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Abstract. In this paper we study removable singularities for Hardy Hp spaces of analytic
functions on general domains, mainly for 0 < p < 1 . For each p < 1 we prove that there is
a self-similar linear Cantor set with Hausdorff dimension greater than 0.4p removable for Hp ,
thereby obtaining the first removable sets with positive Hausdorff dimension for 0 < p < 1 . (Cf.
the author’s older result that a set E removable for Hp , 0 < p < 1 , must satisfy dimE ≤ p .) We
use this to extend some results earlier proved for 1 ≤ p <∞ to 0 < p <∞ or 1

2 ≤ p <∞ .

1. Introduction

Let S = C∪{∞} be the Riemann sphere and A(Ω) = {f : f is analytic in Ω} .

Definition 1.1. For 0 < p <∞ and a domain Ω ⊂ S let

Hp(Ω) = {f ∈ A(Ω) : |f |p ≤ u in Ω for some harmonic function u},
H∞(Ω) = {f ∈ A(Ω) : supz∈Ω |f(z)| <∞}.

Let further, ‖f‖Hp(Ω) = u(a)1/p for f ∈ Hp(Ω), where u is the (pointwise)
least harmonic majorant of |f |p in Ω, and a ∈ Ω is the norming-point. Let also
‖f‖H∞(Ω) = supz∈Ω |f(z)| .

For 1 ≤ p ≤ ∞ , Hp(Ω) is a Banach space, for 0 < p < 1, Hp(Ω) is a
quasi-Banach space.

Definition 1.2. Let 0 < p ≤ ∞ , Ω ⊂ S be a domain and E ⊂ Ω be relatively
closed in Ω such that Ω \ E is also a domain. Then E is weakly removable for
Hp(Ω \E) if Hp(Ω \E) ⊂ A(Ω). Further, E is strongly removable for Hp(Ω \E)
if Hp(Ω \ E) = Hp(Ω) (as sets).
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It is clear that if E is strongly removable for Hp(Ω \ E) , then it is also
weakly removable for Hp(Ω \ E) . If E is compact more is true. Theorem 4.5
in Björn [4], essentially due to Hejhal, shows that if K is compact and weakly
removable for one domain Ω ⊃ K , then K is strongly removable for all domains
Ω ⊃ K . Hence, for compact K we just say that K is removable for Hp , without
specifying weak/strong or the domain.

For H∞ it is easy to see that weak and strong removability is the same for all
sets, not only for compact sets. Removable singularities for H∞ have been studied
by many people for more than a century, we will only use it for comparison.

We want to recall that, if E is weakly removable for Hp(Ω \ E) and q > p ,
then Hq(Ω \ E) ⊂ Hp(Ω \ E) ⊂ A(Ω), and hence, E is weakly removable for
Hq(Ω \ E) .

In Björn [1], [2], [4] weakly removable sets were called “I-removable” or “re-
movable in the first sense”, and strongly removable sets were called “II-removable”
or “removable in the second sense”. In the earlier literature the two types of re-
movability were not treated simultaneously. However, most of the earlier papers
dealt only with the compact case.

The following characterization for weakly removable sets was given in Björn [4].

Theorem 1.3. Let 0 < p ≤ ∞ . Let Ω ⊂ S be a domain and E ⊂ Ω be
such that Ω \ E is also a domain. Then E is weakly removable for Hp(Ω \ E)
if and only if E can be written as a countable union of well-separated com-
pact sets K1 , K2, . . . , removable for Hp , where by well-separated we mean that
dist

(
Kk,

⋃∞
j=1,j 6=kKj

)
> 0 for k = 1, 2, . . . .

Since it is well known that weakly removable sets are totally disconnected (it
follows from the same property for p = ∞), the condition of well-separatedness
on the compact sets Kk can be equivalently stated by saying that Kk should be
pairwise disjoint compact sets such that the sets

⋃∞
j=kKj are relatively closed

subsets of Ω for k = 1, 2, . . . . The theorem was stated and proved in this form as
Theorem 4.10 in Björn [4].

This theorem shows that a set E weakly removable for Hp(Ω \ E) for some
domain Ω ⊃ E with Ω \ E being a domain, is weakly removable for all domains
Ω ⊃ E , with Ω \ E being a domain. Thus we usually just say that a set E is
weakly removable for Hp without specifying the domain.

The first one to study removable singularities for Hp spaces, p < ∞ , was
Parreau [19], [20] in the early 1950s, and soon afterwards Rudin [21]. In the
late 1960s Heins [11] and Yamashita [23], [24] wrote some papers. In the 1970s
important contributions were made by Hejhal [12], [13], Kobayashi [15], [16] and
Hasumi [9].

Removability is a conformal invariant. The major motivation at this time was
to find out if different p give different removable singularities, and hence different
conformal invariants.
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Hejhal [12], [13] made important partial solutions to this problem. Kobayashi
[15], [16] refined Hejhal’s methods finally obtaining that, if 0 < p < q ≤ ∞ and
q ≥ 1, then there is a compact set removable for Hq but not removable for Hp .
At about the same time as Kobayashi obtained his result, Hasumi [9] obtained
the same result without the restriction q ≥ 1 in an even more general form; we
refer to Hasumi [9] or Björn [4] for the exact formulation. Hasumi used a method
completely different from the method used by Hejhal and Kobayashi.

In the 1980s Järvi [14] wrote a paper on the higher dimensional case, Conway–
Dudziak–Straube [7] wrote a paper on the related problem of isometrically remov-
able singularities including the higher dimensional case and Øksendal [18] wrote a
paper on singularities lying on curves. After that only the author seems to have
studied the problem.

We refer to Björn [4] for a more detailed survey.

Most of the above papers and results were only obtained for p ≥ 1, which is
not the major concern of this paper.

Relatively closed subsets of zero logarithmic capacity are always strongly re-
movable for all Hp , 0 < p ≤ ∞ , see Conway–Dudziak–Straube [7]. The above
mentioned result by Hasumi is another of the few results available for p < 1. It
is easy to see (by looking at the construction) that all the sets Hasumi constructs
have zero Hausdorff dimension. Of course, we can use Theorem 1.3 to obtain more
removable sets, but still all of these sets have zero Hausdorff dimension.

Hasumi’s examples show that there are zero-dimensional compact sets not
removable for any Hp , 0 < p < ∞ . This is in great contrast to Painlevé’s
theorem that all sets with zero one-dimensional Hausdorff measure are removable
for H∞ .

Kobayashi showed that there are zero-dimensional compact subsets of R not
removable for any Hp , 0 < p < 1. This is obtained by the proof of Lemma 2
in Kobayashi [16], even if it is not mentioned explicitly in the paper. Again, this
is in great contrast to the result that any subset of R with zero one-dimensional
Hausdorff measure is removable for H1 , see Björn [5] for a historical account of
this and related results.

Theorem 4.17 in Björn [4] shows that every (weakly) removable set E for Hp ,
0 < p ≤ 1, has dimE ≤ p . The result was stated in terms of Riesz capacities, we
refer to Björn [4] for the exact statement.

This is essentially all that is known about removable singularities for Hp ,
0 < p < 1, before this paper. The main result of this paper is the following
theorem, which will be proved in Section 2.

Theorem 1.4. Let 0 < p < 1 . Then there exists α such that the linear
self-similar Cantor set Cα , defined in Definition 2.1, is removable for Hp and
dimCα > 0.4p . If p ≤ 0.65 , then α can be chosen so that dimCα > 0.5p , and if
p ≤ 0.4 , α can be chosen so that dimCα > 0.6p .
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The method used in Section 2 is partially similar to the method that was used
in Björn [1, Section 8], to obtain removability results for planar Cantor sets for
Hp , 1 ≤ p < ∞ . More precisely, Proposition 2.2 and Lemmas 2.5 and 2.7 are
modifications of results in Björn [1, Section 8], to linear Cantor sets.

In Section 3 we use Theorem 1.4 to extend several results given in Björn [4]
for 1 ≤ p < ∞ , to 0 < p < ∞ or 1

2 ≤ p < ∞ . In Section 4 we draw some
conclusions and make three conjectures.

We conclude this section with some notation that we will need. Let D(z0, r) =
{z ∈ C : |z − z0| < r} , D = D(0, 1) and δD(z0, r) = D(z0, δr) . Let further dim
denote the Hausdorff dimension and ω(E; Ω, z0) denote the harmonic measure of
the set E ⊂ ∂Ω for the domain Ω evaluated at z0 ∈ Ω.

By a domain we mean a non-empty open connected set. Because of the unique-
ness theorem for analytic functions we will not distinguish between restrictions and
extensions of analytic functions.

2. Removability for Cantor sets

Henry Smith [22, Sections 15–16], used some Cantor-type sets in 1875. It was
not until 1883 that Georg Cantor [6, p. 590] (p. 407 in Acta Math.), used them.
Despite this we will join the mathematical tradition and call these sets Cantor
sets.

Definition 2.1. Let 0 < α < 1
2 be fixed. Let C(0) = [0, 1] and let C(1)

be the set remaining after having removed the open middle part of length 1− 2α
from the interval. Continue in this way by letting C (m+1) be the set remaining
after having removed the open middle parts of length (1 − 2α)αm from each of
the intervals in C(m) . The set C(m) consists of 2m disjoint closed intervals of

length αm , call them I
(m)
j , j = 1, . . . , 2m , numbered from the left. Finally let

Cα =
⋂∞
m=0 C

(m) .
Then Cα is a (linear self-similar) Cantor set in R ⊂ C .

The set C(m) is composed of intervals. For us it will be advantageous to
work with discs rather than intervals. For this reason we here give an alternative
characterization of Cα .

Proposition 2.2. Let 0 < α < 1
2 . Let D

(m)
j be the smallest closed disc

containing I
(m)
j , thus having diameter αm . Then

Cα =
∞⋂
m=0

2m⋃
j=1

D
(m)
j .

Proof. It is immediate that

Cα =
∞⋂
m=0

2m⋃
j=1

I
(m)
j ⊂

∞⋂
m=0

2m⋃
j=1

D
(m)
j .
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For the converse, let z ∈ ⋂∞m=0

⋃2m

j=1D
(m)
j . For each m there exists jm such that

z ∈ D(m)
jm

and thus

dist(z, C(m)) ≤ dist(z, I
(m)
jm

) ≤ 1
2α

m → 0, as m→∞.

Hence dist(z, Cα) = 0 and since Cα is closed we have z ∈ Cα .

Lemma 2.3. Let Cα be as above, then dimCα = − log 2/ logα .

A proof of this fact can be found in many places, e.g. Section 4.10 in Mat-
tila [17].

2.1. Removability results. Our main tool is the following result.

Proposition 2.4. Let 0 < α < 1
2 be fixed and let D

(m)
j be as defined in

Proposition 2.2. Let δ > 1 be so small that the discs {δ2D
(m)
j }2mj=1 are disjoint.

Let E
(m)
j = δD

(m)
j ,

Ωm = S \
2m⋃
j=1

E
(m)
j and ωm = ω( · ; Ωm,∞).

Assume that there is M > 0 such that

ωm(∂E
(m)
j ) ≥Mm for all m ≥ 0, 1 ≤ j ≤ 2m.

(It follows that M ≤ 1
2 .) If

p >
logM

logα
,

then Cα is removable for Hp .

Proof. For p ≥ 1 it follows from, e.g., Theorem 4.1 in Björn [5] that Cα is
always removable for Hp without any further condition on p . We restrict ourselves
to the case p < 1, and hence M > α , for the rest of this proof.

Let f ∈ Hp(S \ Cα) be arbitrary with f(∞) = 0 and ‖f‖Hp(S\Cα) ≤ 1,
where we use the norming-point ∞ . We are going to prove that f ′(∞) :=
limz→∞ z

(
f(z) − f(∞)

)
= 0 from which it follows, using Proposition 5.1 in

Björn [4], that Cα is removable for Hp .

Let U be the least harmonic majorant of |f |p in S \ Cα . Let also u
(m)
j =

min{U(z) : z ∈ ∂E(m)
j } . Using Harnack’s inequality in the annulus δ2D

(m)
j \D(m)

j ,
we see that there exists a constant C independent of j and m such that

|f(z)|p ≤ U(z) ≤ Cu(m)
j for all m ≥ 0, 1 ≤ j ≤ 2m and z ∈ ∂E(m)

j .
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Using this and Cauchy’s theorem we obtain

(1)

|f ′(∞)| = 1

2π

∣∣∣∣
∫

∂Ωm

f(z) dz

∣∣∣∣ ≤
1

2π

2m∑

j=1

∫

∂E
(m)
j

|f(z)| ds

≤ C1

2m∑

j=1

∫

∂E
(m)
j

(u
(m)
j )1/p ds = C2α

m
2m∑

j=1

(u
(m)
j )1/p,

where C1 and C2 are constants independent of m , and ds denotes arc length.
From the quasi-norm condition on f we see that

1 ≥ U(∞) =

∫

∂Ωm

U(z)ωm(dz) ≥
2m∑

j=1

u
(m)
j ωm(∂E

(m)
j ).

Now we will need the assumption that p < 1. We get

2m∑

j=1

(u
(m)
j )1/p ≤

( 2m∑

j=1

u
(m)
j

)1/p

≤

( 2m∑

j=1

u
(m)
j ωm(∂E

(m)
j )

)1/p

min
1≤j≤2m

ωm(∂E
(m)
j )1/p

≤ 1

Mm/p
.

Combining this with (1) gives us that

|f ′(∞)| ≤ C2

(
α

M1/p

)m
.

The condition on p in the statement of the theorem is equivalent to α/M 1/p < 1,
and thus the right-hand side tends to 0, as m→∞ , and f ′(∞) = 0.

Next we have a lemma that enables us to find a suitable value for the constant
M in Proposition 2.4.

Lemma 2.5. Let 0 < α < 1
2 be fixed and let E

(m)
j , Ωm , ωm and δ > 1 be

as in Proposition 2.4. Let

D = D(0, r), r =
αδ

2− 3αδ
,

Dj = D

(
(−1)j(α− α2)

2− 3αδ
, r0

)
, r0 = αr,

u(z) = ω(∂D; D \D, z) =
log |z|
log r

,

u0(z) = ω
(
∂D0; D \ (D0 ∪D1), z

)
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for z ∈ D \D and j = 0, 1 . Let r̃ satisfy r < r̃ < 1 and assume that

u0(z) ≥Mu(z) for |z| = r̃.

Then

ωm+1(∂E
(m+1)
2j−k ) ≥Mωm(∂E

(m)
j ) for all m ≥ 0, 1 ≤ j ≤ 2m and k = 0, 1.

Proof. Let Ω be any domain containing D ∪ {∞} and let D′ = D(0, r̃) ,
Γ = ∂D′ and

µ( · ; z) =

∫

∂D

ω( · ; Ω \D ′, ζ)ω(dζ; D \D, z) for z ∈ D \D.

Using the definition, harmonicity and boundary values of the harmonic meas-
ure we get, for z0 ∈ D \D ,

ω(∂D; Ω\D, z0) =

∫

∂(D\D)

ω(∂D; Ω\D, ζ)ω(dζ; D\D, z0)

=

∫

∂D

ω(dζ; D\D, z0)

+

∫

∂D

∫

∂(Ω\D ′)
ω(∂D; Ω\D, z1)ω(dz1; Ω\D ′, ζ)ω(dζ; D\D, z0)

= u(z0) +

∫

∂D

∫

Γ

ω(∂D; Ω\D, z1)ω(dz1; Ω\D ′, ζ)ω(dζ; D\D, z0)

= u(z0) +

∫

Γ

ω(∂D; Ω\D, z1)µ(dz1; z0).

By repeated use of this formula we get, for z0 ∈ D \D ,

ω(∂D; Ω \D, z0) = u(z0) +

∫

Γ

ω(∂D; Ω \D, z1)µ(dz1; z0)

= u(z0) +

∫

Γ

u(z1)µ(dz1; z0)

+

∫

Γ

∫

Γ

ω(∂D; Ω \D, z2)µ(dz2; z1)µ(dz1; z0)(2)

= · · · = u(z0) +

∞∑

k=1

∫

Γ

· · ·
∫

Γ

u(zk)µ(dzk; zk−1) · · ·µ(dz1; z0).

As Γ ⊂ D \D is compact there exists C such that

ω(∂D; D \D, z) ≤ C < 1 for |z| = r̃.
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It follows that
µ(Γ; z) ≤ C < 1 for |z| = r̃.

This justifies the last equality in (2) and shows that the infinite sum converges.
Let now

µ0( · ; z) =

∫

∂D

ω( · ; Ω \D ′, ζ)ω
(
dζ; D \ (D0 ∪D1), z

)
for z ∈ D \D.

Carleman’s principle gives directly that

µ0( · ; z) ≥ µ( · ; z) for z ∈ D \D.

Hence, for |z0| = r̃ ,

ω
(
∂D0; Ω \ (D0 ∪D1), z0

)
= u0(z0)

+

∞∑

k=1

∫

Γ

· · ·
∫

Γ

u0(zk)µ0(dzk; zk−1) · · ·µ0(dz1; z0)

≥Mu(z0)

+
∞∑

k=1

∫

Γ

· · ·
∫

Γ

Mu(zk)µ(dzk; zk−1) · · ·µ(dz1; z0)

= Mω(∂D; Ω \D, z0),

where the first equality is obtained in exactly the same way as (2) above. Thus

ω
(
∂D0; Ω \ (D0 ∪D1),∞

)
=

∫

Γ

ω
(
∂D0; Ω \ (D0 ∪D1), z

)
ω(dz; Ω \D ′,∞)

≥
∫

Γ

Mω(∂D; Ω \D, z)ω(dz; Ω \D ′,∞)

= Mω(∂D; Ω \D,∞).

And by properly rescaling and rotating the above situation we get

ωm+1(∂E
(m+1)
2j−k ) = ω(∂E

(m+1)
2j−k ; Ωm+1,∞) ≥Mω(∂E

(m)
j ; Ωm+1 \ E(m)

j ,∞)

≥Mω(∂E
(m)
j ; Ωm,∞) = Mωm(∂E

(m)
j )

for m ≥ 0, 1 ≤ j ≤ 2m and k = 0, 1. The second inequality follows from
Carleman’s principle.

We want to determine M so that we can use Lemma 2.5. In order to do that
we need to estimate how small u0(z) gets for |z| = r̃ .
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Lemma 2.6. Let u0 and r̃ be as in Lemma 2.5. Then

min
|z|=r̃

u0(z) = u0(−r̃).

Proof. Let 0 ≤ β ≤ π and let ϕ(reiθ) = rei(2β−θ) be the orthogonal reflection
in the line {z ∈ C : arg z = β} . Let v = u0 ◦ ϕ and

Ω = {z ∈ D : β < arg z < β + π} \
(
ϕ(D0) ∪D1

)
.

Both u0 and v are defined and harmonic in Ω. For z ∈ ∂ϕ(D0) ∩ ∂Ω we have
u0(z) ≤ 1 = v(z) . For z ∈ ∂D1 ∩ ∂Ω we have u0(z) = 0 ≤ v(z) . On the rest of
∂Ω, u0 and v have the same boundary values. Hence, by the maximum principle,
u0(z) ≤ v(z) for all z ∈ Ω. In particular, u0(−r̃) ≤ v(−r̃) = u0

(
r̃ei(2β−π)

)
. Since

β ∈ [0, π] was arbitrary the result follows.

We also want to choose r̃ optimally. We do not need to prove that the choice
we will make is optimal, but as it is very easy to do we prove optimality.

Lemma 2.7. Let u , u0 and r be as in Lemma 2.5. Then the function M
defined by

M(r̃) = min
|z|=r̃

u0(z)

u(z)
for r < r̃ < 1

is non-decreasing.

Proof. Let r < r1 < r2 < 1, D′ = D(0, r1) and |z| = r2 . Then

u0(z) =

∫

∂D′
u0(ζ)ω(dζ; D\D ′, z) ≥

∫

∂D′
M(r1)u(ζ)ω(dζ; D\D ′, z) = M(r1)u(z).

We are now ready to combine Proposition 2.4 with Lemmas 2.5 and 2.6 using
the optimal choice of r̃ we found in Lemma 2.7.

Theorem 2.8. Let 0 < α < 1
2 be fixed, and let u(δ) and u

(δ)
0 be defined as

u and u0 in Lemma 2.5 for a given δ ≥ 1 . Let

M̃ =
u

(1)
0

′
(−1)

u(1)′(−1)
,

where the derivatives should be understood as the partial derivatives along the
R -axis. If

p >
log M̃

logα
,

then Cα is removable for Hp .
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Proof. It follows directly from the expression for u given in the statement

of Lemma 2.5 that u(δ)′(−1) is non-zero and depends continuously on δ . It is

not hard to argue that also u
(δ)
0

′
(−1) is non-zero and depends continuously on δ .

Using l’Hopital’s rule, Lemma 2.6 and the fact that u is constant on circles with
centre at the origin, we obtain

M̃ = lim
δ→1+

u
(δ)
0

′
(−1)

u(δ)′(−1)
= lim
δ→1+

lim
r̃→1−

u
(δ)
0 (−r̃)
u(δ)(−r̃) = lim

δ→1+

lim
r̃→1−

min
|z|=r̃

u
(δ)
0 (z)

u(δ)(z)
.

Thus we can find M > 0, δ > 1 and r̃ with r < r̃ < 1 such that

u
(δ)
0 (z) ≥Mu(δ)(z) for |z| = r̃ and p >

logM

logα
.

It now follows from Proposition 2.4 and Lemma 2.5 that Cα is removable
for Hp .

2.2. Estimating u0 . We are able to calculate u(1)′(−1) exactly, but for

u
(1)
0

′
(−1) we have to use estimates. We need an underestimate for M̃ and hence

an underestimate for u
(1)
0

′
(−1). We will use the following lemma.

Lemma 2.9. Let 0 < α < 1
2 be fixed and let r , r0 , D0 and u0 be as defined

in Lemma 2.5 for δ = 1 . Let also

v(z) = ω(∂D0; D \D0, z) for z ∈ D \D0,

a = r − 2r0 =
α(1− 2α)

2− 3α
,

b =
1 + ar −

√
(1− a2)(1− r2)

a+ r
,

A = v(−a),

B = v(−r),

ϕ(z) =
z − b
1− bz for z ∈ D.

Then

u′0(−1) >
A(1 + b)2 − (1− b)2

(1− b2)(1−AB) logϕ(r)
.

Proof. We have D0 ∩ R = (a, r) and it can be easily checked that ϕ(a) =
−ϕ(r) , hence ϕ(D0) = D(0, ϕ(r)) and b is the hyperbolic centre of D0 .

Since ϕ maps D \D0 conformally onto D \D(0, ϕ(r)), we have

v(z) =
log |ϕ(z)|
logϕ(r)

.
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Let D1 be as in Lemma 2.5 and

ṽ(z) =
v(z)−Av(−z)

1−AB for z ∈ D \ (D0 ∪D1).

The constants A and B were chosen so that B ≤ v(z) ≤ A for z ∈ D1 . It
follows that ṽ(z) ≤ 1 for z ∈ ∂D0 , ṽ(z) ≤ 0 for z ∈ ∂D1 , ṽ(z) = 0 for z ∈ ∂D
and as ṽ is harmonic in D \ (D0 ∪D1) , we obtain

ṽ(z) ≤ u0(z) for z ∈ D \ (D0 ∪D1).

Since ṽ(a) < 1 = u0(a) , ṽ 6≡ u0 . Let r < r̃ < 1. By the maximum
principle there exists C < 1 such that ṽ(z) ≤ Cu0(z) for |z| = r̃ . It follows,
again by the maximum principle, that the inequality holds for r̃ ≤ |z| < 1. Since
u0(−1) = ṽ(−1) = 0, we get

u′0(−1) > ṽ′(−1) =
v′(−1) +Av′(1)

1−AB .

Using that

v′(−1) = − ϕ′(−1)

logϕ(r)
= − 1− b2

(1 + b)2 logϕ(r)
= − (1− b)2

(1− b2) logϕ(r)

and

v′(1) =
ϕ′(1)

logϕ(r)
=

1− b2
(1− b)2 logϕ(r)

=
(1 + b)2

(1− b2) logϕ(r)

the result follows.

Corollary 2.10. Let 0 < α < 1
2 be fixed, and let A , B , b , r and ϕ be as

given in Lemma 2.9. Let also

M ′ =

(
(1− b)2 −A(1 + b)2

)
log r

(1− b2)(1−AB) logϕ(r)
.

If

p ≥ logM ′

logα
,

then Cα is removable for Hp .

Proof. Let u be as given in Lemma 2.5 for δ = 1, then u′(−1) = −1/ log r .
The corollary thus follows from Theorem 2.8 and Lemma 2.9.
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2.3. Explicit values for removability. We are now ready to prove Theo-
rem 1.4.

Proof. The following table lists, for various values of α , an underestimate
for dimCα and an overestimate for p given by Corollary 2.10 such that Cα is
removable for Hp , and hence for all larger p .

α dimCα p

0.0010 0.1002 0.1505

0.0020 0.1114 0.1667

0.0038 0.1243 0.1855

0.0067 0.1384 0.2067

0.0110 0.1536 0.2305

0.0166 0.1690 0.2558

0.0230 0.1836 0.2813

0.0296 0.1968 0.3056

0.0359 0.2082 0.3279

0.0413 0.2174 0.3466

0.0458 0.2247 0.3622

0.0493 0.2302 0.3742

0.0520 0.2343 0.3836

0.0539 0.2372 0.3902

α dimCα p

0.0553 0.2393 0.3950

0.0563 0.2408 0.3985

0.0793 0.2734 0.4815

0.0959 0.2956 0.5464

0.1065 0.3094 0.5911

0.1127 0.3174 0.6185

0.1162 0.3219 0.6345

0.1181 0.3244 0.6433

0.1192 0.3258 0.6484

0.1505 0.3659 0.8140

0.1662 0.3861 0.9144

0.1733 0.3954 0.9649

0.1764 0.3994 0.9880

0.1777 0.4011 0.9980

For 0.1505 ≤ p < 1 pick α in the table as large as possible to that Cα is
removable for Hp . It is easy to see that dimCα > 0.4p . It is also easy to see that
for 0.1505 ≤ p ≤ 0.65, dimCα > 0.5p and for 0.1505 ≤ p ≤ 0.4, dimCα > 0.6p .

For small p we need to estimate M ′ , from Corollary 2.10, further. This part
of the proof works for p ≤ 0.164.

Let 0 < α ≤ 0.001 be fixed. Let A , B , a , b , r , r0 and ϕ be as in Lemma 2.9.
We know that 0 < a < b < r ≤ 1

1997 . Moreover, the hyperbolic distance between
a and b is the same as the hyperbolic distance between b and r , by the choice
of b . Hence, the Euclidean distance between a and b is larger than the Euclidean
distance between b and r . Thus

r − b < r0 < b− a.
We next want to prove that 0.476 < B < A < 1

2 < log r/ logϕ(r) . The
inequality B < A is clear; see the proof of Lemma 2.9. We have, using that
r ≤ 1

1997 ,

|ϕ(−a)| = a+ b

1 + ab
>

2a

1 + r2
=

2α(1− 2α)

(2− 3α)(1 + r2)
> 0.99α,
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and

(3) ϕ(r) =
r − b
1− br <

r0

1− r2
=

α2

(2− 3α)(1− r2)
< 0.51α2 < (0.99α)2.

Thus

A =
log |ϕ(−a)|

logϕ(r)
<

log 0.99α

log(0.99α)2
=

1

2
.

Next, we have

(4) ϕ(r) = −ϕ(a) =
b− a
1− ab > r0 >

α2

2
,

and therefore
log r

logϕ(r)
>

log
(
α/
√

2
)

log 1
2α

2
=

1

2
.

Finally

|ϕ(−r)| = b+ r

1 + br
< 2r =

2α

2− 3α
< 1.0016α,

which together with (4) gives

(5)

B =
log |ϕ(−r)|

logϕ(r)
>

log 1.0016α

log 1
2α

2
=

1 + log 1.0016/ logα

2− log 2/ logα

≥ 1 + log 1.0016/ log 0.001

2− log 2/ log 0.001
> 0.476.

Thus we have proved

0.476 < B < A <
1

2
<

log r

logϕ(r)
.

Next we have

(1− b)2 −A(1 + b)2 > (1− b)2 − 1
2 (1 + b)2 > 1

2 − 3b > 1
2 − 3r > 0.4984.

Hence, letting M ′ be as defined in Corollary 2.10, we have

M ′ >
0.4984 · 1

2

1− 0.4762
> 0.322.

So for p ≤ 0.164, if we let α = 0.3221/p < 0.001, then Cα is removable for Hp

and
dimCα

p
=
− log 2

log 0.322
> 0.6116.

Remark. It can be seen from the table that C0.0038 is removable for H0.1855

and that dimC0.0038 > 0.67 · 0.1855. In fact, with a more detailed table one can
show that for 0.18 ≤ p ≤ 0.20 there is α such that Cα is removable for Hp and
dimCα > 0.67p . We refrain from giving such a table here.
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From (5) we see that limα→0+ B = 1
2 , hence also limα→0+ A = 1

2 . Using (3)
we also have

1

2
<

log r

logϕ(r)
<

log 1
2α

log 0.51α2
,

and thus so limα→0+ log r/ logϕ(r) = 1
2 . Hence, limα→0+ M

′ = 1
3 . If we let

p = logM ′/ logα , we have limα→0+ dimCα/p = log 2/ log 3 = 0.6309. . . .
We conclude that the largest quotient dimCα/p given by Corollary 2.10 is

not obtained for very small p , but seems to be obtained for p ≈ 0.19.

3. Properties of removable sets

In this section we use Theorem 1.4 to extend Propositions 4.12 and 5.11 in
Björn [4] to 0 < p < ∞ , and Propositions 4.11, 4.14 and 5.10 in Björn [4] to
1
2 ≤ p <∞ . In Björn [4] they were all proved for 1 ≤ p <∞ .

Proposition 3.1. Let 0 < p < ∞ . Then there exists a domain Ω ⊂ C and
a set E ⊂ Ω , with Ω \E being a domain, such that E is weakly but not strongly
removable for Hp(Ω \ E) .

Remark. As was already remarked in the introduction, this theorem is false
for p =∞ . In fact, all the results in this section are false for p =∞ . This is easy
to see except for, perhaps, Corollary 3.2.

Proof. This was proved for 1 ≤ p < ∞ in Proposition 4.12 in Björn [4]. We
therefore assume that 0 < p < 1 here.

Let α be given by Theorem 1.4 so that Cα is removable for Hp . Let A =
Cα − 1

2 , then A is a set with the properties (a)–(e) in the proof of Lemma 2
in Kobayashi [16]. Let B =

⋃∞
k=−∞(A + 2k) , h(z) = 1/z , E = h(B) and

F = E ∪ {0} . By the proof of Lemma 2 in Kobayashi [16] the compact set F is
not removable for Hp(S \ F ) .

Let Ω = C\{0} . As finite sets are removable, Hp(Ω) = Hp(S) 6= Hp(S\F ) =
Hp(Ω \ E) , i.e. E is not strongly removable for Hp(Ω \ E) .

However, let f ∈ Hp(Ω \ E) . By conformal invariance f ◦ h ∈ Hp(Ω \ B) .
Since Cα is removable for Hp we can continue f ◦ h analytically to A + 2k for
each k , so f ◦ h ∈ A(Ω), and hence f ∈ A(Ω). Thus E is weakly removable
for Hp(Ω \ E) .

Corollary 3.2. Let 0 < p < ∞ . Then there exists a countable family
of disjoint compact sets K1 , K2, . . . , such that Kj is removable for Hp for all
j = 1, 2, . . . , but

⋃∞
j=1Kj is a compact set not removable for Hp .

Furthermore, there exists a sequence of compact sets K ′1 ⊂ K ′2 ⊂ · · · , remov-
able for Hp , but with

⋃∞
j=1K

′
j being a compact set not removable for Hp .

Proof. By the proof of Proposition 3.1, if 0 < p < 1, and Proposition 4.12 in
Björn [4], if 1 ≤ p <∞ , one can choose the domain Ω = C\{0} in Proposition 3.1.
Let also E be as given by Proposition 3.1.
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As E is weakly removable, we can use Theorem 1.3 to write E as a union of
disjoint compact sets K2 , K3, . . . , removable for Hp . Let K1 = {0,∞} and
K =

⋃∞
j=1Kj . If K were removable for Hp we would have Hp(Ω \ E) =

Hp(S \K) = Hp(S) = Hp(Ω), contradicting the fact that E was not strongly
removable for Hp(Ω \ E) . This concludes the first part.

The second part is obtained by letting K ′k =
⋃k
j=1Kj , k = 1, 2, . . . , since K ′k

is removable for Hp by Theorem 1.3.

Remarks. A direct consequence is that Proposition 5.11 in Björn [4] is true
for 0 < p <∞ .

This corollary also shows that the condition of well-separatedness in Theo-
rem 1.3 is needed for all 0 < p < ∞ . Furthermore, it shows that Proposition 4.8
in Björn [4] cannot be extended to countable unions for any 0 < p <∞ .

For p = ∞ it is well known that the first part of Corollary 3.2 is false, see
Exercise 1.6, p. 12, in Garnett [8]. A direct consequence is that the condition of
well-separatedness in Theorem 1.3 is not necessary for p =∞ .

The second part of Corollary 3.2 is equivalent to the first part, and hence is
also false for p =∞ . We leave it as an exercise for the interested reader to prove
the equivalence.

Proposition 3.3. Let 1
2 ≤ p < ∞ . Then there exist compact sets K1 and

K2 removable for Hp such that K1 ∪K2 is not removable for Hp .

Remark. A direct consequence is that Proposition 5.10 in Björn [4] is true
for 1

2 ≤ p <∞ .

Proof. This was proved for p = 1 in Example 1 in Hejhal [13]; the proof was
generalized to 1 ≤ p < ∞ by Proposition 4.11 in Björn [4]. We therefore assume
that 1

2 ≤ p < 1 here.

Let A , B and F be as in the proof of Proposition 3.1. Let K1 = {z ∈ F :
z ≥ 0} and K2 = {z ∈ F : z ≤ 0} . Then F = K1 ∪K2 is not removable for Hp ,
by the proof of Proposition 3.1.

Let f ∈ Hp(S \ K1) and let u be a positive harmonic majorant of |f |p in
S \K1 . In the same way as in the proof of Proposition 3.1 we see that f can be
continued analytically to S\{0} . Thus we can write f as a Laurent series around
the origin,

f(z) =

∞∑

n=0

an
zn
, z 6= 0.

Let rk = 1/(2k+1) and mk = [6 log k]+27, k = 1, 2, . . . , then dist(rk,K1) =

rk/(4k + 3). Fix k ≥ 1 and let zj = rke
iπ(1−1/2π)j , j = 0, 1, . . . ,mk − 1 and

zmk = rk . Then |zj−zj+1| < 1
2rk(1−1/2π)j ≤ 1

2 dist(zj ,K1) , j = 0, 1, . . . ,mk−2,
as dist(zj ,K1) = rk , if (1 − 1/2π)j ≥ 1

2 , and dist(zj ,K1) ≥ rk sinπ(1 − 1/2π)j ,
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otherwise. Using that |zmk−1 − zmk | < rkπ(1− 1/2π)mk−1 , we have

dist(zmk−1,K1) ≥ dist(rk,K1)− |zmk−1 − zmk | ≥
rk
7k
− |zmk−1 − zmk |

>

(
1

7kπ(1− 1/2π)mk−1
− 1

)
|zmk−1 − zmk | > 2|zmk−1 − zmk |,

by the choice of mk .
By Harnack’s inequality there exists a constant C > 1 such that if v is a

positive harmonic function in D and ζ1, ζ2 ∈ D
(
0, 1

2

)
, then v(ζ1) < Cv(ζ2) .

We obtain u(rk) < Cu(zmk−1) < · · · < Cmku(−rk) . Obviously, we also obtain
u(z) < Cmku(−rk) for all |z| = rk .

Furthermore, u(−r2k) < Cu(−rk) and hence u(−r2l) < Clu(−r1) . More-
over, m2l < 6l + 27 ≤ 33l , if l ≥ 1. So for |z| = r2l , l ≥ 1, we have
u(z) < Cl+m2lu(−r1) < C34lu(−r1) .

Cauchy’s theorem gives, with ds denoting arc length,

|an| ≤
1

2π

∫

|z|=r
2l

|z|n−1|f(z)| ds ≤ 1

2π

∫

|z|=r
2l

|z|n−1u(z)1/p ds

< C34l/prn2lu(−r1)1/p < (C34/p2−n)lu(−r1)1/p → 0, as l→∞,

if n is so large that C34/p2−n < 1. Hence, the Laurent series expansion of f is a
finite sum and f does not have an essential singularity. It is now easy to see that
if there existed a non-constant f ∈ Hp(S \K1) , then also g ∈ Hp(S \K1) , where
g(z) = 1/z .

Let ϕ(w) = −(1−w)2/(1 +w)2 , a conformal mapping from D to S \ [0,∞] .
Then
∫ π

−π
|g ◦ ϕ(eiθ)|p dθ =

∫ π

−π

(
(1 + eiθ)(1 + e−iθ)
(1− eiθ)(1− e−iθ)

)p
dθ =

∫ π

−π

(
1 + cos θ

1− cos θ

)p
dθ

≥
∫ π/2

0

1

θ2p
dθ =∞.

Therefore, g ◦ ϕ /∈ Hp(D) , and by conformal invariance g /∈ Hp(S \ [0,∞]) ⊃
Hp(S \K1) . Hence, Hp(S \K1) = {f : f constant} and K1 is removable for Hp .
By conformal invariance also K2 is removable for Hp .

Remark. The proof actually shows that there exist compact sets K1 and
K2 removable for H1/2 , but with K1 ∪K2 not removable for any Hp , 0 < p < 1,
and with K1 ∩K2 = {0} .

Corollary 3.4. Let 1
2 ≤ p < ∞ . Then there exists a compact set K

removable for Hp , a domain Ω ⊂ S and a set E ⊂ Ω , with Ω\E being a domain,
such that E ⊂ K and E is not strongly removable for Hp(Ω \ E) .
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Remarks. This shows that subsets of strongly removable sets do not have to
be strongly removable. This is different from the situation for weak removability,
cf. Proposition 4.13 in Björn [4].

This result was proved for 1 ≤ p < ∞ in Björn [4], Proposition 4.14. The
same proof can now be used here; we repeat it for completeness.

Proof. Let K1 and K2 be as in Proposition 3.3. Let K = K1 , Ω = S\K2 and
E = K1 \K2 . By the assumption in Proposition 3.3, K1 and K2 are removable
for Hp . On the other hand, if E were strongly removable for Hp(Ω \ E) , we
would have

Hp
(
S \ (K1 ∪K2)

)
= Hp(Ω \ E) = Hp(Ω) = Hp(S \K2) = Hp(S),

and K1 ∪K2 would be removable for Hp , contradicting Proposition 3.3.

Proposition 3.5. Let 0 < p < ∞ . Then there exist domains Ω1,Ω2 ⊂ S
and a set E ⊂ Ω1∩Ω2 , with Ω1\E , Ω2\E being domains, such that E is strongly
removable for Hp(Ω1 \ E) , but E is not strongly removable for Hp(Ω2 \ E) .

Remarks. This shows that strong removability is domain dependent, which
is different from the situation for weak removability, cf. Theorem 1.3 and the
remark following it.

This result was proved for 1 ≤ p < ∞ in Björn [4], the remark following
Proposition 4.14. The same proof can be based on Proposition 3.3 proving the
result for 1

2 ≤ p <∞ . We here give a different proof for 0 < p < 1.

Proof. The result was proved for 1 ≤ p < ∞ in Björn [4], the remark
following Proposition 4.14. Therefore assume that 0 < p < 1 is fixed. Let also N
be a positive integer such that Np ≥ 1.

Let α and F be as in the proof of Proposition 3.1, let K = {z ∈ F : z ≥ 0}
and E = K \ {0} . Let Kk =

⋃k
j=0 e

ijπ/NK , k = 0, 1, . . . , N . We have

(6) Hp(S) ⊂ Hp(S \K0) ⊂ Hp(S \K1) ⊂ · · · ⊂ Hp(S \KN ).

By the proof of Lemma 2 in Kobayashi [16], Hp(S)(Hp(S\F )⊂Hp(S\KN ),
so at least one of the inclusions in (6) is proper. We shall show that at least one
is non-proper, i.e. an equality.

Let f ∈ Hp(S \ KN ) and let u be a positive harmonic majorant of |f |p in
S \KN . In the same way as in the proof of Proposition 3.1 we see that f can be
analytically continued to S \ {0} , and we can write f as a Laurent series

f(z) =
∞∑

n=0

an
zn
, z 6= 0,

as in the proof of Proposition 3.3.
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Let C > 1 be the constant from Harnack’s inequality used in the proof of
Proposition 3.3 and let rk = 1/(2k + 1). By the same argument as in Propo-
sition 3.3 we see that if |z| = rk and jπ/2N ≤ arg z ≤ (j + 1)π/2N , then
u(z) < C6 log k+27u(rke

ijπ/2N ) for k = 1, 2, . . . , and j = 0, 1, . . . , 2N − 1. If
|z| = rk , k ≥ 1 and −π ≤ arg z ≤ 0, then u(z) < C6 log k+27u(−irk) . Combining
this we see that u(z) < C(2N+1)(6 log k+27)u(−irk) for |z| = rk .

We also have u(−ir2k) < Cu(−irk) and hence u(−ir2l) < Clu(−ir1) . So for
|z| = r2l , l ≥ 1, we have u(z) < C l+(2N+1)(6l+27)u(−ir1) < C34(2N+1)lu(−ir1) .

Cauchy’s theorem gives

|an| ≤
1

2π

∫

|z|=r
2l

|z|n−1|f(z)| ds ≤ 1

2π

∫

|z|=r
2l

|z|n−1u(z)1/p ds

< C34(2N+1)l/prn2lu(−ir1)1/p < (C34(2N+1)/p2−n)lu(−ir1)1/p → 0,

as l → ∞ , if n is so large that C34(2N+1)/p2−n < 1. Hence, the Laurent series
expansion of f is a finite sum and f does not have an essential singularity.

By Theorem 10 in Hejhal [13], or the more general Theorem 5.3 in Björn [5],
KN is removable for HNp . Hence, z 7→ |z|−Np does not have a harmonic majorant
in S \ KN , so if f(z) = 1/zN , then f /∈ Hp(S \ KN ) . We thus conclude that
dimHp(S \KN ) ≤ N and, as dimHp(S) = 1, at least two of the inclusions in
(6) are non-proper.

We have proved that there are j and k such that Hp(S\Kj−1) 6= Hp(S\Kj)
and Hp(S \Kk−1) = Hp(S \Kk) . Then, by symmetry and conformal invariance
E is not strongly removable for Hp(S \ Kj) , but E is strongly removable for
Hp(S \Kk) .

4. Conclusions and conjectures

In Björn [3] it was asked if there are sets of positive Hausdorff dimension
removable for Hp , p < 1. Theorem 1.4 has now answered Problem 2c in Björn [3]
in the affirmative.

Theorem 1.4 clearly does not give the exact values for removability of linear
self-similar Cantor sets, we have had to make many estimates throughout the
proof. It is possible that Cα is removable for Hp if dimCα < p .

If we let d(p) = sup{dimK : K is removable for Hp} , we now know that

0.6p <d(p) ≤ p,
0.5p <d(p) ≤ p,
0.4p <d(p) ≤ p,

d(p) = 1,

0 <p ≤ 0.4,

0.4 <p ≤ 0.65,

0.65 <p < 1,

1 ≤ p ≤ ∞,

and that d is a non-decreasing function. The most natural choice for d(p) seems
to be min{1, p} .
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Conjecture 4.1. Let 0 < p < 1, then there exists a compact set K remov-
able for Hp with dimK = p .

This was asked as Problem 2b in Björn [3].
If this is true, then only Problems 1 and 2a in Björn [3] remain. I have no

idea of whether they are true or not, but I would like to formulate them here as
one combined important problem.

Problem 4.2. Let 0 < p < ∞ and d = min{1, p} . Does there exist a
compact set K removable for Hp with positive d -dimensional Hausdorff measure?

For p =∞ it is well known that this is true.
In Section 3 we were not able to obtain Proposition 3.3 for 0 < p < 1

2 . I
believe that this is not due to lack of removable sets, only due to lack of examples
of removable sets. I therefore would like to make the following conjecture.

Conjecture 4.3. Let 0 < p < 1
2 , then there exist two compact sets K1 and

K2 removable for Hp with K1 ∪K2 not removable for Hp .

Corollary 3.4 would of course follow for 0 < p < 1
2 . I would also like to make

the following conjecture.

Conjecture 4.4. Let 0 < p < 1 and 0 < α < β < 1
2 . If Cβ is removable for

Hp , then Cα is removable for Hp .

It is easy to believe this conjecture, but since Cα 6⊂ Cβ , unless α = β/2k ,
k = 1, 2, . . . , it seems harder to prove. Some partial results can be obtained from
the results in Section 2, e.g. if α0.6116 ≤ β ≤ 0.001 and Cβ is removable for Hp ,
then p ≥ dimCβ ≥ dimCα/0.6116, and Cα is removable for Hp , by the proof of
Theorem 1.4.
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