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Abstract. It is proved that the Julia set of a rational function on the Riemann sphere
whose critical points contained in the Julia set are non-recurrent (but parabolic periodic points
are allowed) is porous. Next, new classes of rational functions: parabolic Collet–Eckmann and
topological parabolic Collet–Eckmann are introduced and mean porosity of Julia sets for functions
in these classes is proved. This implies that the upper box-counting dimension of the Julia set is
less than 2 .

1. Introduction

A bounded subset X of a Euclidean space (or Riemann sphere) is said to
be porous if there exists a positive constant c > 0 such that each open ball B
centered at a point of X and of an arbitrary radius 0 < r ≤ 1 contains an open
ball of radius cr disjoint from X .

If only balls B centered at a fixed point x ∈ X are discussed above, X is
called porous at x .

X as above is said to be mean porous if there exist P, c > 0 such that for
every x ∈ X there exists an increasing sequence of integers nj and a sequence of
points xj such that nj ≤ Pj , dist(x, xj) ≤ 2−nj and B(xj , c2

−nj ) ∩X = ∅ .
In this paper we deal with f : C → C, a rational function of the Riemann

sphere of degree ≥ 2. In Section 3 we consider functions whose all critical points
contained in the Julia set are non-recurrent. Recall that a point is non-recurrent
if it is not a member of its ω -limit set. We call all the maps defined above NCP
maps (abbreviation for non-recurrent critical points). We prove the following.

Theorem 1.1. The Julia set of each NCP map, if different from C, is
porous.
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In Section 4 we introduce two classes of rational functions: parabolic Collet–
Eckmann maps (abbreviated by PCE) and topological parabolic Collet–Eckmann
maps (abbreviated by TPCE). Recall from [P1] that f is called Collet–Eckmann
(abbreviated by CE) if there exist λ > 1, C > 0 such that for every f -critical
point c ∈ J(f) whose forward trajectory does not contain any other critical point
and every positive integer n

(1.1) |(fn)′
(
f(c)

)
| ≥ Cλn.

This notion was introduced for the first time for unimodal maps of an interval in
[CE1] and [CE2].

In presence of parabolic points a weaker definition seems appropriate. Instead
of n at the right-hand side of (1.1) we put smaller integers, which we call rescaled
times. Namely when the forward trajectory of c passes close to parabolic points,
instead of iterating by f we iterate by fa1 , fa2 , . . . so that the derivatives |(fai)′|
are about 2. Analogously with the use of the rescaled time we generalize from
[P3] and [PR2] the notion of topological Collet–Eckmann maps to TPCE maps.
This class is larger than NCP. We prove the following

Theorem 1.2. The Julia set of each PCE or TPCE map, if different from
C, is mean porous.

As an immediate consequence of this result we get, due to [KR], the following.

Corollary 1.3. The upper box-counting dimension of the Julia set of each
NCP , PCE or TPCE map is less than 2 (BD

(
J(f)

)
< 2).

The notions of porosity and mean porosity have appeared in several contexts
and for a short survey and some bibliographical references the reader may see the
paper [KR]. Koskela’s and Rohde’s theorem implying Corollary 1.3 says that if
X is mean porous then BD(X) < 2. In fact, instead of referring to [KR], we
could prove the so-called box mean porosity as in [PR1] and then refer to the easy
theorem saying that the box mean porosity of X implies that BD(X) < 2, whose
simple proof (by Michal Rams) was provided in [PR1].

For rational functions expanding on a Julia set the proof of porosity is easy (it
was folklore since a long time). Just pull-back large scale holes to all small scales
by iteration of inverse branches of f . For NCP maps without parabolic periodic
points the proof is similar. One pulls back large disks, meeting critical points only
finite number of times (bounded by the number of critical points in J(f)), hence
resulting small disks are boundedly distorted. The same goes through for CE maps,
for every z ∈ J(f) . Namely for a positive lower density set of positive good integers
n one can pull a large disk B with the origin at fn(z) back to a neighbourhood
of z , meeting critical points only uniformly bounded number of times (the bound
depending only on f ). This is called the topological Collet–Eckmann property



Porosity of Julia sets 127

(abbreviated by TCE). Therefore, for every z ∈ J(f) , in most scales around z ,
one finds boundedly distorted holes that yield mean porosity [PR1].

In presence of parabolic periodic points but in absence of critical points in
J(f) porosity was proved by Lucas Geyer [G]. The idea was to use additionally
porosity at points close to parabolic ω in scales comparable to the distance from
ω , true since the Julia set close to ω is confined in cusp-like channels.

Here, in Section 3 we prove Theorem 1.1 combining this idea with finite crit-
icality while pulling back, as for non-parabolic NCP.

In Section 4 we introduce PCE and TPCE properties and prove that TPCE
is topologically invariant.

In Section 5 we apply the ideas of Section 3 to prove Theorem 1.2. The
hardest point is to prove that PCE implies TPCE; the latter is a version of TCE
in presence of parabolic points, with good integers considered with respect to the
rescaled time.

Some technical difficulties appear. We need to improve the estimate of an av-
erage distance of any trajectory from critical points from [DPU], applied in [PR1].
This is done in Appendix A. We need also to prove that diameters of components
of preimages under iterates of f of any small disk are uniformly small (backward
Lyapunov stability) to know that the rescaled times along blocks of a trajectory
and shadowing critical trajectory coincide. This was sketched in [P1] in the non-
parabolic case under so called summability condition, weaker than CE. Here we
provide a precise proof, in Appendix B.

Rational PCE functions and TPCE functions are introduced here for the first
time. Similarly to TCE the TPCE property is topologically invariant. In Section 6
we continue sketching a theory analogous to the theory of CE and TCE in [PR1],
[PR2] and [P3].

Historical remarks on dimension. The class of NCP maps forms a joint ex-
tension of parabolic and semihyperbolic maps (the former without critical points
in J(f) , the latter without parabolic points). For parabolic maps Corollary 1.3
follows from the results obtained in [ADU] and [DU]. It has been mentioned in
[U1] that the Hausdorff dimension of the Julia set of each NCP map is less than
2 and in [U2] some number of sufficient conditions was provided for the Haus-
dorff dimension and the upper box-counting dimension of the Julia set of an NCP
map to coincide. This therefore gave a partial contribution towards the inequality
BD

(
J(f)

)
< 2 (denote it by (∗)) for NCP maps. (∗) was proved for CE maps

with only one critical point in the Julia set in [P1] and [P2]. This was the first
class of rational maps containing reccurrent critical points, for which this property
was verified. The proofs used ergodic theory. Later, as we already mentioned, (∗)
was proved in [PR1] for all CE maps, without using ergodic theory.

Independently a different class was provided by C. McMullen [McM]. A large
class of maps satisfying (∗), including CE, was provided recently by J. Graczyk
and S. Smirnov [GS2].
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2. Preliminaries on distortion, parabolic points
and non-recurrent dynamics

If h: D → C is an analytic map, z ∈ C, and r > 0, then by Comp(z, h, r)
we denote the connected component of h−1

(
B(h(z), r)

)
that contains z . Fix now

f : C → C, a rational function. Denote by Ω, or Ω(f) , the set of all periodic
parabolic points for f , where ω ∈ J(f) is called parabolic if there exists q ≥ 1
such that f q(ω) = ω and (f q)′(ω) = 1. Passing to a sufficiently high iterate does
not change the Julia set, so we may assume that for every ω ∈ Ω, f(ω) = ω and
f ′(ω) = 1. Assume that the spherical metric on C is scaled so that diam( C) = 1.
All diameters and absolute values of derivatives are considered with respect to this
spherical metric. However, we assume that Ω ⊂ C and close to Ω we use the
euclidean distance |x− y| .

Fix for the rest of the paper a number δ > 0 so small that for each ω ∈ Ω,
B(ω, 2δ)∩Crit(f) = ∅ (where by Crit(f) we denote the set of all f -critical points,
i.e., points where f ′ = 0), f τ

(
B(ω1, δ)

)
∩B(ω2, δ) = ∅ for ω1 6= ω2 and τ = 0, 1,

f |B(ω,δ) is injective and |f ′| |B(ω,δ) < 2. We also require δ > 0 to be so small
that there exists a unique holomorphic inverse branch f−1

ω : B(ω, 2δ) → C of f
mapping ω to ω . This inverse branch is contracting when restricted to J(f) . We
may even require for an arbitrary 0 < σ < 1 that δ > 0 is so small that the
following is true (use Fatou coordinates to see this, [DH, Exposé IX, I2]).

Lemma 2.1. For every x ∈ B(ω, δ) ∩ J(f) and every n > 0 there exists
the inverse branch f−nω : B = B(x, σ|x− ω|)→ B(ω, 2δ) . Moreover, (fω)−n(B) ⊂
B
(
f−nω (x), σ|f−nω (x)− ω|

)
.

Other restrictions on δ will appear in the course of the paper. By the Fatou
flower theorem and the classification theorem of connected components of the
Fatou set, we may find also Constδ < θ < 1

2δ such that for all x ∈ J(f) \B(ω, δ) ,
the ball B(x, θ) is disjoint from the forward orbit of all critical points contained
in the Fatou set.

Finally, we assume θ = θ(f) to be small enough to satisfy the following.

Lemma 2.2. For every NCP function f there exist θ > 0 and M ≥ 0
such that for every x ∈ J(f)\B(Ω, δ) every integer n ≥ 0 , every component V of
f−n

(
B(x, θ)

)
is simply connected and the restriction fn|V has at most M critical

points (counted with multiplicities).

Proof. This lemma follows from [Ma, Theorem II]. See also [CJY, Theo-
rem 2.1] or [U1, Lemma 2.12 and Lemma 5.1]. A crucial step in the proof of
Lemma 2.2 is that given an arbitrary ε > 0 there exists θ so that the diameters
of all the above components are less than ε . The latter property is called ([Le])
backward Lyapunov stability.
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Remark 2.3. If θ is small enough the assertion of Lemma 2.2 holds also
for x ∈ B(ω, δ) if V is any component of f−(n−1)(W ) for W any component of
f−1

(
B(x, θ)

)
different from f−1

ω

(
B(x, θ)

)
.

In the sequel we shall apply this to B as in Lemma 2.1 so we assume that σ
is small enough to satisfy 2σδ ≤ θ . Assume moreover (needed later at one place):
σδ‖f ′‖ ≤ θ , where ‖f ′‖ := supz∈C |f ′(z)| .

A step in proving Lemma 2.2 is the following lemma by Ricardo Mañé [Ma]
(see also [P1, Lemma 1.1]) true for any rational function f .

Lemma 2.4. For every integer M ≥ 0 and 0 < r < 1 the following holds:
1. For every ε > 0 there exists θ > 0 such that for every x ∈ J(f) \B(Ω, δ) ,

every integer n ≥ 0 and every component V of f−n
(
B(x, θ)

)
such that the

restriction fn|V has at most M critical points (counted with multiplicities), for
every component V ′ of f−n

(
B(x, rθ)

)
one has diam(V ′) ≤ ε .

2. diam(V ′)→ 0 for n→∞ uniformly (i.e., independently of x and V ′ ).

The following result is a part of the “bounded distortion” lemma that has
been proved in [P1, Lemma 1.4] and [PR1, Lemma 2.1].

Lemma 2.5. For each ε > 0 and D < ∞ there are constants C1 and C2

such that the following holds for all rational maps F : C → C, all x ∈ C, all
1
2 ≤ r < 1 and all 0 < γ ≤ 1

2 :
Assume that V (or V ′ ) is a simply connected component of F−1

(
B(x, γ)

)

(or F−1
(
B(x, rγ)

)
) with V ⊃ V ′ . Assume further that C \ V has diameter at

least ε and F has at most D critical points (counted with multiplicities) in V .
Then

(a) |F ′(y)|diam(V ′) ≤ C1(1− r)−C2γ

for all y ∈ V ′ . Furthermore, if r = 1
2 and 0 < τ < 1

2 , let B′′ = B(z, τγ) be any
disk contained in B(x, 1

2γ) and let V ′′ be a component of F−1(B′′) contained
in V ′ . Then

(b) diam(V ′′) ≤ C3 diam(V ′)

with C3 = C3(τ, ε,D) and limτ→0 C3(τ, ε,D) = 0 , and

(c) V ′′ contains a disk of radius ≥ C4 diam(V ′)

around every preimage of F−1(z) contained in V ′′ . Here C4 = C4(τ, ε,D) > 0 .

In Section 3, to consider NCP maps, we will only need part (c) of this lemma,
(a) and (b) will be needed in Section 4. In applications we will skip the dependence
of constants on ε .
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Figure 1. A “flower” for “rabbit”, f(z) = z2 − 0.12 + 0.66i .

The last fact stated in this section follows for points x close to Ω from the
Fatou flower theorem, J(f) confined in cusp-like sectors, see Figure 1.

Lemma 2.6. If Ω 6= ∅ then for every % > 0 there exists c = c(%) > 0 such
that for each x ∈ J(f) and each r , %dist(x,Ω) ≤ r ≤ 1 , there exists an open ball
B ⊂ B(x, r) \ J(f) with radius cr .

3. The proof of Theorem 1.1

Fix z ∈ J(f) and define

T (z) = {n ≥ 0 : fn(z) /∈ B(Ω, δ)}

and
S(z) = {n ≥ 0 : n− 1 ∈ T (z) if n > 0 and fn(z) ∈ B(Ω, δ)}.

Given m ∈ S(z) we find a unique ω ∈ Ω such that fm(z) ∈ B(ω, δ) and then we
define

Rm(z) = {k ≥ 0 : 2−kθ > σ|fm(z)− ω|}
and

Sm(z) =
{
n ≥ m : n < min{T (z) \ [0,m− 1]}

}
.

We first equip all the sets T (z) , Rm(z) and Sm(z) , m ∈ S(z) , with the natural
order inherited from the set of non-negative integers and then we further order the
disjoint union

W (z) = T (z)
⊕ ⊕

m∈S(z)

(
Rm

⊕
Sm

)

by declaring that for each m ∈ S(z) the element m − 1 of T (z) precedes all the
elements of Rm , the last element of Rm (if it exists, i.e., if fm(z) /∈ Ω) precedes
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the first element of Sm and the last element of Sm precedes the first element of
T (z)\[0,m−1] . In this way we have equipped W (z) with a linear order isomorphic
to the natural order of positive integers. For each t ∈ W (z) we write n(t) := n

if t ∈ R̃n(z) , or S̃m(z) or T̃(z) if t = t(n) , n ∈ Sm(z) or T (z) , and k(t) := k if

t ∈R̃n(z) . Here the tilde means the appropriate set is considered as embedded by

t in W (z) . We set k(t) = 0 for t /∈ R̃n . Note that if for m ∈ S(z) , fm(z) ∈ Ω,

then Rm(z) is infinite and there are no elements of W (z) after R̃m . We do not
treat t ’s as integers here, we need only the order in W (z) . See Figure 2.

R
~

m

Sm
~

.
.

t

t

k(t)

T(z)
~

.
m   S(z)∋

.
Figure 2. Order t and coordinates k, n in W (z) .

Now, to each t ∈W (z) we ascribe a number r(z, t) > 0 as follows.

(a) r(z, t) = diam
(
Comp(z, fn(t), 1

2θ)
)

if t ∈ T̃(z) .

(b) r(z, t) = diam
(
Comp(z, fn(t), 2−(k(t)+1)θ)

)
if t ∈ R̃n(t)(z) .

(c) r(z, t) = diam
(
Comp(z, fn(t), 1

2σ|fn(t)(z) − ω|
)

if t ∈ S̃m(z) for some m ∈
S(z) .

Each of the connected components appearing in the definition of r(z, t) , with
1
2θ, 2

−(k+1)θ , 1
2σ in (a), (b), (c) respectively replaced by numbers twice larger,

will be denoted by Vt(z) .

Our next goal is to prove the following.

Lemma 3.2. There exists a constant C > 0 such that for all z ∈ J(f) and
all t ∈W (z)

r(z, t)

r(z, t)
≥ C,

where t is the successor of t in the order introduced in W (z) .

Proof. Suppose first that t ∈ T̃(z) . Then for n = n(t)

Comp
(
fn(z), f, 1

2θ
)
⊃ B

(
fn(z),

θ

2‖f ′‖

)
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and therefore it follows from Lemma 2.2 and Lemma 2.5(c) applied with γ = θ ,
τ = 1/(2‖f ′‖) and D = M that

r(z, t) ≥ diam

(
Comp

(
z, fn,

θ

2‖f ′‖

))

≥ C4

(
(2‖f ′‖)−1,M

)
diam

(
Comp

(
z, fn, 1

2θ
))

= C4

(
(2‖f ′‖)−1,M

)
r(z, t).

Suppose in turn that t ∈ R̃n(z) for some n ∈ S(z) . Then using Remark 2.3 and

Lemma 2.5(c) applied with γ = 2−kθ and τ = 1
2 , if also t ∈ R̃n(z) , we obtain

r(z, t) = diam
(
Comp

(
z, fn, 2−(k+2)θ

))

≥ C4( 1
2 ,M) diam

(
Comp(z, fn, 2−(k+1)θ)

)

= C4( 1
2 ,M)r(z, t).

If t ∈ S̃n(z) , then the first equality is replaced by the inequality ≥ .

Finally suppose that t ∈ S̃m(z) for some m ∈ S(z) . Then for n = n(t)

Comp

(
fn(z), f,

σ

2
|fn+1(z)− ω|

)
⊃ B

(
fn(z),

σ

2‖f ′‖ |f
n+1(z)− ω|

)

⊃ B
(
fn(z),

σ

2‖f ′‖ |f
n(z)− ω|

)
.

Hence, as σδ ≤ θ , using again Lemma 2.2 and Remark 2.3, it follows from
Lemma 2.5(c) applied with γ = σ|fn(z)− ω| and τ = 1/(2‖f ′‖) that

r(z, t) ≥ diam

(
Comp

(
z, fn,

σ

2‖f ′‖ |f
n(z)− ω|

))
≥ C4

(
(2‖f ′‖)−1,M

)
r(z, t).

provided t ∈ S̃m(z) . If t ∈ T̃(z) , we obtain the same inequality since θ ≥ σ‖f ′‖δ ≥
σ|fn+1(z)− ω| . So, the proof is complete by setting C = C4

(
(2‖f ′‖)−1,M

)
.

Since z ∈ J(f) and J(f) contains only non-recurrent critical points, it follows
from Lemma 2.2, Lemma 2.4 and from the local behaviour around parabolic points
that we obtain the following lemma.

Lemma 3.3. For every z ∈ J(f)

lim
t→∞

r(z, t) = 0.

Proof. If t→∞ implies n(t)→∞ then for t ∈ T̃(z) , i.e., fn(t)(z) /∈ B(Ω, δ) ,

we can use Lemma 2.2 and Lemma 2.4 with r = 1
2 . To cope with t ∈ S̃m we use
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Lemma 2.1 which allows to consider only s preceding t̄ ∈ R̃m , k(t̄) = 0, hence
refer to the previous case, since f s(z) /∈ B(Ω, δ) .

If n(t) 6→ ∞ , then fm(z) = ω ∈ Ω for some m = m(t) , so that t̄ ∈ R̃m for
all t̄ ≥ t . Then for t̄→∞ , k(t̄)→∞ . Hence

r(z, t̄) = diam Comp(z, fm, 2−(k(t̄)+1)θ)→ 0.

We now want to do the last step in the proof of Theorem 1.1. So, fix z ∈ J(f)
and consider an arbitrary radius 0 < r ≤ 1

2θ . Note that r(z, 0) = 1
2θ , where 0 is

the least element of W (z) . It follows from Lemma 3.3 that there exists a maximal
element t ∈W (z) such that r ≤ r(z, t) . Using Lemma 3.2 we then conclude that
for t̄ , the successor of t ,

r(z, t) < r ≤ r(z, t) ≤ C−1r(z, t).

Combining now Lemma 2.5(c), Lemma 2.2, Remark 2.3 and the definition of the
numbers r(z, t) we conclude that there exists a constant η > 0 independent of z
and t and a ball B ⊂ B

(
z, r(z, t)

)
\J(f) ⊂ B(z, r)\J(f) with radius ≥ ηr(z, t) ≥

ηCr . This ball is in the pullback of a ball existing by Lemma 2.6.
In the case Ω = ∅ , due to the assumption J(f) 6= C implying that J(f) is

closed nowhere dense, there exists c > 0 such that for each x ∈ J(f) there exists a
ball B ⊂ B(x, 1

2θ) \ J(f) with radius c . This remark plays the role of Lemma 2.6
for x far from Ω in the former case.

4. Parabolic Collet–Eckmann maps

The Collet–Eckmann property for rational maps was introduced in [P1] as
follows. There exist λ > 1, C > 0 such that for every f -critical point c ∈ J(f)
whose forward trajectory does not contain any other critical point (we call later
on such a critical point exposed) and every positive integer n

|(fn)′
(
f(c)

)
| ≥ Cλn.

In presence of parabolic periodic points we shall consider an adequate weaker
property: parabolic Collet–Eckmann. Let us first introduce an adequate rescaled
time. Consider an arbitrary z ∈ J(f) as in the previous sections. Suppose that
0 ≤ i < j are such integers that for all i ≤ τ ≤ j we have f τ (z) ∈ B(ω, δ) .
Suppose

(4.0) f(x) = x+ aω(x− ω)p+1 + · · ·

for aω 6= 0 and an integer p = pω ≥ 1, in a neighbourhood of ω . Then define

(4.1) n(i, j) = E
(
(p+ 1) log2(|f j(z)− ω|/|f i(z)− ω|)

)
+ 1,
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where E stands for Entier, i.e., E(x) is the least integer not exceeding x . We
have n(i, j) > 0 since ω is “weakly” repelling in the cusp-like sectors containing
J(f)∩B(ω, δ) , see Figure 1. It is rigorously visible in the Fatou coordinates [DH,
Exposé IX, I.2]. By the inequality |f ′| ≤ 3

2 in B(Ω, δ) true for every δ > 0 small
enough, we have on the other hand n(i, j) ≤ j − i . This is so since

(4.2)
2n(i,j) ≤ 2 · |f

j(z)− ω|p+1

|f i(z)− ω|p+1
∼ 2
|f j+1(z)− f j(z)|
|f i+1(z)− f i(z)|

∼ 2|(f j−i)′
(
f i(z)

)
| ≤ 2 ·

(3

2

)j−i
.

The similarity symbol ∼ means the equality up to a factor close to 1. The first
similarity follows directly from (4.0). The second similarity follows for example

from Koebe’s distortion lemma estimate for f
−(j−i)
ω on B

(
f j(z), σ|f j(z) − ω|

)
,

see Lemma 2.1. Since |f j+1(z) − f j(z)| is much smaller than σ|f j(z) − ω| for δ
small, the map f−(j−i) is almost conformal affine on B

(
f j(z), |f j(z)− f j+1(z)|

)
.

Given n ≥ 0 let 0 ≤ is < n be consecutive integers for s = 0, 1, . . . , such
that f is(z) ∈ B(Ω, δ) and is = 0 or f is−1(z) /∈ B(Ω, δ) in the case is > 0. In the
terminology of Section 3, is are consecutive integers in S(z) . For each s denote
the point ω ∈ Ω such that f is(z) ∈ B(ω, δ) , by ωs . Let js : is ≤ js ≤ n be
the largest integer such that f τ (z) ∈ B(ωs, δ) for all is ≤ τ ≤ js . We define the
rescaled time φ(n) = φ(n, z) by

(4.3) φ(n) :=
∑

s:is≤n
n(is, js) + n−

∑

s:is≤n
(js − is).

Sometimes we denote φ(n) by n̂ or n̂(z) , or use the notation n̂ for integers in the
range of φ (i.e., interpreted as the rescaled time).

Definition 4.1. We call a rational map f parabolic Collet–Eckmann (abbre-
viated by PCE) if there exist λ > 1, C > 0 such that for every exposed f -critical
point c ∈ J(f) for z = f(c) and for every positive integer n

|(fn)′(z)| ≥ Cλn̂(z).

Note that this property does not depend on the base of logarithm in the definition
of φ(i, j) (and φ(n) = n̂). Indeed such a change of the base would multiply n̂ by
a bounded factor, so it would change only λ in Definition 4.1.

Analogously to [PR1, Lemma 2.2] (uniform density of good times property),
[P3] and [PR2] (topological Collet–Eckmann) we shall define topological parabolic
Collet–Eckmann property.

First we introduce more notation. Similarly to φ we shall define the rescaled
parameter Φ on W (z) , see Section 3 for the definition of W (z) . We shall consider
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this linearly ordered set as the set of non-negative integers (equipped with the
arithmetic operations). Then define

Φ(t) =
∑

s:is≤n
n(is, js) + t−

∑

s:is≤n
(js − is).

Given δ > 0 and θ > 0 denote for t ∈ W (z) similarly as in Section 3 (with
θ = σ ) the sets

Comp(z, fn(t), θ) for t ∈ T̃(z),(4.4a)

Comp(z, fn(t), 2−k(t)θ) for t ∈ R̃n(t),(4.4b)

Comp
(
z, fn(t), θ|fn(t)(z)− ω|

)
for t ∈ S̃m(4.4c)

by Vt(z) .
Again we denote sometimes Φ(t) by t̂ or use the notation t̂ for integers in

the range of Φ. We denote a right inverse of Φ by Ψ. Let us choose for example
as Ψ(t̂ ) the least t such that Φ(t) = t̂ .

Write finally V̂t̂(z) := VΨ(t̂ )(z) . Given t̂ we sometimes write t for Ψ(t̂ ) ,

Vt(z) for V̂t̂(z) etc.
Given z ∈ J(f) , δ > 0, θ > 0 and M <∞ we call t̂ a good hat-integer and

denote the set of good hat-integers by G(z) , if fn(Ψ(t̂ )) has at most M critical

points (counted with multiplicity) in V̂t̂(z) .

Definition 4.2. We call f topological parabolic Collet–Eckmann (abbreviated
by TPCE) if there exist δ, θ > 0, 0 < κ ≤ 1 and M < ∞ such that for every
z ∈ J(f) the lower density of G(z) in N is at least κ ,

(4.5) inf
t̂

#(G(z) ∩ [1, t̂ ])

t̂
≥ κ.

Remark 4.3. (a) One can call t a good integer if fn(t) has at most M critical
points (counted with multiplicity) in Vt(z) . Then TPCE means that if we divide
[0, t0] into blocks of Φ-preimages of points t̂ ≤ Φ(t0) then at least κ proportion of
blocks contains good integers. Note that if an integer t ∈ Φ−1(t̂ ) is good then all
s > t , s ∈ Φ−1(t̂ ) are good, since for δ small, f−1

ω

(
B
(
fn(s)(z), θ|fn(s)(z)−ω|

))
⊂

B(fn(s−1)(z), θ|fn(s−1)(z)− ω|) by Lemma 2.1.
In fact, by the same argument, all s : t ≤ s ≤ s(t) for s(t) the last element

of S̃m(z) where m is defined by t ∈ T̃m ∪S̃m , are good.
Note that the inclusions in Lemma 2.1 with σ = θ hold for adequate δ and θ .

Indeed, first shrink the original δ in the definition of TPCE to some δ′ so that these
inclusions hold. Unfortunately t good may become not good if fn(t) /∈ B(ω, δ′)
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since θ > θ|fn(t)(z) − ω| . We avoid this trouble by setting any new θ′ ≤ θδ′ .
Then t is good.

Finally find for this θ′ a new δ′′ so that the inclusions hold. In case fn(t) ∈
B(ω, δ′) \ B(ω, δ′′) , by the inclusions for θ in Lemma 2.1, s(t) found for δ′ is
good, hence s(t) + 1, for θ′ = 1

2θδ
′ , is good. Though t can be not good for δ′′ , θ′

it is accompanied by good s(t) + 1. Thus the property PTCE is preserved, with
maybe different κ resulted from not accounting to good the elements of blocks of
length log2(δ′/δ′′) preceding good elements.

(b) For each z and good t we can assume that all f j(Vt(z)) , j = 0, . . . , n(t) ,
have small diameters if θ is small enough. This follows from the bounded criticality
for θ replaced by, say, 2θ ; see Lemma 2.4. For fn(t) ∈ B(Ω, δ) use Lemma 2.1,
compare the proof of Lemma 3.3. In particular, all f j

(
Vt(z)

)
are topological discs.

(c) κ in Definition 4.2 can be arbitrary at the cost of M , see [PR2, Section 2].
The idea of the proof is that each gap between two consecutive good t̂ and t̂′ can
be in κ proportion filled with good hat-integers for G

(
fn(Ψ(t̂ ))(z)

)
. This gives in

Definition 4.2 the proportion of non-good hat-integers 1−κ decreased to (1−κ)2 .
M is replaced by 2M . We can continue this procedure. The proof uses the
observation made in (b).

The name topological preceding Collet–Eckmann is explained by the following.

Proposition 4.4. Topological Collet–Eckmann is a topological property,
namely if there exists h: U(f)→ U(g) a homeomorphism between neighbourhoods
of J(f) and J(g) that conjugates f to g on U(f) , i.e. hf = gh and g is TPCE
then f is also TPCE .

(This proposition is placed here to explain the definition; it is not needed in
the further course of Section 4.)

Proof. Suppose there exists h: U(f) → U(g) a conjugating homeomorphism
as above. First notice that h is bilipschtz at ω, h(ω) in Julia set. Namely

(4.6) log2 |x− ω| − C ≤ log2 |h(x)− h(ω)| ≤ log2 |x− ω|+ C

for a constant C and every x ∈ J(f) . Moreover (4.6) holds for x ∈ Q where
Q := {x ∈ B(ω, δ) : there exists j > 0, f j(x) /∈ B(ω, δ)} . To prove this, note
first that p , the number of petals at ω , is preserved by h . Use next Fatou’s
coordinates w = w(z) = 1/(z − ω)p , [DH, Exposé IX, I.2]. In these coordinates
f takes the form F (w) = w − paω + o(1) for |w| → ∞ and g takes the form
G(w) = w − pah(ω) + o(1), with aω , ah(ω) defined in (4.0). Let n be the least

positive integer so that fn(x) /∈ B(ω, δ) . Then write h(x) = g−nh(ω)hf
n(x) . If δ is

small enough, then |hfn(x)− h(ω)| < δ′ for an arbitrarily small δ′ , hence indeed
hfn(x) is in the domain of the branch g−nh(ω) . We obtain in the Fatou coordinates

|w − Fn(w)| = paωn+ o(n) and |v −Gn(v)| = pah(ω)n+ o(n) for w = w(x) and

v = w
(
h(x)

)
. If δ , δ′ are small enough we can assume o(n) < pmin{aω, ah(ω)} .
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This yields in the original coordinates |x − ω|/|h(x) − h(ω)| ≤ (4aω/ah(ω))
1/p .

Analogously we estimate from above |h(x)− h(ω)|/|x− ω| .
Let g be TPCE with constants θg , δg , M and κ .
By the continuity of h there exists θ > 0 such that for every x ∈ J(f) one

has

(4.7) h
(
B(x, θ)

)
⊂ B

(
h(x), θg

)
.

Moreover for x ∈ J(f)∩B(ω, δ) , for ω ∈ Ω and all 0 ≤ k such that 2k−1|x−ω| ≤ 1

(4.8) h
(
B(x, 2kθ|x− ω|) ∩Q

)
⊂ B

(
h(x), 2k−1θg|h(x)− h(ω)|

)

and for x ∈ J(f) \B
(
Ω(f), δ

)
, h(x) ∈ B

(
ωg, δg

)
for ωg ∈ Ω(g)

(4.9) h
(
B(x, θ)

)
⊂ B

(
h(x), θg|h(x)− ωg|

)
.

The proof of (4.8) is similar to the proof of (4.6) with the use of Fatou coor-
dinates. The proof of (4.9) makes use of the continuity of h−1 . Note that k here
are not the same as in (4.4b).

Let t be good for h(z) and g . Then, in the case when x = fn(t)(z) /∈ B(Ω, δ) ,
fn(t) is, by (4.7) or (4.9), at most M -critical on Comp

(
z, fn(t), B(x, θ)

)
since

gn(t) is at most M -critical on Comp
(
h(z), gn(t), B

(
h(x), r

))
, with r = θg or

θg|h(x)− ωg| .
In the case when x = fn(t)(z) ∈ B(ω, δ) consider B = B(x, 2kθ|x−ω|) , with k

nonzero if t ∈ R̃n . Then by (4.8), fn(t) is at most M critical on Comp(z, fn(t), B∩
Q) . The latter set is well defined if B ∩ Q is connected. This is the case for all
except maybe a bounded by a constant (related to p) number of k ’s, where B
(and k ) is so large that it intersects more than one cusp-like sector of Q , but so
small that it does not contain ω . (Omitting the related finite blocks of t ’s do not
have influence on the TPCE property.)

In the case of connected B ∩ Q far from ω the components of B \ Q are
disjoint from forward trajectories of critical points in the Fatou set, see Lemma 2.1.
Hence all branches of f−n(t) involved in Comp

(
z, fn(t), B ∩ Q

)
extend to these

components, so fn(t) is at most M -critical on Comp
(
z, fn(t), B

)
.

If t ∈ R̃n(t)(z) and k large the forward trajectory of a critical point in the

Fatou set enters B but it is irrelevant since, by the first composant f−1 of f−n(t) ,
we jump out of B(ω, δ) . So, we do not capture the critical point. Thus the proof
is the same as before.

Note that if t is the first element of S̃n(t)(h(z)) , then for ω ∈ Ω(f) , 2−k(t−1) >

|gn(t)
(
h(z)

)
− h(ω)| but it can happen that 2−k(t−1) ≤ |fn(t)(z) − ω| . In such a

case t − 1 ∈ W
(
h(z)

)
, in R̃n(t) , but it is skipped in W (z) . Analogously, having
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reverse inequalities, it can happen that after R̃n(t)

(
h(z)

)
we need to add some

elements to build R̃n(t)(z) . Also involvement of δ in the definition of W causes the

disappearance of some blocks R̃n
(
h(z)

)
in W (z) , if we choose δ = δf sufficiently

small compared to δg , or appearance of new R̃(z) ’s if δf is large compared to δf .
Let us pass now to good hat-integers. In order to simplify notation suppose

that the above complications do not happen, namely that W (z) and W
(
h(z)

)

have the same divisions into T̃ , S̃m and R̃n . (The above complications have
influence to the value of κf , which is fortunately positive if κ is close enough
to 1, compare Remark 4.3(c).)

Note that each block Φ−1
g (t̂ ) (see Remark 4.3(b)), intersects at most 2C + 1

blocks Φ−1
f (t̂ ) , by (4.6), so t̂ good for g implies at least one of the 2C + 1 blocks

(hat-elements) good for f . Hence the density in Definition 4.2 for G(z) for f is
bounded below by κ(2C + 1)−1 .

5. PCE implies TPCE and mean porosity

Definition 5.1 ([Ma], [Le]). We say a rational f : C → C is backward
Lyapunov stable if for all ε, δ > 0 there exists θ > 0 such that for every x ∈
J(f) \ B(Ω, δ) every n ≥ 0 and every component W of f−n

(
B(x, θ)

)
we have

diam(W ) ≤ ε .

Recall that NCP functions satisfy this property, by Lemmas 2.2 and 2.4.
In Appendix B we prove Theorem B.1 saying in particular that PCE implies

backward Lyapunov stability. This fact, crucial in the proof of Theorem 5.2 below
to deal with rescaled time, was stated (in absence of parabolic points) in [P1,
Remark 3.2].

So we shall prove the following.

Theorem 5.2. The parabolic Collet–Eckmann property implies the topolog-
ical parabolic Collet–Eckmann property (PCE implies TPCE).

Theorem 5.3. The Julia set of each TPCE rational map is mean porous.

As we mentioned in the introduction, mean porosity implies by [KR] that the
upper box-counting dimension of the Julia set is less than 2.

The strategy to prove Theorems 5.2 and 5.3 will be similar to [PR1]. To prove
Theorem 5.2 we shall use the following lemma.

Lemma 5.4. There exist C = Cf > 0 and P > 0 such that for every z ∈
J(f) and every integer n ≥ 0 , for K(n) := max{0,− log2

(
P dist

(
fn(z),Crit(f)∩

J(f)
))
} we have

(5.1)
n∑

j=0

′K(j) ≤ n̂Cf ,
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n̂ = φ(n) , see (4.3) and where
∑ ′ denotes the summation taken over all but at

most ]
(
Crit(f) ∩ J(f)

)
indices j .

Note that the larger P the smaller K(j) ’s.
This is a stronger version of an important inequality [DPU, (3.3)] where there

was n rather than n̂ on the right-hand side. The version with n has been used
in [PR1]. The proof of Lemma 5.4 is a slight modification of the proof from [DPU].
We provide it in Appendix A.

Proof of Theorem 5.2. Step 1. Shadows. Fix z ∈ J(f) . One can consider
K(n) in Lemma 5.4 as a function on n̂ , the rescaled time, since each block of
integers φ−1(n̂) longer than 1 corresponds to a piece of the trajectory of z in
B(Ω, δ) , where K = 0, if P is large enough.

To each vertical interval I = {x} × [0, y] ⊂ R2 , x, y ≥ 0, we associate for
λ > 1 (as in Definition 4.1) its shadow, namely the closed triangle ∆(I) with the
following vertices: the top and bottom of I and the point

(
x+ 4y/ log2(λ), 0

)
in

R+
x , the non-negative part of the first coordinate axis Rx in R2 .

Let Jn̂ = {n̂} ×
[
0,max{k(t) : t ∈ R̃n}

]
⊂ R2 for n ∈ S(z) . (If fn(t)(z) ∈ Ω

then Jn̂ is infinitely high.) Note that φ−1(n̂) is a singleton, so we may write n
for it. Finally define

X = R+

x ∪
⋃

n∈S(z)

Jn̂,

X ′ = X \ {(x, 0) : there exists n̂, n̂ < x, n ∈ S(z), (x, 0) ∈ ∆(Jn̂)}.

If P in Lemma 5.4 is large enough and K(n̂) ≥ 1, then a critical point in J(f) ,
closer to fn(z) than other critical points, is distinguished. Denote it by c(n̂) .
Denote then by ν(n̂) the multiplicity of f at c(n̂) . To each n̂ with positive K(n̂)
we associate the interval In̂ = {n̂+1}×[0, ν(n̂)K(n̂)] . Denote by ∆(n̂) its shadow.
In the case K(n̂) =∞ we set ∆(n̂) the upper right quarter of R2 with the corner
at (n̂+ 1, 0).

We shall study how much the union
⋃
In̂ shadows X ′ .

First, as in [PR1], we consider shadows on R+
x . For each n̂ we obtain from

Lemma 5.4

n̂−1∑

j=0

|∆(j) ∩
(
[0, n̂]× {0}

)
| ≤ n̂

(
sup
j
ν(j)

) Cf4

log2 λ
+ n̂]

(
Crit(f) ∩ J(f)

)
:= n̂Nf ,

where | · | stands for the length of intervals. Hence for

A =
{
x : (x, 0) belongs to at most 2Nf shadows ∆(j)

}
,
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we conclude that for every x > 0

|A ∩ [0, x]|
x

≥ 1

2
,

where by | · | we denote the sum of the lengths of the intervals composing A∩[0, x] ,
or A′(x,y) below.

Let P be the projection of R2 to Rx defined by P(x, y) = x+ 4y/ log2 λ .
For an arbitrary (x0, y0) ∈ X define

A′(x0,y0) := X ′ ∩P−1
(
A ∩ [0,P(x0, y0)]

)
∩ {(x, y) ∈ R2 : x ≤ x0}.

(We intersect with {x ≤ x0} to cut off Jn̂ , n̂ > x0 . Note that {(x, y) : x >
x0, y = 0} has been already cut off by the definition of X ′ .)

By the definitions each point of A′(x0,y0) belongs to at most 2Nf shad-

ows ∆(j) . Note also that

|A′(x0,y0)| ≥ min
{

1
4 log2 λ, 1

}∣∣A ∩
[
0,P(x0, y0)

]∣∣.

The number 1
4 log2 λ appears when we project by P−1 to vertical intervals, the

number 1 for subintervals of A ∩ [0,P(x0, y0)] not shadowed by any Jn̂ . Hence,
as we could assume that log2 λ ≤ 4,

|A′(x0,y0)| ≥
(

1
8 log2 λ) ·P(x0, y0).

The components of A′ are open intervals in R+
x with integer right-hand side ends

(at the bottoms of In̂ ’s), or intervals in R+
x with the right-hand side ends at the

bottoms of Jn̂ ’s followed by vertical intervals in the respective Jn̂ ’s. Using the
notation

H(t̂ ) :=
(
n̂
(
Ψ(t̂ )

)
, k
(
Ψ(t̂ )

))

and for an arbitrary t0 ,

Ainteger

t̂0
:= {t̂ : H(t̂ ) ∈ clA′

H(t̂0)
},

we obtain the inequality ]Ainteger

t̂0
≥ 1

2 |A′H(t̂0)
| . Hence

(5.2) ]Ainteger

t̂0
≥ 1

16
(log2 λ) ·P

(
H(t̂0)

)
.

Note that each point in Ainteger

t̂0
belongs to at most 2Nf + 1 shadows ∆(n̂) (+1

may happen at the bottom of some In̂ . Remember that this point may belong to
clA′

H(t̂0)
\A′

H(t̂0)
).
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Note now that by our definition of rescaled time, if n̂j , j = 1, 2, . . . , are all

consecutive integers with non-empty R̃nj then, if δ is small enough, we have for

the corresponding t̂j , with H(t̂j) = (n̂j , 0),

t̂j+1 − t̂j ≤ 2(n̂j+1 − n̂j);

compare with the inequality in the opposite direction than (5.6) (true up to a
constant summand). Note also that t̂1 ≤ n̂1 .

Assume from now on that t0 /∈ S̃m for any m . So, we can substitute in (5.2)
P
(
H(t̂0)

)
= n̂1 +

(∑
j n̂j+1 − n̂j

)
+ 4k(t0)/log2 λ and obtain (using (5.7))

(5.3) ](Ainteger

t̂0
) ≥

(
1

32
log2 λ

)(
t̂0 − k(t0)

)
+

1

4
k(t0) ≥

(
1

32
log2 λ

)
t̂0.

Note that the case {n̂j} = ∅ is the case fn(z) /∈ B(Ω, δ) for all 0 ≤ n ≤ n(t0) ,
where (5.3) immediately follows from (5.2).

Step 2. Good hat-integers. Now we show that all t̂ ∈ Ainteger :=
⋃
t̂0
Ainteger

t̂0
are good hat-integers. This can be done as in [PR1] with the use of ‘shrinking
neighbourhoods’ procedure [P1] (the name comes from [GS]).

For each exposed critical point c ∈ J(f) let sj(c) , j = 1, 2, . . . , be the
increasing sequence of all positive integers such that f sj(c)(c) /∈ B(Ω, 1

2δ) or

fsj(c)−1(c) /∈ B(Ω, 1
2δ) .

By the definitions of φ and sj(c) we have j − 1 ≤ aφ
(
sj(c) − 1, f(c)

)
. (We

need a constant a > 0 here since for f sj(c)(c) ∈ B(Ω, δ) \ B(Ω, 1
2δ) for j = j0 ,

j0 + 1, . . . , j0 +T , we have sj all consecutive integers, so the rescaled time can be
shorter than T . We can set a = supT + 1.)

Define for C2 from Lemma 2.5(a),

(5.4) bsj(c) = |(fsj(c)−1)′(f(c))|−1/(2C2).

Hence, using Definition 4.1, we obtain

bsj(c) ≤ C−1λ−((j−1)/a)1/(2C2)

.

In particular the series
∑
j bsj(c) is convergent.

Next organize
⋃
c{sj(c)} , the union over all exposed critical points in J , into

an increasing sequence sj and let

bsj = C max
c: there is j′, sj=sj′ (c)

bsj′ (c),
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where C in the latter formula is a normalizing factor such that, say,

(5.5)
∞∏

j=1

(1− bj) =
1

2
.

Finally for all positive integers s not belonging to {sj} set bs := 0. Fix x ∈ J(f)
(it plays the role of z from Step 1) and t̂ ∈ Ainteger . Assume also that for
n = n

(
Ψ(t̂ )

)
we have

Case 1. fn(x) /∈ B(Ω, δ)
or

Case 2. fn−1(x) /∈ B(Ω, δ) .

In Case 2, fn(x) can be very close to ω ∈ Ω, i.e., k = k
(
Ψ(t̂ )

)
can be non-

zero. These are the only possibilities. Indeed, if fn(x) ∈ B(Ω, δ) and fn−1(x) ∈
B(Ω, δ) , then there is m such that t ∈ S̃m(x) . This m < n is the smallest integer
such that for every s : m ≤ s ≤ n one has f s(x) ∈ B(ω, δ) . Then

|J
m̂
| ≥ − log2 |fm(x)− ω| − 1

and for δ small enough

φ
(
n−m, fm(x)

)
≤ −(p+ 1) log2 |fm(x)− ω| − 1.

Hence

(5.6) |J
m̂
| ≥ 1

p+ 1
φ
(
n−m, fm(x)

)
.

So, if

(5.7) log2 λ ≤ 4/(p+ 1),

then 4|J
m̂
|/ log2 λ ≥ φ(n −m, fm(x)) , i.e., H(t̂ ) ∈ ∆(J

m̂
) , so t̂ /∈ X ′ , a contra-

diction. (It is paradoxical that we assume λ to be small in (5.7). This is caused
by our rough definition of shadows ∆(n̂) . They could be smaller. Along periods
of rescaled time when the trajectory stays close to Ω, the slope of the edge line of
the shadow could be log2 2 = 1 rather than 1

4 log2 λ , so the upper-right edge of
the shadow could be piecewise affine, below our affine edge. This is related with
the inclusion in Lemma 2.1.)

Consider the sequence

Bs = B

(
fn(x), 2 · 2−kθ

s∏

i=1

(1− bi)
)
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of neighborhoods of B = B
(
fn(x), 2−kθ

)
, where k = 0 in Case 1, together with

connected components

Ws = Comp
(
fn−s(x), fs, Bs

)
and W ′s−1 = f(Ws).

Recall the main idea of shrinking neighborhoods approach from [P1], in our
setting with the subsequence sj . If along backwards iteration from fn(x) a critical
point c is captured by Ws then fs(c) ∈ B

(
fn(x), 2θ

)
, so fs(c) /∈ B(Ω, 1

2δ) if
2θ < 1

2δ , in Case 1. (We can assume the latter inequality, since we do not need
the inclusions in Lemma 2.1.) Similarly in Case 2 we have f s−1(c) /∈ B(Ω, 1

2δ) .
Hence s = sj(c) for some j , hence bs 6= 0. So,

fs−1
(
Ws−1 \W ′s−1

)
= Bs−1 \Bs

is a non-trivial Koebe’s space for the appropriate branch of f−(s−1) allowing us
to use |(fs−1)′

(
f(c)

)
| to control the diameter as in Lemma 2.5(a).

Let us be more precise now. We want to show that if Ws contains an exposed
critical point, then H(t̂ ) belongs to the shadow ∆(φ(n− s)) . Assume this is not
the case. Then there is a smallest such s , with an exposed critical point c ∈Ws .
Hence there are at most 2Nf integers 0 < s′ < s such that Ws′ contains an
exposed critical point (as t̂ ∈ Ainteger and s is the smallest). Note again that this
s is of the form sj(c) . This is a tricky place in the proof.

The number of all s′ < s of captures by Ws′ of critical points (not only
exposed ones) is bounded above by (2Nf + 1)N where N is the maximal positive
integer for which there exist critical points c 6= c′ in J(f) with fN (c) = c′ . Ws−1

is simply connected since all the sets Comp
(
fs
′
(x), fn−s

′
, B
(
fn(x), 2θ2−k

))
for

0 ≤ s′ ≤ n have small diameters if θ is small, by backward Lyapunov stability
(see Definition 5.1 and Appendix B). (We can see the simple-connectedness also
directly, as in [PR1], by induction, proving only that all Wsj containing critical
points have diameters so small that each could capture at most one critical point.)
This implies in particular that there exists a constant D = D(Nf ) such that we
can apply Lemma 2.5(a) to F = f s−1 for our s = sj(c) and to V = Ws−1 . We
obtain

|(f (s−1))′
(
f(c)

)
|diam(W ′s−1) ≤ C1b

−C2
s 2θ2−k.

Hence, by Definition 4.1 and by (5.4), we can write with a constant C depending
on C1 and C2

diam(W ′s−1) ≤ C12θ2−kb−C2
s |f (s−1)′(f(c)

)
|−1 ≤ C2θ2−kλ−φ(s−1,f(c))/2.

Since both points, fn−s(x) and critical c , are in Ws , the above expressions give
also upper bounds for the distance between these points. So, for ν = ν

(
φ(n−s, x)

)
,
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after applying − log2 , we obtain for θ small enough

|Is| = νK
(
φ(n− s, x)

)
= −ν log2

(
P dist

(
c, fn−s(x)

))

≥ −ν log2

(
2P (diam(W ′s−1)

)1/ν
)

≥ −ν log2(2P )− log2 C + k − log(2θ) + 1
2φ(s− 1, f(c)) log λ.

Hence, again for θ small enough to compensate other constants here,

(5.8) |Is| ≥ k + 1
2φ
(
s− 1, f(c)

)
log2 λ.

Note now that φ
(
s− 1, fn−s+1(x)

)
≤ 2φ

(
s− 1, f(c)

)
. This estimate says that the

rescaled times for the trajectories f(c), f 2(c), . . . , f s(c) and fn−s+1(x), fn−s+2(x) ,
. . . , fn(x) are similar. This is so since for θ small, all diameters diam f s

′
(Ws) ,

s′ = 1, 2, . . . , n − s , are small. Here is the place where we substantially use the
backward Lyapunov stability. Thus by (5.8)

|Is| − k ≥ 1
4φ
(
s− 1, fn−s+1(x)

)
log2 λ,

so H(t̂ ) ∈ ∆
(
φ(n− s)

)
, a contradiction.

Let us summarize. We have proved in this way that there are at most 2Nf

integers s : 0 ≤ s < n such that Comp
(
fs(x), fn−s, B

)
captures an exposed

critical point. So the number of all times of captures of critical points (not only
exposed ones) is bounded above by (2Nf + 1)N . Hence fn has at most D(Nf )
critical points in Wn ⊃ Vt(x) . The last inclusion follows from (5.5). This proves
that t̂ is good. So, (5.3) yields (4.5) with κ = 1

32 log2 λ . Remember that at the

end of Step 1 we assumed that t0 /∈ S̃m(x) . For t0 ∈ S̃m(x) , if m = 0 (i.e., if
x, . . . , fn(t0)(x) ∈ B(ω, δ)), Theorem 5.2 is trivial, i.e., all hat-integers ≤ t̂0 are

good. If m > 0, then by (5.6), for t′ the largest in R̃m(x) , we have

t̂′ ≥ 1

p+ 1
(t̂0 − t̂′)

i.e.,

t̂′ ≥ 1

p+ 2
t̂0.

Hence (4.5) for t̂′ yields

](G(x) ∩ [0, t̂0]

t̂0
≥ κ

p+ 2
.

Proof of Theorem 5.3. This repeats roughly an adequate part of the proof
of the mean porosity in [PR1, Theorem 1.1] and the proof of Theorem 1.1.
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We need to pass from good times (more precisely from good hat-integers) for
x ∈ J to good scales, in which J c contains some definite disk. We use the notation
Vt(x) for t̂ ∈ G(x) as in (4.4a)–(4.4c) and V ′t (x) if θ is replaced by 1

2θ .

We claim that there is an integer N such that the following holds: For all
x ∈ J and for all t̂, t̂′ ∈ G(x) with t̂− t̂′ ≥N

(5.9) diam
(
V ′t (x)

)
≤ 1

2 diam
(
V ′t′(x)

)
.

For t̂′ = 0 and for 0, t ∈ R̃0(x) the inequality (5.9) is trivial. For 0, t ∈ S̃0(x) , it
follows from the definition of the rescaled time close to a parabolic point. Indeed,
in the latter case, for n = n(t)

diam
(
V ′t (x)

)

diam
(
V ′0
(
fn(x)

)) ≤ 2|(fn)′(x)|−1 ≤ 2−n̂+2

and
diam

(
V ′0(x)

)

diam
(
V ′0
(
fn(x)

)) =
|x− ω|
|fn(x)− ω| ≥ (2−n̂)1/(p+1).

we obtain diam
(
V ′t (x)

)
/diam

(
V ′0(x)

)
≤ 2−p(n̂+2)/(p+1) .

Finally for 0, t ∈ T̃(x) this follows from Lemma 2.4. Other cases are combi-
nations of the above cases.

In fact, for each 0 < τ < 1 there is N =N(τ, f,M, θ) such that, for t ≥N ,
diam

(
V ′t (x)

)
≤ τ diamV ′0(x) .

For t̂′ > 0 use backward iteration. Write n , n′ for n(t) and n(t′) respectively.
As fn is M -critical on V ′t (x) , the iterate fn−n

′
is M -critical on V ′t−t′

(
fn
′
(x)
)

.
So

fn
′
(V ′t ) = V ′t−t′

(
fn
′
(x)
)
⊂ B

(
fn
′
(x), τ diamV ′0

(
fn
′
(x)
))

by the first case. Applying f−n
′

we obtain (5.9) provided τ is small enough, by
Lemma 2.5(b).

Observe also that for every t we have

(5.10) diamV ′t (x) ≥ 2−S max{L, 2}−n̂(t)2−k(t)θ for L = sup |f ′|,

where S is the number of n ’s 0 ≤ n ≤ n(t) such that fn−1(x) /∈ B(Ω, δ) (provided
n > 0), but fn(x) ∈ B(Ω, δ) .

The proof of (5.10) uses the definition of the rescaled time in which, close to
Ω, the rate of shrinking for backward iterates is 1

2 ; see (4.2) the first inequality in
the opposite direction and no factor 2. The factor 2−S comes from a bound on
distortion that can be 2 on each block (is, js) ; see (4.3).
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Consider the increasing sequence t̂j of all good hat-integers of x , {t̂j} = G(x) ,

and set k̂j = t̂Nj , i.e., consider only everyN -th good hat-integer. By the definition

of TPCE we have k̂j ≤ κ−1Nj , and as k̂j+1 − k̂j ≥N , inequality (5.9) implies
that

diam
(
V ′kj+1

(x)
)
< 1

2 diam
(
V ′kj (x)

)
,

where ki = Ψ(k̂i) . Hence, taking into account also (5.10), we obtain a strictly
increasing sequence uj ≤ Pj (with P ≤ 4κ−1N log2 max{2, L}) such that

diam
(
V ′kj (x)

)
∼ 2−uj .

(∼ means: up to a factor between 1
2 and 2.)

Finally, as in Section 3, we find inside each V ′kj a disk of radius η diamV ′kj
disjoint from the Julia set. This proves the mean porosity of J(f) .

6. Final remarks on PCE maps

In [P3], [PR2] and [NP] some other properties equivalent to TCE are listed.
The same can be introduced for TPCE.

Definition 6.1. (a) (Exponential shrinking of components.) There exist
λ1 > 1 and θ, δ > 0 such that for every z ∈ J(f) \ Ω, every t ∈ W (z) , see

Section 3, and Vt(z) as in (4.4), one has diamVt(z) ≤ λ−n̂(t)
1 .

(b) (Exponential shrinking of components at critical points.) The same as
above, but only for Vt(z) containing a critical point.

(c) (Uniform hyperbolicity on periodic orbits, abbreviated: PUHPer.) There
exists λ2 > 1 such that for every periodic x ∈ J(f) \ Ω one has |(fn)′(x)| ≥ λn̂2 ,
where n is a period of x .

Theorem 6.2. (a), (b) and TPCE are equivalent. They imply (c). 1

Proof. TPCE implies (a) by (5.9). The proof of the implication (b) ⇒
TPCE is similar to the proof of Theorem 5.2 (one need not even use ‘shrinking
neighbourhoods’). The proof of (a) ⇒ (c) is easy. It is the same as in [P3]
and [NP].

An analysis of the proof of TCE ⇒ CE in [P3] might give a positive answer
to the following question:

Question 6.3. Does TPCE imply PCE, provided there is only one critical
point in J(f)?

1 Recently it was proved in [PRS] that UHPer (PUHPer in absence of parabolic points) is

equivalent to TCE. In view of this, the equivalence of PUHPer and TPCE seems probable.
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Remark 6.4. Analogously to TCE ⇔ (A∞ is Hölder) for f polynomial and
A∞ the basin of attraction to ∞ , [GS], [P3], there would exist a natural property
of A∞ equivalent to TPCE.

Remark 6.5. A theory analogous to our PCE is possible for iteration of
maps of interval, compare [NP].

Appendix A

Average distance from critical points. Proof of Lemma 5.4. For
every c ∈ Crit(f) ∩ J(f) and arbitrary a > 0 define the function kc: C →
{0, 1, 2, . . .} ∪ {∞} by setting

kc(x) = min{n ≥ 0 : x /∈ B(c, a2−(n+1))} if x 6= c

and kc(x) =∞ if x = c .
The following lemma can be easily deduced from the fact that up to a biholo-

morphic change of coordinates every holomorphic function is of the form z 7→ zq

in some neighborhood of a critical point of order q ≥ 2.

Lemma A.1. There exists ϑ > 0 (depending on a and f ) such that

(A.1) |f ′(x)| ≤ 2ϑ 2−kc(x)

for every x ∈ C .

Lemma A.2 (the main lemma). Suppose a < 2δ . Then there exists a
constant Q > 0 such that for every integer n ≥ 1 , if x ∈ J satisfies

(A.2) kc
(
f j(x)

)
≤ kc

(
fn(x)

)
for every j = 1, 2, . . . , n− 1,

then

(A.3) min
{
kc(x), kc

(
fn(x)

)}
+

n−1∑

j=1

kc
(
f j(x)

)
≤ Qn̂,

where the rescaled time n̂ = φ(n) has been defined in Section 4 .

Proof. Notice that since 1
2a < δ and B(Ω, 2δ) ∩ Crit(f) = ∅ , if f j(x) ∈

B(Ω, δ) then kc
(
f j(x)

)
= 0. The proof of Lemma A.2 is carried through by in-

duction with respect to n . For n = 1 the statement is obvious since f(c) 6= c . The
procedure for the inductive step will be the following: Given x, f(x), . . . , fn(x) sat-
isfying (A.2) we shall decompose this string into two blocks: (a) x, f(x), . . . , fm(x) ,
m ≤ n , for which we shall prove (A.3); (b) fm(x), . . . , fn(x) for which we can
apply the inductive hypothesis. Summing these two estimates we prove (A.3) for
x, f(x), . . . , fn(x) .
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Let k′ = min
{
kc(x), kc

(
fn(x)

)}
and B = B(c, a2−(k′−1)) .

If k′ ≥ 1, let 1 ≤ m′ ≤ n be the first positive integer such that

(i) diam
(
fm
′
(B)

)
≥ a2−k

′
(= 1

4 diamB)

or

(ii) kc
(
fm
′
(x)
)
≥ k′.

If k′ = 0 set

(iii) m′ = 1.

Now, if fm
′
(x) /∈ B(Ω, δ) we set m := m′ . If fm

′
(x) ∈ B(ω, δ) we set m the

smallest m ≥ m′ such that fm(x) /∈ B(ω, δ) or m := n if f j(x) ∈ B(ω, δ) for all
m′ ≤ j ≤ n .

In all these cases the sequence y = fm(x), f(y), . . . , fn−m(y) satisfies the
assumption (A.2) automatically, with x , n replaced by y , n −m , and moreover
kc(y) = min

{
kc(y), kc

(
fn−m(y)

)}
. Hence by the inductive hypothesis

(A.4)
n−1∑

j=m

kc
(
f j(x)

)
≤ Qφ(n−m).

with the latter φ(n−m) = φ(n−m, y) ; see the notation preceding (4.3).
Assume k′ ≥ 1 (the cases (i) or (ii)). By the definition of m we have for

every 0 < j < m′ ,

(A.5) diam
(
f j(B)

)
< a2−k

′

so f j(B) cannot intersect at the same time ∂B(c, a2−k
′′
) and ∂B(c, a2−(k′′−1))

for k′′ ≤ k′ . Hence for every w ∈ B ,

kc
(
f j(w)

)
≥ kc

(
f j(x)

)
− 1.

Hence by Lemma A.1 it follows that

(A.6) |f ′
(
f j(w)

)
| ≤ 2ϑ2−(kc(f

j(x))−1).

For j = 0 we replace here kc(x) by k′ .
For is ≤ j < js < m′ ; see (4.1), we have by (A.5), provided a has been

chosen small enough, a better estimate:

(A.7) |(f js−is)′
(
f is(w)

)
| ≤ 2|(f js−is)′

(
f is(x)

)
| ≤ 4 · 2n(is,js).
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The first inequality follows from diam f js(B) < σ|f js(x) − ω| , Lemma 2.1, and

distortion of f
−(js−is)
ω bounded on f js(B) by 2 for a small enough.

The second inequality follows from the definition of n(is, js) and from

|(f js−is)′
(
f is(x)

)
|
/ ( |f js(x)− ω|
|f is(x)− ω|

)p+1

≤ 2

for δ small enough; see (4.2) and the arguments following it.
For is < m′ ≤ js we cannot repeat the above considerations as diam

(
f is(B)

)

can be large in comparison to |f is(x)−ω| . In particular we can have f is(B) 3 ω ,
and we get troubles with bounded distortion. Instead, provided |f is(w) − ω| ≥
|f is(x)− ω| , we estimate as follows

(A.8)
|(fm′−is)′

(
f is(w)

)
| ≤ 2

(
2δ

|f is(w)− ω|

)p+1

≤ 2p+2

( |fm(x)− ω|
|f is(x)− ω|

)p+1

≤ 2p+32n(is,m−1)+1.

If |f is(w)− ω| ≤ |f is(x)− ω| , we estimate as follows

(A.9) |(fm′−is)′
(
f is(w)

)
| ≤ 2|(fm′−is)′

(
f is(x)

)
| ≤ 4 · 2n(is,m

′) ≤ 4 · 2n(is,m−1)+1.

Gathering (A.6)–(A.9) we obtain for C = ϑ+ p+ 3

(A.10)
diam

(
fm
′
(B)

)

diam(B)
≤ 2

Cφ(m)−
(
k′+
∑m′−1

j=1
kc(f

j(x))
)
.

In case (i) but not (ii) we have

(A.11)
diam fm

′
(B)

diamB
≥ 1

4
.

This together with (A.10) gives

1

4
≤ 2

Cφ(m)−
(
k′+
∑m′−1

j=1
kc(f

j(x))
)
.

Hence

(A.12) k′ +
m′−1∑

j=1

kc
(
f j(x)

)
≤ Cφ(m) + 2 ≤ (C + 2)φ(m).

In the case (ii) we also obtain (A.11). Since otherwise fm
′
(B) ⊂ B and conse-

quently the family of functions (f tm|B)t=1,2,... is normal, which contradicts the
fact that c ∈ J(f) . Therefore (A.12) holds in this case too. In the case (iii), we
have (A.12) trivially by k′ = 0, m′ = 1. Finally we can change in (A.12) m′ to
m since kc

(
f j(x)

)
= 0 for all j = m′, . . . ,m− 1. This together with (A.4) proves

the lemma.
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The proof of Lemma 5.4 is now the same as in [DPU]. The idea is to find
0 ≤ n1 ≤ n , where kc(f

n1(z)) attains its maximum, next n2 = r where kc
(
fr(z)

)

on n1 < r ≤ n attains its maximum, etc., and to use Lemma A.2 for blocks
[0, n1], [n1, n2], . . . , [nk, n] . The index omitted in the sum is n1 . Next do the
same with every other critical point c and sum up the resulting inequalities over
c ∈ J(f) .

Appendix B

Backward asymptotic stability. Recall that for a rational map f : C→ C
a critical point in J(f) is called exposed if its forward trajectory does not contain
any other critical point. Let Ω denote the set of all periodic parabolic points.
Given x ∈ J(f) and δ > 0 denote by N (x, δ) the set of all integers n ≥ 0 such
that fn(x) /∈ B(Ω, δ) .

Theorem B.1. Suppose that for every exposed f -critical point c ∈ J(f)
and every δ > 0

(B.1)
∑

n∈N (f(c),δ)

|(fn)′
(
f(c)

)
|−1 <∞.

Then there exists θ > 0 and αn → 0 such that for every non-parabolic x ∈
J(f) , every n ≥ 0 , and every component W of f−n

(
B
(
x, θ dist(x,Ω)

))
, we have

diam(W ) ≤ αn .

Proof. In absence of parabolic points, with θ dist(x,Ω) replaced by θ , this
theorem coincides with [P1, Remark 3.2]. The proof was not explicitly written
there, only ingredients were provided. We will first prove Theorem B.1 in this
case and only at the end we will indicate the modifications that should be done to
prove the parabolic case.

Let N be the maximal nonnegative integer such that there exist c, c′ ∈
Crit(f) ∩ J(f) for which fN (c) = c′ . Denote the set of all exposed critical points
in J(f) by Crite(f) . It is easy to find a sequence bn > 0, n = 1, 2, . . . , such that

(B.2) λn := bn min

{(N+1∑

j=0

|(fn−1+j)′(f(c))|−1

)−1

: c ∈ Crite(f)

}
→∞,

∑
bn <∞ and in addition

(B.3)
∞∏

n=1

(1− bn) >
3

4
.

Set also λ0 = 1 and then set

C5 = inf λn and C6 = sup
diam(W )

diam(B)
|(f j)′(y)|,
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where the supremum is taken over all disks B and components W of f−j(B)
for all j = 0, 1, . . . , N + 1, and y ∈ W . It is easy to see that C6 < ∞ , [P1,
Lemma 1.3].

Let N0 ≥ N be such that λn ≥ 8C1C6 for all n ≥ N0 . Here C1 is the
constant from Lemma 2.5(a) for D = 0. Then C2 = 1, see for example [P1, (1.1)].

We consider θ0 so small that if B(x, 2θ0) contains a critical point in J(f)
but no other critical point has this critical former point in its forward trajectory,
and if f−n

(
B(x, 2θ0)

)
∩ Crit(f) 6= ∅ , then n > N0 .

For every θ > 0 let θ′ := sup diam(W ) , where the supremum is taken over all
components W of f−j(B) for all j = 0, 1, . . . , N + 1, and B , disks of radius θ . If
θ → 0, then of course θ′ → 0. We consider only θ small enough so that θ′ ≤ θ0 .
Now given a disk B = B(x, 2θ) and given a backward trajectory x = x0, x1, . . . ,
f(xj) = xj−1 we consider disks

Bs = B

(
x, 2θ

s∏

j=1

(1− bj)
)

together with connected components Ws of f−s(Bs) such that Ws 3 xs (this
is a so-called “shrinking neighbourhoods” procedure: ([P1], [GS]) until Ws , for
s = s0 , contains a critical point for the first time. Denote this critical point by c .
Of course it can happen that we never capture a critical point; then we set s0 =∞
and say that we have an infinite block. By Lemma 2.5(a) we have for s = s0

(B.4)
diam

(
Comp

(
xs−1, f

s−1, B(x, θ)
))
≤ diam

(
f(Ws)

)

≤ C1|(fs−1)′(f(c)|−1b−1
s 2θ ≤ C1λ

−1
s 2θ ≤ 2C1C

−1
5 θ.

Suppose now that s0 = 1, i.e., c ∈W1 . Then let 0 ≤ j ≤ N be the largest integer
such that Comp(xj+1, f

j ,W1) ∩ f−j({c}) consists of a critical point. (This is a
singleton if θ is small enough.) We call (x0, . . . , xj+1) a critical block, with respect
to θ . Then by definition of θ′

r := diam
(
Comp

(
xj+1, f

j+1, B(x, θ)
))
≤ θ′ ≤ θ0.

The critical block (x0, . . . , xj+1) is followed by a block (xj+1, . . . , xj+1+s0) defined
as above for the sequence xj+1, xj+2, . . . and the disk B = B(xj+1, 2r) . By the
definition of θ0 this block is long, namely s0 > N0 . Denote the critical point
captured by Ws0 by c′ . Then, as in (B.4), for s = s0

diam
(
Comp(x(j+1)+(s−1), f

j+s, B
(
x, θ)

))
≤ diam

(
f(Ws)

)

≤ C1|(fs−1)′
(
f(c′)

)
|−1b−1

s 2r

≤ C1|(f (s−1)+(j+1))′
(
f(c′)

)
|−1|(f j+1)′

(
fs(c′)

)
|b−1
s 2r.
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We have

(B.5) |(f (s+j)′
(
f(c′)

)
|−1b−1

s ≤ λ−1
s

and |(f j+1)′
(
fs(c′)

)
|r ≤ C62θ . Hence

(B.6) diam
(
Comp(xj+s, f

j+s, B
(
x, θ)

))
≤ 4C1C6λ

−1
s θ ≤ 1

2θ.

Fix now x ∈ J(f) and its backward trajectory (xs) and divide it into blocks as
follows. The first block is x0, . . . , xs0−1 defined as above for the disk B(x, 2θ−)
for θ− := 1

2C
−1
1 C5θ . If s0 = 1, this block does not appear. By (B.4)

(B.7) Comp
(
xs0−1, f

s0−1, B(x, θ−)
)
⊂ B(xs0−1, θ).

The next block is composed of a critical block followed by a long block, for the
sequence xs0−1, xs0 , . . . and the disk B = B(xs0−1, 2θ) . By (B.6), for s + j
appearing there, denoted below by s1 , we obtain

(B.8) Comp
(
xs1 , f

s1 , B(xs0−1, θ)
)
⊂ B(xs1 ,

1
2θ).

We continue with blocks composed of critical blocks followed by long ones and we
obtain for Σn =

∑n
j=0 sj − 1

Comp
(
xΣn , f

Σn , B(x, θ−)
)
⊂ B(xΣn , 2

−nθ).

Note that if θ → 0, r → 0 (see the paragraph where we introduced the long block
notion), then

sup
0≤s′<s

{
diam

(
Comp(xj+1+s′ , f

s′ , B
(
xj+1, r)

))}
→ 0.

This is so by Lemma 2.4 applied with M = 0, since the adequate branches of f−s
′

extend to B(xj+1,
3
2r) ; see (B.3). Therefore diam

(
Comp(xj , f

j , B(x, θ−)
)
→ 0

and the convergence is uniform. Otherwise, if there existed L > 0 and sequences
x(k) and n(k) such that

diam
(
Comp(x(k)Σn(k)

, fΣn(k) , B
(
x(k), θ−

))
≥ L

and Σn(k) → ∞ , then n(k) would be bounded. So, there would exist k with
an arbitrarily long block. Hence, in (B.7), if this is the first block, or in (B.8)
for one of the blocks which follow, the diameter of the right-hand ball could be θ
multiplied by an arbitrarily small factor. So, the estimate by L resulting from the
composition of blocks would be false. This is a contradiction.
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Finally if an infinite block occurs after a sequence of finite blocks, the con-
vergence is also uniform since the convergence along infinite blocks is uniform (see
Lemma 2.4).

Consider now the case when Ω 6= ∅ . Then, similarly as in the proof of
Theorem 5.2, we set bn = 0 for all n such that n and n − 1 /∈ N (δ) , where
N (δ) :=

⋃
c∈Crite N

(
f(c), δ

)
. For other n , i.e., such that there exists c ∈ Crite

for which fn−1
(
f(c)

)
/∈ B(Ω, δ) or fn

(
f(c)

)
/∈ B(Ω, δ) , we find bn such that∑

bn < ∞ , moreover (B.3) holds, and (B.2) holds with
∑N+1
j=0 replaced by the

sum only over j ∈ [0, N + 1] ∩N (δ) .
Let nj be all consecutive integers in N (δ) . Then we modify the definition

of N0 so that λn ≥ 8C1C6 for all n = nj ≥ N0 .
We consider x or x1 /∈ B(Ω, δ) and proceed as in the case when Ω = ∅ case,

getting bn 6= 0 whenever Wn captures a critical point. This gives the needed
Koebe’s space (see the proof of Theorem 5.2, Step 2). Finally for a critical block
x, x1, . . . , xj+1 followed by xj+1, . . . , xj+1+s we can prove (B.6) due to (B.5). The
latter holds since s+j ∈ N (f(c′), δ) which is true since f s+j−1

(
f(c′)

)
∈ B(c, θ0) .

So fs+j−1
(
f(c′)

)
/∈ B(Ω, δ) , for θ , δ small enough.

Added in proof. Theorem 1.1 was proved independently by Yin Yongcheng:
Geometry and dimension of Julia sets. - In: The Mandebrot Set, Theme and
Variations, edited by Tan Lei. London Mathematical Society Lecture Notes Series
274, Cambridge Univ. Press, 2000, 281–287.
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[ADU] Aaronson, J., M. Denker, and M. Urbański: Ergodic theory for Markov fibred sys-
tems and parabolic rational maps. - Trans. Amer. Math. Soc. 337, 1993, 495–548.

[CE1] Collet, P., and J.-P. Eckmann: On the abundance of aperiodic behaviour for maps on
the interval. - Comm. Math. Phys. 73, 1980, 115–160.

[CE2] Collet, P., and J.-P. Eckmann: Positive Lyapunov exponents and absolute continuity
for maps of the interval. - Ergodic Theory Dynam. Systems 3, 1983, 13–46.

[CJY] Carleson, L., P. Jones, and J.-C. Yoccoz: Julia and John. - Bol. Soc. Brasil. Mat.
25, 1994, 1–30.

[DH Douady, A., and J.H. Hubbard: Etude dynamique des polynomes complexes (Deuxième
partie). - Publ. Math. Orsay 85.4.

[DPU] Denker, M., F. Przytycki, and M. Urbański: On the transfer operator for rational
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