by') = aTi(v) ®075(v), j=12,

where a > 0 and b > 0 are integers with a + b > 0, and where v and +' are
disjoint geodesics in ¥ .
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Proposition 2.2. Let « € 4.Z .

(i) If Iy (a) =0, then F(a) = a.

(ii) If Ix (o) =0, then F(a) = «.

(iii) If k is an integer, and if E = X or Y, then Ig(7(a)) = Ig(a) =
Ig(TF (o).

Proof. For the proof of (i) and (ii), it suffices to consider the case where
a €Y. Let W be a cyclic semi-reduced I'-word representing «. If Iy (a) = 0,
then Y and Y ! are not subwords of W, and 7; (W) = W . This proves that «
is invariant under .77 . Similarly, « is invariant under % if Ix(«) = 0.

Since 11 and 791 are invariant under .77 and %, we have

i), 3m) = i, T () = i )
for j,m € {1,2}. Now, the statement (iii) follows from equation (3).

2.4. Definition of the integer functions Ng and Np. Let v € 4 be a
geodesic. If v € 93, let

Ng(v) = #(strands of v joining the S-side and the S~ !-side)
+ #(strands of « joining the S-side and the Y ¢-side)

for e =£1. If y € 9}, let

N1 () = #(strands of v joining the T-side and the T~!-side)
+ #(strands of « joining the T~ !-side and the X¢-side)

for e==+1. For E=S or T, if y € 95, let Ng(v) = —Ng(01(7)).
From the definition, we have

Proposition 2.3. If v € &, then Ng(v) = —Nr(02(7)) and Nr(y) =
—Ns(02(7)) .
For two integers a > 0 and b > 0 with a+b > 0, let

Ns(ays @ byr) =a and Nrp(avys @ byr) =b.
Next, if v € 4G is a geodesic disjoint from ~g, let
Ng(ays ®by) =a and Nrp(ays @ by) = bNp(y).
If v e 4 is a geodesic disjoint from ~yr, let
Ns(ayr ® by) =bNg(y) and Nr(ayr @ by) = a.
Finally, if 71 and 75 are disjoint geodesics in Z , we define
Ng(ayy ® by2) = aNg(y1) + bNg(y2) for E=S,T.

To interpret Ng(«) and Np(«) geometrically for o € 4%, we need
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Lemma 2.4. If ; and 75 are disjoint geodesics in 7 , then

Ns(71)Ns(v2) 20 and  Nr(y1)Nr(y2) > 0.

Proof. We shall prove Np(v1)Nr(y2) > 0. This implies, by Proposition 2.3,
that Ng(v1)Ng(v2) > 0. First, note that if v € 4G with Nr(v) # 0, then
Ix (’7) > 0.

Suppose that Np(v1) > 0 and Np(42) < 0. Then v has a strand /3 joining
the T~!-side to the X¢-side with ¢ = 41, and has a strand [} joining the X —¢-
side to some F-side with E € {T1 S*! Y*1} 5o that its endpoint on X ~¢-side
is identified with that of {; on the X¢-side by the transformation X°©.

Similarly, v, has a strand Iy joining the T-side to the X?°-side with § = %1,
and has a strand I}, joining the X ~%-side to some E’-side with £’ € {T, S*!, Y *!}
so that its endpoint on the X ~?-side is identified with that of I, on the X?-side
by the transformation X°.

Since [; Ul must intersect Iy U}, then i(v1,72) > 0. Contradiction!

Now, for a € 9. we have

|Ns(a)| = #(strands of « joining the S-side and the S~!-side)

+ #(strands of « joining the S°-side and the Y*-side);
|N7 ()| = #(strands of « joining the T-side and the T~1-side)

+ #(strands of « joining the T-side and the X¢-side),

where 6§, = +1.

Proposition 2.5. Let a € 4.Z.

(i) If Ix(«) > 0, then Np(«) > 0 whenever o € 4.£7%, and Np(a) < 0
whenever o € 9% 7.. Thus, Np(©1(a)) = —Nr(a).

(ii) If Iy(a) > 0, then Ng(a) > 0 whenever o € 9%, and Ng(a) < 0
whenever a € 9. Thus, Ng(01(a)) = —Ng(a).

(iii) If Ix(a)Iy(a) > 0, then

Ns(a) = =Nr(02(e)) and Nr(a) = —Ng(O2(a)).

Proof. The statement (ii) will follow from (i) by considering Os(c). The
statement (iii) is a consequence of (i) and (ii). It remains to prove the statement (i).

Write o = ay; & bys, where a > 0 and b > 0 are integers with a + 00 > 0,
and where 77 and 79 are disjoint geodesics in ¢. If ab = 0, then the statement
(i) holds trivially since Ix(a) > 0.

Assume that ab > 0. Since Ix(a) > 0, then 7y # 7 and v # ~vyp. If
M = 7s, then Ix(y2) > 0, and Np(a) = bNp(v2). Now, the assertion follows
from the definition of the function Nt on 7

Similarly, the statement (i) is true if vo = vg. If 71 # 75 and 72 # vg, the
proof is completed by Lemma 2.4.
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2.5. Relating Ng and Np to cyclic semi-reduced I'-words. Now,
we shall explain how to determine Ng(v) and Np(vy) from a cyclic semi-reduced

['-word W representing v € ¢ . Note that Ix(y) > 0 or Iy(y) > 0.

If Iy(y) = n > 0, then there are exactly n triples of integers (p;,¢:,qi)
with €; = £1 such that E;SPiY®S%E! is a subword of W for every integer
i € {1,...,n}, where E;, E/ € {T*! X*! Y*1}. From Remark 1.1, we have
E;,E! € {T*! X*1} for every i. Thus W must be of the form

(5) W =[] sryesew;,

=1

where each W; is a semi-reduced I'-word of the form

=1

with Ej1, Eip, € {T*!, X*1}, and E;; # Y whenever 1 < j < m;.

If Ix(y) = n > 0, then Iy (O3(y)) = n, and + is represented by a cyclic
semi-reduced I'-word as given in equation (5). Thus ~ is represented by a cyclic
semi-reduced I'-word W of the form

n
(6) W =[] xeTeW;,
i=1
where € = £1, where p; and ¢; are integers, and where each W; is a semi-reduced

I'-word of the form .
Wi =[] Eis
i=1

with Ej1, Eip, € {ST1,Y*1}, and E;; # X*! whenever 1 < j < m,;.
Before continuing our discussion, we shall find necessary conditions for the
integers p; and ¢; given in (5) and (6).

Lemma 2.6. Let ¢ = +1, let p and q be integers, let v € Z , and let W be
a cyclic semi-reduced I'-word representing =y .
(i) If W' = ESPY<SYE’ is a subword of W with E,E' € {X*,T*}, then

—1<(p+qe<0.

Moreover, p <0 and ¢ >0 when v € 95, and p >0 and ¢ <0 when v € 95 .
(ii) If W' = ETPX*T9E’ is a subword of W with E,E’ € {Y*, 8%} then

1< (p+qge<O0.

Moreover, p >0 and ¢ <0 when v € 4, and p <0 and ¢ > 0 when v € 9. .
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Proof. For the proof of (i), we may assume that ¢ =1 and v € 95 . By the
definition of ¥, we have p <0 and ¢ > 0.

We rewrite W’/ as W/ = ES™PY*SIE = ES PYSYE’, where p > 0 and
q¢>0.1If ¢ >p, then F **(W') = EYS?TPE' is a subword of 7, **(W), and
%" (5) is not simple. Contradiction!

If p > g+1, then .7, *Y(W') = ES~P1Y E'. This implies that .7, °%() has
a strand joining the S-side to the S~!-side, and has a strand joining the Y ~!-side
to the E'-side with E' € {T*, X*}. This is impossible. Therefore, ¢ < p < q+1.

By considering 7, the statement (ii) will follow by a similar argument.

Proposition 2.7. Let v € 4 be a geodesic, and let W be a cyclic semi-
reduced I'-word representing -y.

(i) If W is of the form given in equation (5), then Ng(v) =Y (¢ — pi)-

(ii) If W is of the form given in equation (6), then Np(y) = > (p;i — ¢i)-

Proof. From Proposition 2.3, the statement (ii) follows from the statement (i).
On the other hand, since Ng(©1(7)) = —Ng(7), we may assume that v € 47 .
Thus p; <0 and ¢; > 0 for all 7 by Lemma 2.6.

For every i, let v; be the admissible subarc of v represented by EZWlEl’,

where .
. S if g; > 0, N if p; <0,
B = {Yai if g; =0, and - Ej = Yei+t if p; = 0.
From the definition of W, , we know that each ~; neither has strands connecting
the S-side to the Y -side, nor has strands connecting the S-side to the Y ~!-side.
From Proposition 1.1, each «; has no strands joining the S-side and the S~!-side.
Thus Ng(7) is completely determined by the subwords SPiY<S% 1 <i<n.
Using notation given in equation (5), for every ¢ let +; be the admissible
subarc represented by F(;_1)y,, ,SP?Y 5% and let

Ni(l) = #(strands of 4/ connecting the S-side and the S~!-side),

Ni(z) = #(strands of 7] connecting the S-side and the Y-side)
+ #(strands of 4/ connecting the S-side and the Y ~!-side).

Since —1 < (p; + ¢;)e; < 0 for every ¢, then
(1) Ar(2) (¢ —pi —2,2) if ¢ —pi > 2,
NO NPy = ;
(N; ) {(07%‘—2%) if ¢; —p; < 2.
Thus

n

Ns(v) =Y (N + NP =3 (g — pa).

i=1 i=1
At the end of this section, we shall investigate how the integers Ng(7*(v))

and Np (7 (7)) relate to the integers Ng(y) and Np(y) for j =1 or 2, where
k # 0 is an integer.
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Proposition 2.8. Let v € 4, and let k be an arbitrary integer. Then
(i) Ns(7*(7)) = Ns(v) + kly(v) and Ns(Z3' (7)) = Ns(7v);
(i) Nr(7¥(v)) = Nr(v) and Np (7 (y)) = Nr(y) — kIx(y).

Proof. The proposition holds trivially for v = 7 and for v = vs. In the
following, we assume that v € ¢ .

Since ©5.7105 = 5, then the equations in (ii) follow from that given in (i)
by Proposition 2.1 and Proposition 2.3.

Now, we shall only prove the equations given in (i) for ¥ = £1. Then the
proof of the proposition is completed by applying mathematical induction to |k|.

If Iy (y) = 0, then Ng(v) = 0. From Proposition 2.2, we have Iy (7}*(v)) =0
for j =1,2. Thus Ng(Z(v)) =0, and the equations in (i) hold.

Let Iy(y) =n > 0. Assume that v € 4J. Then 7 is represented by a cyclic
semi-reduced I'-word W of the form

W= f[ls—mw ST,

where € = £1, p; > 0, ¢; > 0 are integers, and where each W; is a semi-reduced
I'-word as given in equation (5). Since

W) =[Sy =8%W; and F7'(W)=][S v =svw;,
i=1 i=1

with p, + ¢} =pi+¢ +1 and p/ + ¢ = p; + ¢ — 1, from Proposition 2.7 we have

n

NS(%W)):Z(F}FQ;) =n++ (pi +¢i) = Ns(v) + Iy (y) and

i—1 i=1
Ns(77' (7)) = Z(pgl +q)=-n+ Z(pi +qi) = Ns(v) — Iy (7).

Let W/ = Z(W;) and W/ = 7, *(W;) for every i. By the definition of W;
and that of 75, we easily see that W/ and W) have the same form as W, has.
Since

=1

Z(W) =[S PYesuw] and Z'(W)=][S Py suw;,
=1

then

n

Ns(7(7)) = Ns(Z ' (7)) = > _(pi + @) = Ns(v).

=1
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If ve ¥, then ©1(y) € 94, and

Ns(Z1(7)) = =Ns(0171(y)) = =Ns (77 '01(9))
= —{Ns(©1(7 )) Iy (©1(7))} = Ns(v) + Iy (7);

Ns(7(3) = ~Ns (€277 (7)) = —Ns@@l )
= —{Ns(6:1(7)) + Iy (©1(v) } = Ns(v) = Iy (v);

Ns(7(7)) = =Ns (017" (7)) = —Ns (% *01(7))

:—Ns(@l( )) = Ng(y) for k= +1.

3. Geometric intersection numbers

In this section, we shall prove the geometric intersection formula (see Theo-
rem 3.1). The geometric intersection formula will be used to prove the injectivity
of a homeomorphism ¥ of 7.4(9.%) onto a 3-sphere. The homeomorphism ¥
will be constructed with elementary intersection numbers. From the geometric
intersection formula, we obtain the elementary intersection numbers of geodesics
in 4. Then we will get elementary intersection numbers of o € 4.7 .

3.1. The geometric intersection formula. The main work of this sub-
section is to prove the following theorem:

Theorem 3.1 (Geometric intersection formula). If v; and 7, are two simple
closed geodesics on Y5, then

i(v1,72) = 2[Ix (1) N1 (v2) — Ix (v2) N7 (71)| + 2/Iy (71) Ns(v2) — Iy (7v2) Ns (1)
+ [Ixy (71, 72)| = Ixy (71,72),

where Ixy (v1,72) = {Ix(m) — Iy (m)} - {Ix(2) — Iy (72)}.

As a consequence of the geometric intersection formula, we obtain the ele-
mentary intersection numbers of geodesics in ¢ as follows.

Corollary 3.2. If vy € 4, then

i(7,712) = 2[Nr (M| + Iy (v) = Ix (V)| + Iy (v) = Ix (7),
i(y,713) = 2|N7(y) — Ix (v >|+|Iy(7) Ix(vy )|+Iy(7)—lx(7),
i(7,722) = 2[Ns(V)| + [Ix (v) = Iy (W[ + Ix () — Iy (v), and
i(7,723) = 2[Ns(v) = Iy (M| + [Ix(v) = Iy (V)| + Ix (v) — Iy (7).

Proof of the geometric intersection formula. It is easy to see that the geometric
intersection formula is valid if v; or 9 is in {vy7,vs}. It remains to prove the
formula for v1,v2 € ¢ .
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For every integer k, write Fj = %‘kﬂl"“ From Proposition 2.8, we obtain

Ixy (v1,72) = Ixy (Fr(m), Fr(12)),
Ix (1) Nr(v2) —Ix (72)No(m1) = Ix (Fre (1)) N (Fe(v2)) — Ix (Fe(v2)) N (Fr(71))
Iy (m1)Ns(v2) =1y (2)Ns(m1) = Iy (Fe(1)) Ns (Fr(72)) — Iy (Fr(72)) Ns (Fr(11))

for all integers k. From Proposition 2.2 and Proposition 2.8, there is an integer
k > 0 such that

Nr(Fe(vy)) = 2Ix (v;) = 2Ix (Fe(v;)) and Ng(Fp(v;)) > 21y (v;) = 21y (Fr(7;))

for 7 = 1,2; thus we may assume that

Nr(vj) > 2Ix(v;) and  Ns(vyj) = 2Ly (v5)-

Figure 5. From the left to the right: 7, 7o, 73.

If B €% is a geodesic with Nr(B) > 2Ix(6) and Ng(B) > 2Iy (), then
lies in ¥4 N¥;, and B can be written as

B=pys+qyr+rmi+sm or [=pys+qyr+rm+ 573,

where p, g, r and s are non-negative integers with p+ ¢+ r + s > 0, and where
71, 7o and 73 are geodesics represented by the following cyclic reduced I'-words
(see Figure 5):

W(T1) = S_IY_ISTXT_l, W(TQ) =S 7XT" ! and W(7-3) — S ly-1lg7.

Let 4.Z1 be the set of all elements of 4.Z of the form pys+ qyr+rm +sm2,
and let 4.Z5 be the set of all elements of 4.Z of the form pvys + qyr +rm1 + s73,
where p, ¢, r and s are non-negative integers with p+q+r+s > 0.

Let 2 be the fundamental domain for G given in Section 1.2. Let &% denote
the reflection in the imaginary axis. Let [* be the semi-circle contained in &
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joining the fixed point of S™!T to the fixed point of TS~!. Note that [* is
invariant under Z. Let

P* be the point of intersection of [* with the imaginary axis,

2% be the connected component of ¥ — [* lying above [*,

2~ be the connected component of ¥ — [* lying below [*,

Y7 and X7 be the projections of 2% and 2~ to X5, respectively,

;" be the four-punctured sphere obtained from Z* — {P*} by identifying

the boundary points of 2+ — {P*} via X, T and #,

<, be the four-punctured sphere obtained from 2~ — {P*} by identifying

the boundary points of 2~ — {P*} via Y, S and #, and

7* be the projection of [* to X5, which is the common boundary of ¥} and

Y5 . The free homotopy class containing * is also denoted by ~*.
The fixed point ¢ of S™!T projects to a puncture ¢* on .#;", and projects to a
puncture ¢~ on ., . Let [(*] denote the free homotopy class of simple loops on
;" enclosing (1, and let [(~] denote the free homotopy class of simple loops on
 enclosing (~. It is obvious that i([(T],a) = 0 for all free homotopy classes
a of multiple simple loops on .#,", and that i([¢~],5) = 0 for all free homotopy
classes (8 of multiple simple loops on .7 .

Figure 6. 7'j+ and 7, for j =1,2,3.
For any reduced simple loop « in the free homotopy class v € ¢, let
at=anXf and o =ani;.

We shall call a connected component of the lift of a™ to Z a strand of a*, and
call a connected component of the lift of o~ to & a strand of a~. Let

vt ={a" : ais a reduced simple loop in the free homotopy class v} and

v~ ={a” :«ais a reduced simple loop in the free homotopy class 7}.

See Figure 6 for examples of v+ and v~. When there is no risk of confusion, we
shall also use v* and v~ to represent any curve in them. Since the geodesic vy
is disjoint from 37, we shall also write v = yr. Similarly, write vg = 7s.



Geometric intersection numbers on a five-punctured sphere 95

If v =ayr + bys + cr1 + drp is an arbitrary geodesic in g N 9. <1, then ~~
has 2d strands whose union is homotopic to d copies of 7, . We shall call such
strands 7, -type strands of v~ .

If v = ayr + bys + ¢y + d7s is an arbitrary geodesic in G NYGYL 2, then y+
has 2d strands whose union is homotopic to d copies of 737. We shall call such
strands 75 -type strands of y*.

Let v €9 N (YL1UGL5) be a geodesic, and write
vy=ayr +bys+cr +dre or vy=ayr—+bys+cr +drs.
Then i(v,v*) = 2(c+ d) since
i(ayr + bys + cm +dme,v*) = 2(c + d) = i(ayr + bys + ¢ + d13,7™).

Set £ = ¢+ d. Every simple closed curve a in the homotopy class v is
homotopic to a simple loop & with the following properties:

(i) The lift of & to Z intersects {* — {P*} at Py,..., Py, P[,..., P with
P; = %(Pj).

(ii) The endpoints of strands of & coincide with that of a. Then &* projects
to ;" a multiple simple loop a*, and &~ projects to ., a multiple simple
loop @~ . Let 4% denote the free homotopy class of multiple simple loops on %"
represented by at, and let 4~ denote the free homotopy class of multiple simple
loops on ., represented by a~.

If v=avyr + bys + ¢y + d1e with ¢+ d > 0, then

7 =ayr + (c+d)F and 5~ = {bys +cf } @ dlC).
If v =ayr + bys + ¢y + drs with ¢+ d > 0, then
Vo =Aayr + e} @ d[C7] and §T =bys+ (c+d)7y .

Now we are in the position to compute i(vy1,7v2) for 1,72 € g N (Y%, U
9 Z5). Without loss of generality, we may assume that all points of intersection
of 71 and 75 are not on ~*.

Case 1. Assume that ~1,72 € q NYZLq. Clearly, Ixy(v1,72) > 0 and
Ixy(71,72)] — Ixy(71,72) = 0. By applying suitable homotopy maps to ; and
2, we may assume that 7, -type strands of ~; are disjoint from 72, and that
75 -type strands of v; are disjoint from ;. Then by Theorem 2.6 of [4] we obtain

i(v1,72) = i(v,73) +i(vy s ) = 635,35 ) + 91, 92)
= 2[Ix (71)Nr(72) — Ix(v2) N7 (71)| + 2/Iy (71)Ns(72) — Iy (72) Ns (1)
= 2|Ix (v1)N7(72) — Ix (v2) N1 (71)| + 2[Iy (71)Ns(v2) — Iy (72) Ns(71)]
+ | Ixy (7,72)| — Ixy (71, 72).
Case 2. If ~1,v € g N G L5, then ©105(1) and ©105(72) are both in

G NYGYL 1, and the geometric intersection formula is valid for this case by Propo-
sition 2.1.
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Case 3. Assume that v, € 7 NYYL, and v, € q NY.<5. Write

n=ayr+bys+er+dr and e =adyr +Vys +m+d'r,
where dd’ > 0. Clearly, Ixy(y1,72) <0 and

[ Ixy (v1,72)| — Ixy (m1,72) = 2dd’.
Write the union of 75 -type strands of 7; as dry , and write the union of 75 -type
strands of 5 as d'75 .

To compute i(dry ,75 ) + i(y;,d' 75), we need the orientation on the S-side
and that on the S~!-side (see the proof of Proposition 1.1). Also, we need an
orientation to the T'-side and an orientation to the 7'~!-side.

Recall that ¢ is the fixed point of the transformation S~!'7. If P and P’
are two distinct points on the 7T~ !-side, and if P lies between ¢ and P’, then
we write P < P’. For any two distinct points Q and @’ on the T-side, if
T7HQ) < T71(Q"), then we write Q < Q.

Let m=a"+2¢d +d and n =0 +2¢ +2d". Let

P, < --- < P, be the endpoints of strands of 75 on the T-side,

Q1 < -+ < @, be the endpoints of the strands of v, on the S-side,

L§2) be the strand of v, with P; an endpoint, 1 < j <d’,

I¥ be the strand of 7, with Q; an endpoint, 1 < j < d’,
Ay < -+ < Ay be the first d points on the S-side where the lift of v; meets,
A’ be the point on the S~1-side identified with 4; by S™!, 1 <j <d,

Lgl) be the strand of v; with A;- an endpoint, 1 < j < d, and
l;l) be the strand of y; with A; an endpoint, 1 < j <d.
Note that Lgl) connects the S~!-side to the T'-side, and each lj(-l) connects

the S-side to the T'-side. Let B; be the endpoint of lj(.l) on the T'-side. It is clear
that By < -+ < By.

Figure 7.
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Without loss of generality, we assume that i(y7,d'73) = 0, and that the
union L of all L§1) is disjoint from 5 (see Figure 7). Then

Py <By <--<Bg<Ppy1 and Qg <A1 <+ <Ag < Qa1
This implies that each l]@) intersects all ng) and all l§2) transversally. Then
i(dry , vy ) = 2dd’.

By Theorem 2.6 of [4] again, we complete the proof of Theorem 3.1 as follows:

i(y1,72) =072 ) + (v 72)
i35 93 ) (31,72 ) +ildry v ) + iy, d'rg)
i(ayr + (c+ )7, d'yr + 7))
+ z(b’yg + 7, b ys + (d +d)7f ) +2dd’
= 2|Ix (1) Nr(v2) — Ix (v2) N1 (v1)] + 21y (1) Ns(v2) — Iy (v2)Ns (1)
+ Ixy (71,72)| = Ixv (71, 72)-

3.2. Elementary intersection numbers of multiple simple loops. In
the rest of this section, we shall prove the following proposition.

Proposition 3.3. If a € 9%, and if k is an integer, then

i(TF(@),m1) =il 1), i(F(@),721) =i(a,y21) forj=1,2,

i(7F (@), ) =il m]), (T (@), 75) = i, ;) forj=2,3,

J( T (@), 12) = 2N (a) — KIx(@)] + [Ty (@) — Tx(a)] + Iy (@) — Ix (a),

i7" (a),m3) = 2|Nr(a) = (k + DIx(a)| + |IY(Oé) —Ix(a)| + Iy (@) — Ix (o),
i( 71 (@), 122) = 2|Ns(a) + kly ()] + [Ix(a) = Iy ()] + Ix(a) = Iy (), and
(7" (),723) = 2[Ns(a) + (k = 1) Iy (a)] + |Ix () — Iy (a)| + Ix (@) — Iy (a).

By letting £ = 0 in the last four equations of the above proposition, we have

Corollary 3.4 (Elementary intersection numbers). If o € 4%, then

i(a, y12) = 2|Np ()] + [Ty (@) = Ix (@) + Iy (@) — Ix(e),

i(a, m3) = 2|Nr (o) — Ix ()] + [Iy (@) = Ix(a )\+Iy(a)—fx(a)
i(a,722) = 2[Ns(a)| + [Ix(a) = Iy (a)| + Ix(a) = Iy(a), and
i(a, y23) = 2|Ns () — Iy (@) + [Ix (@) — Iy ()| + Ix (a) = Iy ()
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Lemma 3.5. Let v and 7' € 4 be disjoint geodesics, and let o = ay ® by,
where a > 0 and b > 0 are integers with a + b > 0. Then for all integers k

Nr(7F(@) = Nr(@),  Np(Z3'()) = Nr(a) - kIx(a),
Ns(%k(oz» :Ns(a), Ns(%k(a)) :Ns<04)+k[y(a).

Proof. Since Ng(a) = aNg(y) + bNg(y') for E =S or T, from Proposi-
tion 2.8 we obtain

Nr(7(a)) = aNr (7" (v)) + bNr (5" (7))
= aN7(y) + bN7(v') = Nr(a) and
Ny (73 (a)) = aNr (Z (7)) + bNr (5 ()
= a{N1(7) — kIx(7)} + b{N1r(v) — kIx(7")} = Nr(a) — kIx(a).
Similarly, Ng(7(a)) = Ns(a) and Ng(.7(«)) = Ns(a) + klIy(a).
Lemma 3.5. If v and ' are two disjoint geodesics in Z , then

(Vr() = Ix()) (Ve () = Lx (7)) 20

(NT —I—Ix( )( r(7") —l—IX )
(Ns(v) = Iy (7)) (Ns(7) 7)) 2
(Ns(v) +IY(7))(NS( +Iy ) =
Proof. We shall prove that (Nr(y) — Ix(v))(Nr(y) — IX(7/)> > 0. The

other three inequalities will follow by a snnilar argument.
From Lemma 2.4, we have Np(y)Nr(y') > 0, then

(Nr(v) = Ix (7)) (Nr(7') = Ix(7')) > 0 when Np(y) <O0.

Now, consider the case where Np(v) > 0, and suppose that

(Nr(v) = Ix (7)) (Nr(v) = Ix(¥")) <O.

Without loss of generality, we assume that
Nr(y) > Ix(y) and 0< Np(y) <Ix(v).

There is a strand I; of 7 joining the X -side to the T !-side, and there is a
strand I of 7 joining the X ~!-side to the T~!-side.

Let m = Ix(y') > 0. There exist m strands Lq,..., L,, of 4/ with endpoints
on the X ~!-side.

If every L; connects the X ~!-side to the T !-side, then Np(y') > m =
Ix(+"). This is a contradiction to the assumption. Therefore, there is an integer
j such that L; connects the X ~!-side to the E-side with E # T~!. This implies
LN (4 Uly) # 0. This is impossible since v and + are disjoint.
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Lemma 3.7. Let v,7' € 4 be two disjoint geodesics, and let o = ay & by’
where a > 0 and b > 0 are integers with a + b > 0. Then

{Ix(v) = Iy(} - {Ix(") = Iy (v)} >0,

and thus
[Ix(a) = Iy ()| + Ix (@) — Iy (@) = a{[Ix () — Iy (V)| + Ix(v) — Iy (7)}
+0{lIx(v) = Iy (V) + Ix(?v') = Iy () };
Iy (o) = Ix(a)| + Iy (a) = Ix(a) = af[Iy () — Ix(7)|+f (V) = Ix(v)}
+o{|Iy () = Ix(Y)| + Iy (') = Ix ()}

Proof. If v € {yr,vs} or v € {yr,vs}, then
{Ix(m) —Iy()} - {Ix(?') — Iy (¢} = 0.

In the following, we assume that v, € ¥ .
Now, choose an integer k > 0 such that

Ny (7 *7F () = 2Ix(v) = 2Ix (T "7 (7)),
Ns(73 * 7 (7)) = 2Iv (v) = 21y (75~ 91 (7))
Ny (7, k91 (7)) = 2Ix(v') = 2Ix (% " 7 (")),
Ns(Z *7F () 2 2Iy () = 2Iv (Z5 " 74 (7).
Since for E =X or Y
Ip(F " 7)) = alp (T " TF () + ble(T5 F 7 ()

=alp(y) +blp(y') = Ip(a),
we may assume that
Nr(y) > 2Ix(v), Ns(v) =2 2Iv(v), Nr(y)>2Ix(y), Ns(v')=>2Iv(y).

Let 9.1 and ¥.Z5 be the subsets of ¥.Z given in the proof of Theorem 3.1.
If v and 4/ both are in ¥.%;, write
y=pys +qyr + 111+ s and Y = p'ys + ¢y + ' + s’
Then
{Ix(v) = Iy(MN} - {Ix(Y) — Iy ()} = s > 0.
Similarly,
{Ix(v) = Iy()} - {Ix(v") = Iy (v/)} > 0
if v and 4/ both are in ¥.%5.
Finally, assume that v € 4.1 and 7' € ¥.%5, and write
Y=pys+aqyr+rn+sn and ' =pys+dyr+r'n+ 8.

If ss’ > 0, then i(vy,7") > 0. This is impossible. Thus ss’ = 0. This implies that
both v and 4’ are either in 4. or in 4.%5, and completes the proof.



100 Yungyen Chiang

Proof of Proposition 3.3. It follows from equation (3) and Proposition 2.2,
we have

i(TF (@), ) =ile,m),  i(F(a),y21) = i(e,721) for j=1,2.
Since +vi; is invariant under .77, and since 7; is invariant under .7 for
7 =2,3, then
i( 7 (), 715) = i(a, T F(y)) = ie, ), and
(T (), ) = (@, Ty F(ra5)) = i, 725).

It remains to prove the last four equations given in the proposition. In the
following, a and b are assumed to be non-negative integers with a +b > 0.

If o = ays @ byr, then « is invariant under .7} for j = 1,2, and Ig(a) =0
for £ = X, Y. Thus the equations hold trivially.

Let v € 4 be a geodesic disjoint from ~vg. If o = ay @ byg, then

Iy(y) =0=1Iy(a), Ng(y)=0 and Ng(a)="0.

Since Iy () = 0, then + is invariant under 77, and so is «. From Corollary 3.2
and Lemma 3.7, we have

[Ix(a) = Iy ()| + Ix (@) — Iy (@) = 2alx(7)
and

i( A (@), v22) = ai(7y,722) + bi(vs, v22) = 2alx () + 2b
= 2[Ng(a) + kIy ()| + [Ix (@) = Iy ()] + Ix (o) — Iy (a);
i(%k(a);ws) = ai(7y,723) + bi(vs,ve3) = 2alx(v) + 20
=2[Ng(a) + (k = DIy (a)| + [Ix () — Iy (a)| + Ix () = Iy (o).
Since g is invariant under %, and i(yg,71;) =0 for j = 1,2, then

i(T5 (), my) = ai (T (), m;).-

Since Ix(a) = alx(7v), and since Np(a) = aNp(y), from Corollary 3.2 and
Lemma 3.5 we have

i( T (@), 112) = 2|Np (o) = kIx ()] + | Iy (@) — Ix ()] + Iy (@) = Ix(ev);
i( T (@), 713) = 2|Np (o) = (k + D) Ix ()| + [Ty () — Ix(a)] + Iy () — Ix(cv).

By a similar argument as above, one proves that the last four equations hold
for a« = ay @ byr, where v € 4 is a geodesic disjoint from ~yp.
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Finally, we consider the free homotopy classes a = a7y © by', where v and ~/
are disjoint geodesics in ¢ . If ab = 0, the equations hold trivially by Corollary 3.2.

Assume that @ > 0 and b > 0. Then Ix(«a)ly(a) > 0. Otherwise, say
Iy (a) =0, we have Iy (y) = Iy (y') = 0. This is impossible since any two distinct
simple closed geodesics on a four-punctured sphere must meet (see [4, Theorem 2.5]
and [4, Theorem 2.6]).

Note that the last three equations given in the proposition follow from the
equation

i( T (@), m2) = 2|Np (@) — kIx ()| + [Ty (a) = Ix ()] + Iy (a) = Ix(a).
Since
(7 (@), ms) = i(FF (), Ty H(m2)) = (T (@), m2),
then
H(F(@),113) = 2INr(a) — (k+ DIx(@)] + Iy (a) — Ix(a)| + Iy (a) — Ix(a).
Because 7;F = 0,.7,F0,, from Propositions 2.1 and 2.4 we obtain
i( 7 (@), 722) = i(©2.75"Oa(), 722) = i( T O2(a), O2(722)) = i(F5" O2(ex), m2)
=2|N7(02(a)) — kIx(O2())| + Iy (O2(a)) — Ix (O2())|
+ Iy (©2(a)) — Ix (O2(a))
= 2| = Ng(a) — kly(a)| + [Ix(a) = Iy (a)| + Ix (@) — Iy ()
= 2|Ng(a) + kIy ()| + [ Ix(a) — Iya)| + Ix(a) — Iy ()
and
(7 (@), 723) = 1(FF (), Ti(122)) = i (5" (@), 722)
= 2|Ng(a) + (k — DIy (a)| + [Ix(a) — Iy ()] + Ix (@) — Iy (o).
Now, we shall prove the equation
i( Ty (@), m12) = 2|Nr(a) — kIx ()| + Iy (a) = Ix(a)] + Iy (o) — Ix().
From Proposition 2.8, Lemma 3.5 and Lemma 3.7, we obtain
i(Fa(a), 112) = ai(Z2(7), 12) + bi(F(v),712)
— 2a|Nr (%(3))| + |N7 (F())]
+a{|ly (%(v)) — Ix (Z(y )| + Iy (%) — Ix (%))}
+ b{ | Iy (Z( I)) —Ix (%) + Iy (R(0)) - Ix(F%(H))}
= 2a|Nr(v) = Ix(7)| + 2b|N7 (7)) — Ix (/)]
+a{lly(7) = Ix(| + Iy (v) = Ix ()}
+0{[Iy (V) = Ix(Y)| + Iy () — Ix ()}
= 2[a{Nr(7) — Ix (")} + b{Nr(v') = Ix (v) }]
+ Iy (a) — Ix(a)| + Iy (@) — Ix(a)
=2|Nr(a) — Ix(a)| + [Iy (o) — Ix(a)| + Iy (a) — Ix (o).
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If K> 1, by Lemma 3.5 we have

(7 (@), nz2) = 2Nr (7 () = Ix (73 (a)]
+ Iy (7 (@) = Ix (7 (a))]
I (Z7 ) - Ix (7 ()
— 9N () — kIx ()| + Iy (@) — Ix(a)] + Iy (@) — Ix(a).
By the same reasoning as above, one shows
i(Fy (@), m2) = 2IN7(a) + Ix(a)| + [Ty (a) = Ix ()| + Iy (a) — Ix(a).
Thus for £ > 1
i(Z5 " (a),ma) = 2INp (F " (@) — Ix (T Y
+’IY<% k+1(a))+IX( k:Jrl( )
+I ( k—l—l Oé)) ( k+1(()é))
= 2|Np(a) + klx ()| + Iy (o) = Ix ()] + Iy (@) — Ix ().
4. A homeomorphism of 7.7 (%) onto a 3-sphere

Now, we are ready to construct a homeomorphism of 7.7 (%) onto a 3-sphere.
Let 1T = {(r1,72,...,76) € Ri :ri4ro+---+1¢ =1}, and let € = 11; UIl, UIl3,
where
H1 = {(Tl,?“g,?"g) - Ri T+ T3 = 7“1},
Iy = {(ry,72,73) € Ri ir1+7r3 =ra},
H3 = {(Tl,TQ,Tg) € Ri 1y 1T = 7‘3}.
Following Poénaru ([5], Exposé 4), we shall first construct a function ¥ of
F(9L) into (€ x €) N1l so that its extension to 7~ 7.7 (9.%) satisfies

U(tly) = V(I,) for a € 9L and for t > 0.

Thus ¥ induces a function on 7.7 (¥4.Z), also denoted by W¥.

By using a continuity argument, we extend ¥ to 7.#(¥), and prove that ¥ is
a homeomorphism of 7. (%) onto a 3-sphere lying in R® (Theorem 4.3). Finally,
by postcomposing ¥ by a function from R® into R*, we will get a homeomorphism
of 7.#(%) into a 3-sphere lying in R* (Theorem 4.4).

4.1. The definition of ¥ on ¥.Z. For integers ¢ € {1,2} and j € {1, 2,3},
and for a € 4.7, let

. N 3
zij(a) = Z(iéggj), where A(a) = ZZZ a, Vi),

=1 j5=1
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and let ¢1: 4. — RS be defined by
1 (a) = (9011(04)7$12(Oé),$13(a),$21(a),$22(a),9023(06))-

Note that the image of ¢y lies in II since Z?Zl Z?zl zij(a) =1 forall 0« € 4.7
To construct a function of 4.% into (¢ x €) NI, we form the sum

ple) = 2{Ix () + Iy (@) +|Nr ()| +|Nr(a) = Ix (@) [+ |Ns ()| +|Ns (@) = Iy () ]}-
From Corollary 3.4, we have 0 < p(a) < A(«a) for all a € 9.7, and
ple) . AIx(a) = Iy (o)

Ma) AMa)

=1- 2|:L‘11(Oé) — X21(Oé)|.

Thus [a11(a) =221 (a)] < % for all a € ¥.Z, and the image of 11 is contained in
the set & = {(r1,r2,73,74,75,76) €Lt |r1 — 4] < 3}
Let
éa+:{(7’1,7’2,7’3,7’4,7’5,7’6)EH:OSrl—r4<%} and
& = {<7"1,T’277’377’477°5,7“6) cll:0<r,—1r < %}

Let ¢2: E — R6 be defined by 'lp2<7ﬁ1,7’2,7’3,7”4,7”5,7”6) = (t17t27t3at4,t5at6)7
where

e - 2(:31 = for j =1,2,3,4 and (ry,7r9,73,74,75,76) € &,
Ty —T1 + 71y for j = 5,6 and (7‘1,7“2,’[“3,7“477“57r6) c (g"+7
¢ 1 —2(7°1 —7’4)
J = .
1_ 2(::1 ) for j =1,4,5,6 and (ry,7r9,73,74,75,76) € &,
ri+r1—ry .
f - 2’3 d 3y 1'2,73,1745,75, €& .
(1 —2(7"4 —7"1) orJ an (rl r2,73,7T4,T5 7"6)

It is clear that 5 is continuous on & with
wg((gaJr) cIlt = {(tl,tg,tg,t4,t5,t6) cll:t1 > t4} and
Yo (&) CII = {(t1,t2,t3,ta,t5,16) € L 1ty < tg}.

A direct computation proves that 1o is an injective function onto II with the
inverse 5 (t1,ta,t3,ta, ts, tg) = (r1,72,73,74,75,76) € &, where

( m for j =1,2,3,4, and (1, o, t3,t4,ts5,t6) € 11T,
i % for j = 5,6, and (t1,t2,t3,t4,t5,16) € IIT,
m for j =1,4,5,6, and (t1,1o,t3,t4,t5,t¢) € 11~
\ % for j = 2,3, and (t1,ta,t3,t4,t5,t6) € 11
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This proves that 5 is a homeomorphism of & onto II.
Let ¥ be the composition of 11 followed by 5. We shall prove that ¥ maps
92 into A= (¢ x€)NIIL. For o € 9.2, write

(&11(a), &12(a), &13(a), Lar (@), Eaz (@), E23(c))
= wg (1‘11 (Oé), 3312(06), 1‘13(04), 21 (Oé), .TQQ(CY), 23 (Od)) .
From the definition of p(«a), we have
2IX (Oé)

_ 2[Nz ()| _ 2[Nz(e) = Ix(e)|

§i1(a) = (o) §12(a) = “ola) 13(a) (o) ;
o), 2Ns(o) ) 2INs(a) — Iy ()
@Oy =TTy = o)

For simplicity, write Ny = Nr(a), Ns = Ns(a), Ix = Ix(a), Iy = Iy(a), and
&ij =&ij(a) for all a € 9. Then

Nr <0 = &1+ &2 = &3, Ng <0 = &1 + §22 = §o3,
0< Nr<Ix = & —&i2=&s, 0< Ng <Iy = &1 — &= o3,
Nr > Ix = —&i1+ &2 = &3, Ng > Iy = —o1 + &2 = &a3.

Therefore, V(9.¥) C A.

4.2. A homeomorphism of A onto a 3-sphere. In this subsection, we
shall prove that A = (€ x ¢) N1II is homeomorphic to a 3-sphere.

Let A be the invertible linear transformation of R?® onto itself carrying the
vectors (1,0,1), (1,1,0) and (0,1,1) to the vectors (1,0,1), (—3,2v/3,1) and

(—%, —%\/g, 1) in this order. The matrix representation of A is

y -1 3 Lo
A=(1v3 0 -1V3 with the inverse A~ = | 32 0 z
11 1 1 “1 o,
2 2 2 3 —V3 3

Let ¢’ = A(€). Note that if (z1,22,23) = A(r1,72,73) € €', then x3 > 0. Let
Ly ={(t,0,t) € R® : t > 0},
Ly={(-3t,3V3t,t) e R*:t >0} and
Ly = {(—3t,—3V3t,t) e R® : ¢ > 0}.

By a direct computation, one proves easily that IIj = A(Il;) lies on the plane
r1+V3 1y = 23 bounded by L; and Lo, IT;, = A(IIy) lies on the plane 2z;+z3 = 0
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bounded by L, and Lz, and I3 = A(II3) lies on the plane 3wy + 23 = z;
bounded by L; and Ls. By the definition, ¥’ = I} UII5 UII5. Let J be the
linear transformation of R® onto itself represented by the following matrix

A 0
0 A)°
Then J is a homeomorphism of R® onto itself with

I = J(I) = {(x1, 20, 23, 24, T5,26) € R : 23 + 26 = %},

and J(A) = (¢' x€')NIl' = A’.
It is clear that the orthogonal projection 7: R®> — R? defined by

77(1'17 X2, %3) = (xlv $2)

restricted to € is a homeomorphism onto R?. Then the projection ¢: R® — R*
defined by

¢($1,$2,$3,$4,$5,$6) = (77(5517$27$3)777(55473357336))
restricted to €’ x €’ is a homeomorphism onto R? x R? =2 R*. Let
B = (¢ x¢")N{(x1,x2,23,24,75,26) € RO : 25 + 26 < %}

Now, we shall prove that ¢(B) is bounded and convex, and has non-empty interior.
This implies that ¢(B) is homeomorphic to the closed unit ball

{(z1, 22,23, 34) € R* 1 2 + 23 4 25 + 2] <1}

By the definition of B, as a subspace of ¢’ x ¢, the boundary of B is A’, then
¢(A’) is homeomorphic to a 3-sphere, and so is A.
Let R be the rotation in R? with the matrix representation

cos 2w —sin %7? 0 —% _%\/ﬁ 0
sin£m  cos %77 0] = %\/3 -1 0
0 0 1 0 0 1

Then ‘ '
I, x I, = R7-1(I1)) x RFH(IT}) = (R~ x R 1)(I1) x I1})

for j,k € {1,2,3}, where R~!' x R*~! is the linear transformation of RS onto
itself represented by the following matrix

RI—1 0
0 Rk—l .
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It easy to see that
(R~ x R*1)(0,0,7,0,0,s) = (0,0,7,0,0, s)

for any two real numbers r and s. Since the normal vector (0,0,1,0,0,1) of I

is invariant under R/~ x R*~! and since the point (0,0, i 0,0, i) of II' is fixed
by RI=' x RF=1, then II’ is invariant under R7~! x R*¥~! and thus

oB) = U U o((R" x B*H(V)),

j=1k=1
where

V = {(Ilax27x37x47x57x6) - Hll X Hll . X3 +{E6 S %}

== {(x17x27x37x47x57x6) S Hll X Hll - I + \/§x2 +x4 + \/§x5 S %}

Clearly, V is bounded. This proves that ¢(B) is bounded since R7~! x RF=1 is
a Fuclidean isometry.

To prove the convexity of ¢(B), we consider any two distinct points @ and
Q' of B with coordinates (x1, 2,3, 24, x5, x6) and (x}, x5, x5, x), xt, xf) respec-
tively. Let

P = (5131,1172,333), Py = (%4,.175,!1)'6), Pll = (13/1733/2,33%) and PQ/ = (Iipxgaxg)a

and let P;P; denote the line segment connecting P; to P; for j = 1,2. The

vertical plane in R? containing P; P intersects € ' in a polygonal curve o; with
parametric equation f;(¢), 0 <t <1, so that f;(0) = P; and f;(1) = P;. Note
that n(o;) = n(P;P}). The curve

L={(fit),fo(t) e R®*xR3:0<t <1}
lies on €’ x €' connecting @ to @', and ¢(L) is a line segment in ¢(B) with

#(Q) and ¢(Q’') as its endpoints. Therefore, ¢p(B) is convex.
Note that (IT} x IT}) NII" is contained in the hyperplane in R® of equation

21+ V332 + 34 + V325 = 1,

then the distance from the origin to (IT} x IT{)NII’ is at least 1/4+/2. This implies
that ¢(B) contains the closed ball centered at the origin with radius 1/4+/2, and
¢(B) has non-empty interior. The proof is complete.
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4.3. The extension of ¥ to 7.7(¥). Now, we are going to extend the
map VU to 7.4(9) =nI(9.L).

For every o € 9.2, we define z;;(I1n) = w;;(). Since each z;; is homoge-
neous, then z;; extends naturally to 7~ '7.7(9.%) defined by z;;(t1n) = =i;(Ia)
for all ¢ > 0 and for all o € 4.Z. Thus each z;; induces a well-defined map, also
denoted by z;;, on 7.7 (9.%) defined by z;;(7(Ia)) = z;j(Ia).

For an arbitrary ¥ € 7~ 'n.#(¥), there is a sequence {t,}>; of positive
numbers, and there is a sequence {7, }>2, in ¢ such that {¢, 1, }72, converges
to Z. Thus

tni (Yo, Yig) = tn Ly, (Vig) — L (7i5)

as n — oo for ¢ = 1,2 and for j = 1,2,3. This implies

_ Z(7ij)
Yoot i L (k)

for i = 1,2 and for j = 1,2,3. Let \: 77 '7.#(¥9) — R, be defined by

Jm 2 (t 1,

2 3
ML) =Y L) foral £ cr'rd(9),

and let z;;: 77177 (49) — R, be defined by

zj(L) = — gg%‘j) for all & € ntn 7 (9).
2 k=1 2ui=1 L (i)

It is easy to see that each x;; is continuous on 7~ !'7.# (%) with x;;(t.%) = z;;(ZL)
for all t > 0 and for all ¥ € =177 (9).
Since the restriction of 7 to 77 17.#%¥) is a quotient map onto 7.# (%), then

each z;; extends to 7.# (%) a continuos map given by z;; (7(%)) = ;;(Z) for &

in 7777 (¥). This gives a continuous map of 7.7 (%) into R® whose restriction

to 9.2 is 1. We also use v for this continuous map on 7.#(¥), and let
WU = 191 as before.

Proposition 4.1. The function ¥ maps 7.%(¥¢) continuously onto A.
Clearly, ¥ is a continuous map of 7.#(%) into II. Since V(¥¢) C A, and

since A is closed in R, then ¥ (7.#(9)) C A.
To complete the proof of Proposition 4.1, we have to show that ¥ (Wf(%.ﬁf))

is dense in A since ¥ is continuous and 7.4 (¥) = 1.7 (4.%) is compact.
A point (r1,79,73,74,75,76) of Q® will be called a rational point, where Q is
the set of all rational numbers.
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Lemma 4.2. Every rational point of IIN (Il x ) lies in ¥ (7.9 (4.%)).
Proof. Let (vy/u,vs/u,vs/u,vy/u,vs/u,ve/u) be any rational point of (IIy x
II;) NII, where u > 0 and all v; > 0 are even integers. Note that

2y +vs) =u, wvi+vs=vy and wv4+ vg=vs.

We want to show that there are non-negative integers a, b, ¢ and d with a +b+
¢+ d > 0 such that

Ui V2 U3 U4 Us V| _ V(" Palayr +bys +em +dr))  if v > vy,
u ululuulu \Il(%_l%(aVT—l—bys—l—CTl—f—dTg)) if v1 < vy,

where 71, 75 and 73 are the geodesics given in the proof of Theorem 3.1.
Let a = 91_1%(a”ygp + bys + ¢m1 + drz). From Proposition 3.3 and Corol-
lary 3.4, we have

Ix(a)=c+
Nr(a) = a+c~|—d
Iy (a) = c,
Ng(a) =b+ and
pla) = 2(2a—|—26+4c+2d)

If v1 > vy4, by solving the following equations for a, b, ¢ and d

2(c+d) =2Ix(a) =,
2(a+c+d) =2Nrp(a) = v,
2¢ = 21y () = vy,

2(b+c) = 2Ng(a) = vs,

we have
a=2(va—wv1), b=3(vs—vs), c=3vs and d=1(vi— ).
A direct computation gives p(a) = 2(ve + v5) = u,
2|Nr(a) — Ix(a)]| =ve —v1 =v3 and 2|Ng(a) — Iy (a)] = vs — vg = vg.

This proves
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Since %0y = 0271, 0,7, = 710, and ©,.7, ' = %01, then

T Po(ayr + bys + em +dr3) = T L F010s(ayr + bys + e + dre)
= @1@2%91_1(CWT + bys + ¢ + dma)
= @162%_1%(a7:r + bys + ¢ + dT3)
== @1@2(0&).

Let = 0105(a). It follows immediately from Proposition 2.1 that

Ix(8) = Iy(a), Iy(B)=Ixa), Nr(B)= Ns(a) and Ng(8)= Nr(a)

and

U(0) = (a1(), Ex2(), Eas(@), Ern (), E12(), Er3(a)) = (ﬂ’ g U—6>

Proof of Proposition 4.1. We shall prove that ¥ (7% (4.%)) is dense in A

by showing that every rational point of A isin ¥ (Wﬂ (¥ )) , and this completes
the proof.

Let ¢ = (v1/u,v2/u,v3/u,vs/u,vs/u,v6/u) be an arbitrary rational point of
A, where u > 0 and all v; > 0 are even integers. There are non-negative integers
m and n such that

mup <wvg < (m+1)vy and nvy <wvs < (n+ 1)uy

U1 Vg U3 V4 Vs Vg
Cl = 5 ) and C2 = y ) .
u u u u u u

Set v; =wv; for j =1, 4, set

Let

Vo + m—|— ifC1€H1UH2,
—v9 + m—I—l)vl if Cl € Hg,

{vg—l—mvl if (1 € II; UIly,

vy +muy  if ¢ €13,

Vs + n—|— 1f§2€H1UH2,
—U5—|- n—l—l (o ifCQEH:;,
,_{v5+nv4 if (o € II; UIly,
6 =

Y —vs +nvyg  if (o €113,

and set w = Z? 1 V5. Then w >0 and all v} > 0 are even integers,

vy, — (m+ vy =va,  |vg — (n+ 1)vy| = vs,
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and

vh — (m+2)v| = [v2 — 1| = v3 ! ’
lvg — ( Ju1 | — vy —v1| =wvg if (3 € 113,

— ol = if (o e Il; UII
o 2 = |U5 U4| Y6 1 2 ! >
lvg — (n + 2)vy] {‘—v5—v4]=7}6 it (o € 1I;.

As vl = v] + v} and vl = v} + v§, the point (v]/w,vh/w,vh/w,v)/w, v /w,vs/w)
is a rational point in I N (I x IIs).

From the proof Lemma 4.2 we know that there is an « € ¥.Z with Np(«a) >
Ix(a) and Ng(a) > Iy («) such that

2Ix (o) = i,
2N () = vy,
2{Nr(a) = Ix(a)} = v3,
21y (@) = vy,
2Ns(a) = g,
2{Ns(a) — Iy (a)} = vg.

2Ix (o) = 2Ix () = vy,
2Iy (o) = 21y () = vy,
2INr ()] = [2{N7(e) — (m + 1)Ix ()} = [vy — (m + Dv1| = v2,
2IN7(a') — Ix ()] = [2{Nr(a) — (m + 2)Ix () }| = v — (m + 2)v1| = vs,
2[Ns(a')| = [2{Ns(a) — (n + D) Iy (a)}| = |vs — (n + 1)va| = vs,
2[Ns(a') = Iy (o) = [2{Ns (@) — (n + 2)Iy (@)} = |[v5 — (1 + 2)va| = ve.

Thus V(') = (.

4.4. The injectivity of W. So far, we have proved that ¥ maps 7.7 (¥)
onto the 3-sphere A. Next, we shall prove that ¥ is injective on 7.#(%). This
proves the following theorem.

Theorem 4.3. The map V is a homeomorphism of 7.7 (%) onto A, and
then w.% (%) is homeomorphic to a 3-sphere.

Since 15 is a homeomorphism of & onto II, it remains to show that v is
injective on 7.7 (¥).

Let £, % € m'nf(4) with ¢1(7(&1)) = ¥1(m(£)). There exist se-
quences {t,} and {s,} of positive numbers, and there exist sequences {«a,} and
{Bn} of elements in ¢4 such that

lim t,1,, =21 and lim s,Ig, = %.

n—oo
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Set p = AA) /M%) . By assumption, for i = 1,2 and for j = 1,2,3, we have
L1 (vij) = pLa(vij), or, equivalently, nh—{%o tn I, (i) = nli_)rrgopsn I, (7ij)-
We shall complete the proof by showing that
Jim# L, (v) = Jlim_psy, 15, (y) forall ye%.
Since
nh—>Holo tnlx(ay) = nli_}n;() tn Ia, (711) = nli_)ngopsn Ig, (711) = nllrgopsnfx(ﬁn), and

nhngo tnIY(an) = lim tn Ian ('721) — nhnolopsn Iﬂn (’721) — nlingopsnIY(ﬂn)a

n—oo

then, by using the geometric intersection formula, we only have to show that
nh_{go tn|Lx (an) N7 (v) — Ix (7)Nr (o) Znﬁggopsn\fx (Bn)N7(7) = Ix (v)Nr(5n)]
and

lim. tnlly (cn)Ng () — IY(”Y)NS(@n)l:nlggopsn|IY(ﬁn)NS(7) — Iy (7)Ns(Bn)l-

To simplify notation, set A,, = t,Ix (), Bn = psnlx(6rn), Cn = toNr(ay,),
Dy, = psyNr(Bn), I = Ix(y) and N = Np(v). Thus

lim A, = lim B, and lim |C,|= lim |D,|.

n—oo n—oo

It is clear that

lim C, = lim D, if lim |C,|= lim |D,|=0.

If
lim |C,|= lim |D,|# 0,

by the continuity of ¥ we may choose «,, and 3, so that C, D, > 0, and then
we also have
lim C,, = lim D,,.
The inequality
“AnN_ CnI| - |BnN_DnI” < |An - Bn| ) |N| + |Cn _Dn| 1

proves that
lim {|A,N - C,I| —|B,N — D,I|} =0,

or equivalently,

Tt Tx (@) Nr(7) — Tx (7) Ne(on)| = 1 psal L (8.)Nr(7) — Ix (v)Nr ()]
By the same reasoning, one shows that

Jim [Ty (@) Ns(7) = Iy (7)Ns(an)| = lim psn|ly (8,)Ns(y) — Iy (7)Ns(Bn)]-

The proof is complete.
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4.5. An embedding of h 7.7(¥) into R*. Let ¥ = II; UII, UII3 be the
set given at the beginning of this section, and let ¢: € — R? be defined by

(7“1,7“2) if (7“1,7“2,7“3) e II; UIls,
SO(ThTQ’TS): {(Tl,—’r‘g) if (7”1,’)“2,7‘3) EHg.
It is easy to see that (ri,re,73) € (II; UIly) N1II5 if and only if ro = 0. This
implies that ¢ is continuous on % . Moreover, ¢ is injective as proved below.
Let (7“1, T, 7‘3) and (tl,tg,tg) be two pOiIltS of (g, (p(T‘l,Tg,Tg) = go(tl,tg,tg) .
By the definition, we have r; = t;. Also, we see easily that ro = 0 if and only
if to = 0. If 7o = 0, then (ry,ro,73), (t1,t2,t3) € I3, and thus (r1,7r2,7r3) =
(t1,ta,t3). Assume that rote # 0, i.e. 79 > 0 and to > 0. Then either
(7’1,7”2):@(7’1,7’2,7’3) :§0<t1,t2,t3) :(tl,tg), or
(r1, —=r2) = @(r1,m2,73) = @(t1, 12, t3) = (t1, —t2),
and thus (r1,7r2,7r3) = (t1,t2,t3). Therefore, ¢ is injective.
By the definition of II;, II; and II3, we obtain the inverse of ¢ immediately
given by ¢~ 1(t1,ta) = (t1, |tal, [t1 — ta]) for all (¢1,t2) € ©(¥).
Since 71 + ro + r4 + 15 > 0 whenever (ry,rq,r3,r4,75,7¢) € A, then the
function ¥3: A — R* defined by

¢(r1,72,73) ©(r4,75,76) )
ri4re+ratrs vy +re+rs+0s
is continuous on A. We shall prove that 3 is injective.

Let (r1,79,73,74,75,76) and (t1,to,t3,t4,t5,ts) be any two points of A with

¢3(r17 r2,73,7T4,T5, TG) = ¢3(t1; t27 t37 t4, t57 t6)

Y3(r1,72,73,74,75,76) = (

Write

p(r1,m2,73) = (r],75),

p(ra,5,76) = (1}, 75),

o(t1,t2,t3) = (t1,t5) and

p(ta,ts,t6) = (t4,15).
Then r; =7} and t; =t; for j =1,4; r; = |ri| and t; = [t}| for j = 2,5;

ry=|ry —rol, re=|ry—ril, ta =t —t5], te= |ty —15|.

Let

_ritratratrs v g+ +
th+tat+ta+1ts )+t )+t
By assumption, 1} = pt; for j =1,2,4,5. Since ijl r = Z? 1 t; =1, then

L=r1+ |ra| + [y = ol + 7y + [r5] + |ry — 7]
= p{th + [ta] + [t — ta| + 4 + |t5] + [t3 — 151} = p.
Therefore, (7“1, r2,T3,7T4,75, 7“6) = (tl, tQ, t3, t4, t5, t6) .
From Theorem 4.3 together with the above discussion, we have shown the
following theorem.
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Theorem 4.4. The composition ® of ¥ followed by 13 is a homeomorphism

of m.%(¥4) onto a 3-sphere lying in R*. Moreover,

O(a) = (Ix(a), NT(a), Iy(a), NS(a)) for all « € 9.7,

ola) " ola)  ola)’ ola)
where o(a) = Ix(a) + |[Np(a)| + Iy (a) + |[Ns(@)|.

5. Words for geodesics in 4 and their traces

In this section, we consider the Maskit embedding .#5 of the Teichmiiller
space of Y5, which is a family of regular B-groups G(u,v) parametrized by
complex numbers p and v. Each G(u,v) representing a five-punctured sphere
and three thrice-punctured spheres. The regular set Q(u,v) of G(u,v) has a
unique simply connected component Q¢(u,r) invariant under G(u,v) such that
Qo(p,v)/G(p,v) is a five-punctured sphere. Every geodesic v € & corresponds
to a cyclic semi-reduced I'-word W (vy; u,v) in G(u,v). The trace tr W (vy; u,v) is
a polynomial in p and v. The main work of this section is to compute the high
order terms of the trace polynomials tr W (+; u,v). This section is a part of the
author’s Ph.D. thesis [3].

5.1. Cyclic semi-reduced I'-words for geodesics in 4 . In this subsec-
tion, we shall give a complete description of cyclic semi-reduced I'-words repre-
senting geodesics in ¢ . Furthermore, we shall write them in exactly two canonical
forms. This reduces the difficulty of computing the high-order terms of the trace
polynomials tr W (~; u,v).

From Proposition 2.7 and [4, Theorem 3.2], we have

Theorem 5.1. Let v € G . If Iy (v) = 0, then ~ is represented by a cyclic
semi-reduced I'-word of the form

ﬁ TTi X< T 5%,

=1

where d;,w; € {1,—1}, m = Ix(y) = Is(v), and r; and t; are integers satisfying
the following conditions:

(i) =1 < (r; +t;)w; <0 and —1 < (rj31 +t;)0; <0, where 111 =71

(ii) |ri|, |t:| € {r,r + 1}, where r = min{|r;|, |t;| : i =1,...,m}.

(iii) ; > 0, t; <0 whenever v € 9; , and r; <0, t; > 0 whenever y € 9. .

(iv) Yot (ri —t;) = Nr(v).

By considering the function ©5, we have
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Corollary 5.2. Let v € G . If Ix(v) =0, then ~ is represented by a cyclic
semi-reduced I'-word of the form
n
H SPiy€i SQiT(Si’
i=1
where 6;,¢; € {1,—1}, n=Iy(y) = Ir(vy), and p; and q; are integers satisfying
the following conditions:
(i) =1 < (pi+qi)e; <0 and —1 < (piy1 + ¢;)9; < 0, where ppy1 =p1.
(i) |pil,la;| € {p,p + 1}, where p = min{[p;|,|g;[ : i =1,...,n}.
(iii) p; <0, ¢; > 0 whenever v € 95, and p; > 0, ¢; <0 whenever v € 95 .

(iv) D231 (a —pi) = Ns(7)-

In the following, we assume that v € ¢ with Ix (7)Iy () > 0. From Propo-
sition 2.1, we may assume that v € ¢J with Ix(y) > Iy(v). Let Iy(y) = n.
Then ~ is represented by a cyclic semi-reduced I'-word W of the form

W =[] s yesew;,
i=1

where ¢; = £1, where p; > 0 and ¢; > 0 are integers, and where each W, is a
semi-reduced I'-word as given in equation (5). Since

FEW) =[] s tyesetiwg,

=1

by considering the geodesic .7;%2(y) we may assume that p; > 0 and ¢; > 0 for
all 7.

Now, we shall determine the subwords W;. Note that each W, is always
followed by S—! since p;y1 > 0 for each i, where p,,1 = p;. Consider the

admissible subarc v; represented by the reduced word W, = §WZ-S —1. Note that

Ix(vi) =Ix-1(v) >0, Iy(vi)=1Iy-1(y)=0 and Ig-1(y) =2+ Is(y),

for every 7, and that
Ix(y) =) Ix(%).
i=1

To simplify notation, for every fixed ¢ we write a = m; and write
W, =SE, - E,S™ L.

Let [ be the strand of v; joining the S~!-side to the E;-side, and let I’ be the
strand of «; joining the E; !-side to the S~!-side. Let Py and P} be the endpoints
of [ and I’ on the S~!-side respectively, and let Qg be the point on the S-side

such that Qo = S(F).
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Claim. If P is the endpoint of a strand of ~; on the S~!-side, and if P # P,
and P # Py, then P < Py and P < F}.

Proof of the claim. Note that such a point P exists only when Ig-1(7;) > 2.
Let @ = S(P). Then @ is an endpoint of a strand L of 7; connecting the S-side
to the E-side for some E € {X*1 T%1},

If Py < P, then Qg < Q. By the definition of W, and that of Q¢, the point
Qo is an endpoint of a strand Lo of « connecting the S-side and the E’-side with
E' € {S~!,Y*!}. This implies that Lo intersects L. This is impossible since y
is simple. Hence, P < Py. Similarly, P < P}. The proof of the claim is complete.

Figure 8.

Let P, < --- < P; be all the points where the lift of 7; to 2 meets the S~!-
side, where k = Ig-1(7;) > 2. From the above claim, we have { Py, P,} = { Py, P}}.

Let I; be the strand of ~; with P; an endpoint, and let A; be the other
endpoint of /;. Note that A; lies on the E-side for some E € {X*1 T*!}. Let
Q2 = S(Py). Since Iy (v;) = Iy-1(7;) = 0, there is a simple arc [ C 2 joining Qs
to A; which is disjoint from all strands of 7; except possibly I; (see Figure 8).

Let v; be the curve on Y5 obtained from ~; by replacing I, by l. Clearly,
4; is a simple loop in & with Iy (9;) =0 and Ix(7;) = Ix(vi).

By Theorem 5.1, the free homotopy class [¥;] is represented by a cyclic semi-
reduced I'-word WZ of the form

m;
/I/TZ- = H Tris X @i Ttii §%
j=1
where m, = Ix([%]) = Ix(vi), and 74, ti;, wi; and 0;; are integers satisfying
the conditions given in Theorem 5.1.
Let 4; be oriented so that the initial point of the projection of [ to X5 is the
projection of A;, and the terminal point is the projection of Q2. We write W; so
that W; represents the oriented closed curve %;. Then (5Z»m2 =1, and

Wi =8 (H T X i Tt s%) s

Jj=1
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where §; , =0 and ¢;; € {1,—1} for 1 <j <m}, and thus

’
m;

(7) W = H STPiy*€i §ai (H TTis X Wis Ttis 551j> .
i=1 j=1

Theorem 5.3. Let v € 4 with m = Ix(y) >0 and n = Iy(y) > 0.
(A) If m > n, then = is represented by a cyclic semi-reduced I"-word W (~y)
of the form

n my
W(’}/) — H SPiy€i 94 (H TT’inwijth‘j S&'j) ,
i=1 j=1
where ¢;,w;; € {1,—1}, m; >0, and p;, ¢;, 7i;, ti; and &;; are integers satisfying
the following conditions:
(i) Doi mi =m.
(ii) For 1 <i<mn, 0im, =0, and if m; > 1, then |0;;| =1 for 1 < j <m,.
(iii) For 1 <i <m,

1< (pi+aq)e <0 and |pil,|al € {p,p+ 1},

where p = min{|p;|,|qi| : 1 < ¢ < n}. Moreover, p; <0, ¢; > 0 for all i when
ye€¥YS, and p; >0, q; <0 for all ¢ when v € 95 .
(iv) For 1 <i<n and 1 <j <m;,,

1< (Tij -I—tij)wij <0 and |T’ij|, |tij| € {T’,?“ + 1},

where r = min{|r;;|, [t;;| : 1 <i < n,1 <j < m;}. Moreover, r;; <0, t;j >0
when v € 95, and r;; >0, t;; <0 when v € 9.

(v) Ns(v) = 3221(¢ — pi) and Np(y) = 3000, 3050 (rij — i)

(B) If n > m, then + is represented by a cyclic semi-reduced I'-word W (~)
of the form

m Lz
W(,Y) — H Tri X Wit (H SPiiy€ii §Yis T(Sij)’
i=1 j=1
where €;;, w; € {1,—1}, n; >0, and r;, t;, pij, q;; and d;; are integers satisfying

the following conditions:

() 2y =mn.
(ii) For 1 <i<m, 6;n, =0, and if n; > 1, then 6;; = £1 for 1 < j <n;.
(iii) For 1 <i<m,

—1<(ri+t)w; <0 and |r,|t;| € {r,r+ 1},

where r = min{|r;|, [t;| : 1 < i < m}. Moreover, r; <0, t; > 0 for all i when
vy€Y,,and r; >0, t; <0 for all ¢ when v € 9.
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(iv) For 1 <i<m and 1 < j <n;,,
—1 < (pij + @ij)ei; <0 and |pij|,|q;| € {p,p + 1},

where p = min{|p;;|, |gi;| : 1 < i <m, 1 <j <n;}. Moreover, p;; <0, ¢;; >0
when v € 93, and p;; >0, ¢;; <0 when v € 95 .
(v) Np(y) =322 (ri —ti) and Ns(v) = 3300, D701 (gij — Pij) -

Remark 5.1. If Ix(y) = Iy (y) = n, then

W(y) =[] SryeseTr X=iTh.

=1

Proof of Theorem 5.3. From Propositions 2.1 and 2.3, the assertion (B) will
follow from (A) by considering the geodesic ©2(). Thus, we shall assume that
m > n. On the other hand, since Ig(01(7)) = Ig(y) for E € {X,Y}, we may
assume that v € 44 .

Let W be a cyclic semi-reduced I'-word representing . Then 7;%(W) is of
the form as given in equation (7):

%2(W) = H SPiy€i G4 (H TTii X @i Ttij S(Sij)
=1 j=1
with p; > 0 and ¢; > 0 for all 7, and thus

W = ﬁ §PiyeEi g4 (ﬁ Tris X wis Ttis 55”),

i=1 j=1

where p, =p;—1>0and ¢=¢;—1>0fori=1,...,n.
It follows from Proposition 2.7 that

Ns() =S (6~ p)) and Nr(1) =33 gy — tiy).
i=1 i=1j=1

This proves condition (v).
It remains to prove that if 7 is represented by the word W given in (A), then

(i) |pil, @il € {p,p+1} for 1 <i<m, and
(iv)" |rijl, [tij] € {r,r+1} for 1 <i<nand 1 <j<m,,

where

p=min{|p;|,[¢;| : 1 <i<n} and r=min{|ry|,|t;]:1<i<n, 1 <j7<m;}.
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Note that the other conditions follow from Lemma 2.6.

We shall prove condition (iii)’. Condition (iv)’ will follow by a similar ar-
gument. By applying a cyclic permutation to the word W, we may assume that
p = min{|p1],|q1|}. By considering W~! we may assume that e; = 1.

Without loss of generality, we assume that v € 42, and write

szzIISmx“a9h<[11#wx#%1ﬁws&{>, pisqi > 0 for all 4.
i=1 j=1

Since q1 —p1 = (@1 — p1)e1 <0, then p=¢q;.
There is nothing to prove if n = 1. Assume that n > 1. Suppose that there
is an ip > 1 such that max{p;,,q,} >p+1.

%*QP(W) — H §—PiyEi G4 (H TTii X wii Ttis 351’;')7

i=1 j=1

where p, =p; —p and ¢, = ¢; —p for all i.

Let v/ = 91_2]9(7). Since ¢ = ¢1 — p = 0, then ~' has a strand join-
ing the Y ~!-side to the E-side for some E € {X* T*}. On the other hand,
max{p; ,q } > 1, then 4 has a strand joining the S-side to the S~'-side. This
is impossible! The proof is complete.

5.2. Trace polynomials. In what follows, let G be the subgroup of
PSL(2,C) generated by the following four parabolic transformations:

10 1 4
=) =)

(144 16 (144 4
X‘( 1 1-@) and Y‘( 4 1-@)'

By using Maskit’s first combination theorem ([8, Theorem VII.C.2]), one can prove
that G is a regular B-group representing a five-punctured sphere and three thrice
punctured spheres. The regular set of G has a simply connected component {2
invariant under G such that y/G = 5. Such a Kleinian group G will be called
a Maskit five-punctured group.

There is a connected and simply connected fundamental domain ¥ for G act-
ing on Qg (see Figure 9) with I' = {S*! T+ X*1 Y+1} the set of side pairings.
The domain ¥ may be schematically drawed as in Figure 1 with sides labelled as
before. Thus every geodesic in ¢ is represented by a cyclic semi-reduced I'-word
given in Theorem 5.1, Corollary 5.2 or Theorem 5.3.

Now, we consider the quasiconformal conjugates of G'. Let f be a quasiconfor-
mal automorphism of C such that fGf~! is a Kleinian group. If f is normalized
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—2+ 41 43 2+ 40

.2

—2 0 2

Figure 9. The fundamental domain 2.

to fix 0,1 and oo, then fGf~! is the subgroup of PSL(2, C) generated by S, T,
X, and Y, , where

(1+p —p? (1+2v 4
X“_( 1 1op) W=y,

with complex numbers p and v satisfying |u| > 1, [v] > 1 and [pw +2| > 1.
For any two non-zero complex numbers p and v, let G(u, ) be the subgroup
of PSL(2,C) generated by S, T, X, and Y,. We refer to the set .#5 of all
(u,v) € C? with Imp > 0 and Imv > 0 such that G(u,v) is a Maskit five-
punctured group as the Maskit embedding of the Teichmiiller space of 5.
For every (u,v) € M5, let py,.): G — G(u,v) be the isomorphism defined
by

p(,u,l/)(s) = Sa Pu,v) (T) =T, p(,u,l/)(X) = XM and p(,u,u)(Y) =Y,

For every ~ € 2 , let W(v) € G be a cyclic semi-reduced I'-word representing ~,
and let W (7y; g, v) = p(u.) (W (7)) . Write the trace polynomial tr W (v; u,v) as

F(yip,v) = tr W(y; p,v) = arp" v + aop” v + asp"v* ™" + O(r + s — 2),
where a; # 0, as and ag are integers, and where O(r + s — 2) is a polynomial in

p and v of degree < r+s—2. We call a;pu"v® + asp” v 4+ asu v~ the high
order terms of F(v;u,v).
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If Iy (v) =0 and Ix(y) =m > 0, then from [4, Theorem 3.4] we have
(8) Fly: i v) = {52 + ANp (7)™ 1} + 0(2~2),

where O(u?™~2) is a polynomial in p of degree < 2m — 2.
If Ix(y) =0 and Iy(y) = n > 0, then from Lemma 5.4(ii) given below we
have

(9) F(y;p,v) = 241" + 2Ns(7)r*" 1} + O (v 72),

where O(v?"~?) is a polynomial in v of degree < 2n — 2.

Lemma 5.4. If v € 4 with Ix(y) =m and Iy(vy) =n, then
(i) F(01(7); u,v) = F(v; —p, —v),

(ii) F(O2(y);u,v) = Fv; —2v, =),

(it)) F(AM)pv) = (1)"F(r v + 1),

(iv) F(A ()i mv) = (=1)"F(y; pv = 1),

(v) F(Z ( ) V) = (=1)"F(y;p —2,v), and

(vi) F(Z5 ' (0)spov) = (=)™ F(y; p+2,v).

Proof. Let

i 0 0 -2
Cl_(o —i) and 02_(1/% 0 )

and let x;(A) = C’jAC’j_l for all A € PSL(2,C). Set p; = x;0;. A direct

computation gives

pJ(S) S, p](T) =T, pl(X ):X* )
p1(Y)) =Y o, po(Xu)=X_0,, p2Y)=Y_p)0.

By a similar argument as that in the proof of Lemma 3.3 of [4], the assertions (i)
and (ii) will follow.
Since the transformations S, T" and X, are invariant under .7;, and since
Z(YV)=Y18=-Y,;; and Z'(Y,)=SY'=-Y, ,,
then (iii) and (iv) are valid. From (ii) and (iii), we have
F(%(); 1 v) = F(02710:2(7); v, 1) = F(F10a(7); —2v, — 1)
— (~)™ (O) p(On(7); —20,— 2+ 1) = ()" F(y; - 2,0).

This proves (v). Similarly, the equation given in (vi) will follow from (ii) and (iv).
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In the rest of this section, we shall compute the high-order terms of F(~; i, v)
for v € 4 with Ix(y)Iy(y) > 0.

Let Ix(y) = m and Iy(y) = n. Assume that m > n, and that v € 9.
Then + is represented by a cyclic semi-reduced I'-word given below:

W = f[ SPiYEi S(Ii <ﬁ T—Tij X Wij Ttij Séij> ,
=1 j=1

where r;;,t;; > 0. Note that

Ne() = =30 () and Ns() = 3 (e~ o)

i=1 j=1
For integers » > 0, t > 0, p and ¢, and for w,d,e € {1,—1}, we have:

T xwt — (wu +1—4rw  —wp? 4+ 4(r + t)wp + const. )

w —wp + 1+ 4tw
GPye g — 2ev + 1+ 4eq de
~ \ —ev? +2e(p—q)v+const. —2ev+1+4ep )’
T_TXthS(S —

( —wop? + (1 +4(r + t)6)wp + const.  —wpu? + 4(r + t)wpu + const. )

—wd i + const. —wp + 1+ 4tw
For i=1,...,n,let &, = w;; when m; =1, let
m; m;—1 m;
fi = (H wij> ( H 51]) when m; > 1, )\z = 42(7“1']' -+ tij))
j=1 j=1 j=1
and let

W, = H T~ X Wi Ttis Séz‘j — (CCLZ(Mg bi(/v‘)) )

Jj=1

If m; =1, then

a;(p) = & (p + const.) = gi(/fmi—l 4+,
) = =& (p? — X+ const.) = =& (p®™ — \p®™imt 4,
(1) =& = &(p*™ 2 +--), and
) = —&(u + const.) = —&-(/ﬂmi_l + 0.
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By induction, one can show that for m; > 1

For every i =1,...,n, let
SpiysiSqui — ((?i(/J,V) b,j(l”” V) )
Ci ’
and for every n let

n

H SPi Y¢&i S WZ — (An(:u7 v
- K
=1

A direct computation gives:

dega; = 2m;, deg l;l =2m; + 1 = deggc;, degczi =2m; + 2

and

di(p,v) = (1) e (VP = NPT+ 2(gs — pa vt -

By applying induction to n, we have

deg Ay (p,v) =2(n— 1) +2) my,
=1

deg By, (p,v) =2n—1+ ZZmZ- =deg Cy, (1, v),
i=1

deg D, (p,v) = 2n + QZmi,

and the high-order terms of D,,(u,v) are determined by

n n
H di(p,v) = | J(=D)™ e (™ = N+ 2(q — pivp®™ 4 ).
1=1 1=1

Since F'(v; p,v) = An(pt,v) + Dn(p,v) and deg A, (p,v) < deg Dy (pt,v) —

the high-order terms of F(v;u,v) are determined by D,,(u,v).

1, then
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For any two polynomials

Flu,v) = arp've + agp” v +agp" v 4 -

g(/% V) = bl,ur/VS/ + bQ/LTI*lysl —+ b3lu7ﬂ/y8/71 o

and

the high-order terms of the polynomial f(u,v)g(u,v) is
alblur—i—rlys—i—s/ + (a1b2 T ale)Mr—i—r/—lys—i—s/ + (albg T agbl)'ur—l—’r’/ Vs—l—s’—l.

Thus, we have

F(y;p,v) = i{v2nu2m - (Z /\i) v+ 2 (Z(Qi - p¢)>u2mv2"_1 +-- }
i=1

=1
:i{pzmy2”+4NT(~y)u2m_1y2”—|—2N5(fy M2my2n—1_|__”}.

From Proposition 2.1 and Lemma 5.4, the above equations are also valid for
v € 9) with Ix(v) > Iy (7).

If n = Iy(y) > Ix(y) = m, then, by Proposition 2.1 and Lemma 5.4 again,
we have

F(vy; p,v) = F(02(7); —2v, —1p)
— n—myf 2m.2n 2m—1, 2n 2m. 2n—1
= 4" PP + ANp ()t T P 4+ 2N ()P T b

Summing up above discussion together with equations (8) and (9), we have
proved the following theorem.

Theorem 5.5 (trace formula). Let v € @G with Ix (v) =m and Iy(vy) =n.
If m > n, then

F(y; pyv) = £{p" v + ANp (7)™ 2" + 2Ng ()u*" ™" o)
If m <n, then

F(’}’;H,V) — i4n—m{u2my2n +4NT<7)H2m_1l/2n + QNS(’}/),LLszQn_l 4. }
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