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Abstract. For a real number t , for ξ in Rn and for a real positive number a we define Sa

by
(Sa)(t)̂ (ξ) = eit|ξ|

a

f̂(ξ), f ∈ S (Rn).

The results in this paper concern the case 0 < a 6= 1. For 0 < a < 1 , n = 1 we improve on the
local integrability of the maximal function x 7→ ‖(Saf)[x]‖L∞(−1,1) . In higher dimensions we give
a result for radial testfunctions. For a > 1 , n = 1 we prove a weighted global estimate of which a
known L4(R) -estimate is a special case.

The methods include asymptotics for the kernel of the Fourier multiplier ξ 7→ exp(i|ξ|aa)|ξ|−2s

and Pitt’s inequality.

1. Introduction

1.1. Let u(x, t) denote the solution to the free time-dependent Schrödinger
equation ∆xu = i∂tu with initial data f , (x, t) ∈ Rn × R+ . At least for f
in the Schwartz class S (Rn) , u is represented by an oscillatory integral with
quadratic phase. We are interested in the behaviour of u(x, t) as t tends to 0.
Cf. Carleson [4], [5]. For rougher initial data this requires a method of making the
values of u precise. See e.g. Sjögren, Sjölin [19, p. 14–15].

In this as in many other papers the stated convergence problem is viewed
as a summability problem for Fourier integrals corresponding to the multiplier
m2,ma(ξ) = exp(i|ξ|a) . Accordingly we define (Saf)(t) as in the abstract and
observe that u(x, t) = (S2f)[x](t) . However, the kernel of ma does not belong to
L1(Rn) but we do have the weak unity condition ma(0) = 1.

Intimately connected with the convergence result described here are Lqloc(L∞)-
estimates, i.e. Lqloc -estimates for maximal functions. For the multiplier ma it is
known that there is regarding such estimates a significant difference between the
cases 0 < a < 1 and a > 1 when q = 2. See [31, Section 2.5, p. 488]. The
principle of duality of phases (see Stein [24, Chapter VIII, Sections 5.3 and 5.4,
pp. 357–358]) offers one way of understanding this difference.

The main purpose of this paper is to improve known one-dimensional Lqloc -
results for maximal functions in the case 0 < a < 1. We have the following
theorem.
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Theorem A. Let q = (4 − 4a)/(2 − 4s − a) . Then there is a number C
independent of f in the Schwartz class S (R) such that the inequality

(∫ 1

−1

‖(Saf)[x]‖qL∞(−1,1) dx

)1/q

≤ C ‖f‖
Ḣs(R)

holds if s is greater than and close enough to 1
4a where 0 < a < 1 .

For the definition of the spaces Ḣs(Rn) and Hs(Rn) used in this introduction
we refer to Section 2.2 below.

We also have the following theorems.

Theorem B. Let 2 ≤ q ≤ 4 . Then there is a number C independent of f in
the Schwartz class S (R) such that the inequality

(∫

R

‖(Saf)[x]‖qL∞(R) |x|q/4−1 dx

)1/q

≤ C ‖f‖
Ḣ1/4(R)

holds if a > 1 .

Theorem C. Let n > 1 . Then there is a number C independent of f in the
Schwartz subclass of radial functions such that the inequality
(∫

|x|≤1

‖(Saf)[x]‖qL∞(−1,1) dx

)1/q

≤ C ‖f‖
Ḣs(Rn)

, q =
4n(1− a)

2n(1− a) + a− 4s

holds if s is greater than and close enough to 1
4a where 0 < a < 1 .

Note that q in Theorem A is greater than 2 if the stated conditions on s
and a are fulfilled. Theorem A therefore improves our L2

loc(R)-result in [31,
Theorem 1.2(a), p. 486].

Theorem A and C are corollaries to Theorem 2.6 and 2.7 respectively. Theo-
rem B will be proved in Section 4.10.

1.2. Remark. The case q = 4 in Theorem B is in accordance with the
special case ϕ(ξ) = |ξ|a , a > 1 of Kenig, Ponce, Vega [10, Theorem 2.5, p. 41].

1.3. Earlier results. The problem sketched above was introduced in Car-
leson [5] and has been studied by many authors during recent years. We will give
a brief description of earlier results. Among other papers and reports we will men-
tion those which contain results of the category best known. With some exceptions
we will restrict ourselves to Lqloc(Rn)-results.

1.3.1. The case n = 1. As already mentioned results for 0 < a < 1 may be
found in [31]. For the case a > 1 Sjölin [20, Theorem 3 and 4, p. 700] has shown
that f ∈ Hs(R) , s ≥ 1

4 is necessary and sufficient for the local integrability of
x 7−→ ‖(Saf)[x]‖L∞(−1,1) . The best known integrability property may be found

in Kenig, Ponce, Vega [10, Theorem 2.5, p. 41]. Cf. Remark 1.2 above.
Results reminiscent of Theorem B may be found in Gülkan [7] and in Sjölin [22].
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1.3.2. The case n = 2. For the cases a = 2 and a > 1 Bourgain [3], Moyua,
Vargas, Vega [15], [16], Tao, Vargas [26] and Tao, Vargas, Vega [27] give sufficient
conditions on f ∈ Hs(R2) for the local integrability of the maximal function. The
conditions are of the type s = 1

2 − ε for some small positive number ε .

1.3.3. The case n ≥ 3. For a > 1 Sjölin [20] proved using local smoothing
that f ∈ Hs(Rn) , s > 1

2 is sufficient for the local integrability of the maximal
function, n ≥ 2. Also cf. Vega [28], Si Lei Wang [35] and [33].

The relationship between (local) smoothing and maximal estimates is ex-
plained e.g. in [20, p. 704–706] and [31, Section 2.3, p. 487–488]. For results of
which m(t, x, ρ) = exp(itρa) is a special case see Vega [29] and [32, Theorem 14.3,
p. 219]. Those results are derived without any smoothness assumptions on m .

Smoothing results in accordance with [20], [32] and [33] may be found e.g. in
Ben-Artzi, Devinatz [1], Ben-Artzi, Klainerman [2] and Kato, Yajima [9].

1.3.4. Other references in the case a > 1. In the work of Vega [28]
already mentioned in Section 1.3.3 it is shown that f ∈ Hs(Rn) , s ≥ 1

4 is a neces-
sary condition for the local integrability of the maximal function, n > 1. This also
follows from the work of Sjölin in [20], [21] by translating one-dimensional coun-
terexamples to higher dimension using the oscillation of Bessel functions at infinity.
For radial testfunctions there are results by Fukuma [6], Prestini [18], Sjölin [21],
[22] and Sichun Wang [34]. Weighted estimates for general dispersive equations
including the case a > 1 are treated in Heinig, Wang [8]. Other interesting results
on oscillatory Fourier integral operators may be found in Kolasa [11], [12].

1.4. The plan of this paper. In Section 2 we introduce notation used in
this paper and state our theorems. In Section 3 we collect some auxiliary results
which are classical. In Section 4 we prove our theorems in the case n = 1 and in
Section 5 in the case n > 1.

Acknowledgements. The final draft of this paper was made while the author
enjoyed a visit at the Erwin Schrödinger International Institute of Mathematical
Physics. I would like to thank Professor James Bell Cooper and Professor Paul
F.X. Müller for hospitality.

2. Notation and statement of theorems

2.1. Oscillatory integrals. For x and ξ in Rn we let xξ = x1ξ1+· · ·+xnξn .
If a is a real positive number and if f is in the Schwartz class S (Rn) we define

(Saf)(t)[x] = (Saf)[x](t) =
1

(2π)n

∫

Rn

ei(xξ+|tξ|
a)f̂(ξ) dξ, t ∈ R.

Here f̂ is the Fourier transform of f ,

f̂(ξ) =

∫

Rn

e−ixξ f(x) dx.
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Observe that we have redefined Sa slightly compared with the abstract and Sec-
tion 1.1. We have replaced the summability parameter t1/a in Section 1.1 by t .
Therefore, according to our redefinition of Sa , u(x, t) = (S2f)[x](t1/2) .

2.2. Sobolev spaces. We introduce homogeneous and inhomogeneous frac-
tional Sobolev spaces

Ḣs(Rn) =

{
f ∈ S ′(Rn) : ‖f‖2

Ḣs(Rn)
=

∫

Rn

|ξ|2s |f̂(ξ)|2 dξ <∞
}
,

Hs(Rn) =

{
f ∈ S ′(Rn) : ‖f‖2Hs(Rn) =

∫

Rn

(1 + |ξ|2)s |f̂(ξ)|2 dξ <∞
}
.

2.3. Auxiliary notation. B denotes the open unit ball in R , Ṙ denotes
the punctured real line R \ {0} .

Throughout this paper we will use auxiliary functions χ and ψ such that
χ ∈ C∞0 (R) is even,

χ(R \ 2B) = {0}, χ(R) ⊆ [0, 1], χ(B) = {1}

and ψ = 1−χ . From these functions we obtain two families of functions as follows:
for each positive number N and M set χN (ξ) = χ(ξ/N) and ψM (ξ) = ψ(Mξ) .
Associated with our auxiliary functions are certain exponents

(2.1) c(χ) = 1− 2s and c = c(ψ) =
4s− 2 + a

2a− 2

which will play an important rôle in Section 4.9.2 when we use the Riesz potential
I1−c . In our theorems we will assume that

(2.2) (i) 1
4a < s ≤ 1

4 , s <
1
2a, 0 < a < 1 or (ii) s = 1

4 , a > 1.

We will also use power weights x 7−→ |x|δ(q) where

δ(q) =
c− 1

2
+ n

(
1

2
− 1

q

)
.

2.4. Numbers denoted by C (sometimes with subscripts) may be different
at each occurrence even within the same chain of (in-)equalities. The letter R
(with subscripts) will denote various (weighted) linearisations of maximal oper-
ators. There is no definition of such linearisation which is fixed throughout the
paper.

Unless otherwise explicitly stated all functions f and g are supposed to belong
to S (Rn) .
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2.5. Remark. The conditions on a and s in (2.2) give 0 < c(χ) ≤ c < 1 in
case (i) and c(χ) = c = 1

2 in case (ii).

2.6. Theorem. Let 2 ≤ q ≤ 2/c . Then there is a number C independent of
f such that the inequality

(∫

B

‖(Saf)[x]‖qL∞(B) |x|cq/2−1 dx

)1/q

≤ C ‖f‖
Ḣs(R)

holds if (2.2) is satisfied.

Case (2.2i) in this theorem is—as already pointed out—an improvement of
our result in [31, Theorem 1.2(a), p. 486] and case (2.2ii) is an improvement of
Sjölin [20, Theorem 3, p. 700] in the case n = 1. We use Pitt’s inequality as stated
in Muckenhoupt [17] instead of the inequality of Hardy, Littlewood and Sobolev
to achieve these improvements and carry out the proof of the two cases in (2.2)
simultaneously.

Since 2/c = (4a− 4)/(4s− 2 + a) Theorem A in Section 1.1 follows directly
from the case q = 2/c in Theorem 2.6.

2.7. Theorem. Let 2 ≤ q ≤ 2/c and n > 1 . Then there is a number
C independent of f in the Schwartz subclass of radial functions such that the
inequality

(∫

Bn
‖(Saf)[x]‖qL∞(B)|x|qδ(q) dx

)1/q

≤ C ‖f‖
Ḣs(Rn)

holds if (2.2) is satisfied.

It is straightforward to verify that

δ

(
4n(1− a)

2n(1− a) + a− 4s

)
= 0.

Also, if the conditions on a and s of Theorem C in Section 1.1 are fulfilled the
inequality

q̃ :=
4n(1− a)

2n(1− a) + a− 4s
≤ 2

c

holds. Theorem C in Section 1.1 now follows directly from the case q = q̃ in
Theorem 2.7.
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3. Some preparation

3.1. In this section we introduce some notation and collect some well-known
results which will be used in the proofs of our theorems. Standard references are
given.

3.2. Notation. We define the Riesz potential Iβ as

(3.1) [Iβf ](x) = cβ

∫

Rn

|x− x′|−n+β f(x′) dx′, n > β > 0, f ∈ S (Rn).

See Stein [23, p. 117]. Only the finiteness of the number cβ will be used in this
paper.

3.3. Theorem (cf. Stein [23, Lemma 1(b), p. 117]). The identity [Iβf ] (̂ξ) =

|ξ|−β f̂(ξ) holds in the sense that

∫

Rn

|ξ|−β f̂(ξ) g(ξ) dξ =

∫

Rn

[Iβf ](x) ĝ(x) dx.

3.4. Theorem (Pitt’s inequality, Muckenhoupt [17, p. 729]). Assume that
q ≥ p , 0 ≤ α < 1 − 1/p , 0 ≤ γ < 1/q and γ = α + 1/p + 1/q − 1 . Then there
exists a number C independent of f such that

(∫

R

|f̂(ξ)|q |ξ|−γq dξ
)1/q

≤ C
(∫

R

|f(x)|p|x|αp dx
)1/p

.

3.5. Theorem (Stein, Weiss [25, Theorem 3.10, p. 158]). Let f be radial.
Then

f̂(ξ) = (2π)n/2 |ξ|−n/2+1

∫ ∞

0

f0(r) Jn/2−1(r|ξ|) rn/2 dr

where Jλ is the Bessel function of the first kind of order λ ([25, p. 154]).

3.6. Theorem (Asymptotics of the Bessel function, [25, Lemma 3.11, p. 158]).
If λ > − 1

2 , then there is a number Cλ independent of ρ > 1 such that

∣∣∣∣Jλ(ρ)−
(

2

πρ

)1/2

cos

(
ρ− λπ

2
− π

4

)∣∣∣∣ ≤ Cλρ−3/2.
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4. Proofs for n = 1

4.1. Discussion. Let E be a measurable subset of R and let t: R −→ E
be measurable. Define

(4.1) [R tf ](x) =

∫

R

χ(x) |x|c/2−1/q ei(xξ+t(x)|ξ|a)|ξ|−sf̂(ξ) dξ.

R t can be extended to a t -uniformly bounded mapping L2(R) −→ Lq(R) if and
only if there is a number C independent of f such that

(∫

B

‖(Saf)[x]‖qL∞(E) |x|cq/2−1 dx

)1/q

≤ C‖f‖
Ḣs(R)

holds. Theorem 2.6 therefore follows by proving such boundedness for Rt when
2 ≤ q ≤ 2/c and E = B . To derive it we need estimates for the inverse Fourier
transform of

m(ξ) = exp(±i|ξ|a)|ξ|−2s, ξ ∈ R,

where a and s satisfy the conditions in (2.2). Write m = χm + ψm and let Kχ

and Kψ be the inverse Fourier transforms of χm and ψm respectively.

4.2. Lemma. Kχ is bounded and there is a number C independent of x
such that

|Kχ(x)| ≤ C |x|−c(χ), |x| ≥ 1.

4.3. Lemma (Miyachi [14, Proposition 5.1, p. 289]; also cf. Wainger [30,
p. 41] and Miyachi [13, Lemma 4, p. 174]).

(a) Kψ decreases rapidly and there is a number C independent of x such that

|Kψ(x)| ≤ C |x|−c(ψ), |x| < 1, 0 < a < 1.

(b) Kψ is smooth and there is a number C independent of x such that

|Kψ(x)| ≤ C |x|−c(ψ), |x| ≥ 1, a > 1.

4.4. Lemma. Let f(x) = |x|−α , x ∈ Rn , 0 < α < n , and let g ∈ C (Rn)
decrease rapidly. Then there is a number C independent of x such that

|(f ∗ g)(x)| ≤ C |x|−α, |x| ≥ 1.

Proof. Make the splitting∫

Rn

|y|−αg(x− y) dy =

∫

|y|≤|x|/2

+

∫

|y|≥|x|/2

.

The first integral can be majorised by a number C independent of x times

sup
|x−y|≥|x|/2

|g(x− y)| |x|n−α,

which decreases rapidly in x . The second integral can be majorised by

C ‖g‖L1(Rn) |x|−α, |x| ≥ 1,

where C may be chosen to be independent of x .
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4.5. Proof of Lemma 4.2. Since −2s > −1, the integral

∫

R

ei(xξ±|ξ|
a) |ξ|−2s χ(ξ) dξ

is absolutely convergent. Hence Kχ is bounded (and continuous). To derive the
asymptotic estimate we write

2πKχ(x) = lim
M→∞

GM (x) +H(x)

where

GM (x) =

∫

R

eixξ(e±i|ξ|
a − 1)|ξ|−2s[χψM ](ξ) dξ

and

H(x) =

∫

R

eixξ |ξ|−2s χ(ξ) dξ.

By Taylor’s formula and integration by parts

|GM (x)| ≤ C

|x|

(∫

R

|ξ|a−2s−1 [χψM ](ξ) dξ +

∫

R

|ξ|a−2s |[χψM ]′(ξ)| dξ
)
,

where C may be chosen to be independent of x and M . The first integral remains
bounded as M tends to infinity. To bound the second integral independently of M
we notice again that a− 2s > 0 and also that |[χψM ]′| is like two approximative
units whose supports approach 0 as M tends to infinity.

To handle H we use Theorem 3.3 and Lemma 4.4. We get that there is a
number C independent of x such that

|H(x)| ≤ C |x|−1+2s, |x| ≥ 1.

We can now conclude that there is a number C independent of x such that

|Kχ(x)| ≤ C (|x|−1 + |x|−1+2s) ≤ C |x|−c(χ), |x| ≤ 1.

4.6. Lemma. Let a and s satisfy (2.2) and let c(χ) and c(ψ) be as in (2.1) .
Then there is a number CA independent of ε ∈ [0, A] , N and x such that

∣∣∣∣
∫

R

ei(xξ+|εξ|
a)|ξ|−2s χ(ξ/N) dξ

∣∣∣∣ ≤ CA (|x|−c(χ) + |x|−c(ψ)).

Proof. For ε > 0 we set

η = εξ, v =
x

ε
, and L = εN.
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By a change of variables
∫

R

ei(xξ+|εξ|
a) |ξ|−2s χ(ξ/N) dξ = ε2s−1

∫

R

eivηm(η)χ(η/L) dη.

Let ζ denote either ψ or χ . By Lemmas 4.2 and 4.3 and a change of variables we
get

ε2s−1

∣∣∣∣
∫

R

eivηζ(η)m(η)χ(η/L) dη

∣∣∣∣ = ε2s−1

∣∣∣∣
∫

R

Kζ(u)Lχ̂(Lu− Lv) du

∣∣∣∣

≤ Cε2s−1

∫

R

|Lu|−c(ζ) |χ̂(Lu− Lv)|LduLc(ζ)(4.2)

≤ Cε2s−1 |Lv|−c(ζ)Lc(ζ) = Cε2s−1+c(ζ) |x|−c(ζ).

To get the last inequality we have also used Lemma 4.4. If ζ = χ the exponent
of ε is 0. If ζ = ψ it is a(1 − 4s)/(2 − 2a) , which is non-negative in both of the
cases (2.2i) and (2.2ii).

Now we have proved the estimate in the lemma in the case ε > 0. Since the
integral ∫

R

ei(xξ+|εξ|
a)|ξ|−2s χ(ξ/N) dξ

is continuous with respect to ε this estimate is valid also in the case ε = 0.

4.7. Corollary. Let a and s satisfy (2.2) and let c be as in (2.1) . Then
there is a number CA independent of ε ∈ [0, A] , N and x such that

∣∣∣∣
∫

R

ei(xξ+|εξ|
a)|ξ|−2sχ(ξ/N) dξ

∣∣∣∣ ≤ CA |x|−c, |x| ≤ 1.

Proof. Cf. Remark 2.5.

4.8. Corollary. Let a and s satisfy (2.2ii) and let c be as in (2.1) . Then
there is a number C independent of ε ∈ R, N and x such that

∣∣∣∣
∫

R

ei(xξ+|εξ|
a)|ξ|−2sχ(ξ/N) dξ

∣∣∣∣ ≤ C|x|−c.

Proof. According to Remark 2.5 c(ζ) = 1
2 in both of the cases of ζ . Hence

the exponent 2s− 1 + c(ζ) of ε in (4.2) is 0 in both of the cases of ζ .

4.9. Theorem. Rt defined by the formula (4.1) can be extended to a
t -uniformly bounded mapping L2(R) −→ Lq(R) if (2.2) is satisfied.

Proof. Functions f and g appearing in this proof are assumed to belong to
C0(R) and to have support in Ṙ . We temporarily change notation and replace q
by p∗ , the conjugate exponent of some exponent p .

In the proof we follow Sjölin [20] and [31] with some modifications.
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4.9.1. Reduction to a kernel estimate. We can replace f̂ by f in the
definition of Rt , since the Fourier transformation (apart from a multiple) is an
isometry of L2(Rn).

Set

[RNf ](x) =

∫

R

χ(x) |x|c/2−1/p∗ei(xξ+t(x)|ξ|a) |ξ|−s χN (ξ) f(ξ) dξ.

Here the integration is performed over a compact set and for RN the boundedness
L2(R) −→ Lp

∗
(R) can easily be verified. A computation of the adjoint shows

that

[R∗Ng ](ξ) =

∫

R

χ(x) |x|c/2−1/p∗e−i(xξ+t(x)|ξ|a) |ξ|−s χN (ξ) g(x) dx.

We will prove that the mapping R∗N is bounded Lp(R) −→ L2(R) uniformly with
respect to t and N . Then RN will be bounded L2(R) −→ Lp

∗
(R) uniformly

with respect to t and N . Since

[R tf ](x) = lim
N→∞

[RNf ](x),

we can by Fatou’s lemma conclude that R t is bounded L2(R) −→ Lp
∗
(R) and

that the bound is independent of t .

A computation involving Fubini’s theorem shows that

(4.3)

∫

R

|[R∗Ng ](ξ)|2 dξ ≤
∫∫

R2

|KN (x, x′)| |g(x)g(x′)| dx dx′,

where

KN (x, x′) = χ(x)χ(x′)|xx′|c/2−1/p∗
∫

R

e−i((x−x
′)ξ+(t(x)−t(x′))|ξ|a)|ξ|−2sχN (ξ)2dξ.

We shall prove the following kernel estimate: There is a number C independent
of g , t and N such that

(4.4)

∫∫

R2

|KN (x, x′)|g(x)g(x′) dx dx′ ≤ C‖g‖2Lp(R), g ≥ 0.

Once this kernel estimate is proved the desired uniform boundedness follows by
combining the kernel estimate with (4.3).
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4.9.2. Proof of the kernel estimate. In proving (4.4) we first assume that
g ∈ C∞0 (R) and that supp g ⊆ Ṙ . There is a number C independent of t , N , x
and x′ such that

(4.5) |KN (x, x′)| ≤ C χ̃(x) χ̃(x′) |x− x′|−c

where χ̃(x) = χ(x) |x|c/2−1/p∗ . This estimate follows from Corollary 4.7. After
replacing KN (x, x′) in (4.4) by the right-hand side of (4.5) we apply (3.1) and get
that there is a number C independent of g such that

∫∫

R2

χ̃(x)χ̃(x′) |x− x′|−c g(x)g(x′) dx dx′ = C

∫

R

[I1−c(χ̃g)](x) χ̃(x)g(x) dx

= C

∫

R

|ξ|c−1 |̂̃χg(ξ)|2 dξ.(4.6)

Here we would like to apply Theorem 3.4 with q = 2 and −γq = c− 1. Since

2 ≤ p∗ ≤ 2

c

the inequalities

q ≥ p, 0 ≤ α < 1− 1

p
and 0 ≤ γ < 1

q

are satisfied, where γ = α + 1/p + 1/q − 1, i.e. α = γ − 1/p − 1/q + 1. Since
(c/2 − 1/p∗)p + αp = 0 we get that there is a number C independent of f such
that

(4.7)

∫

R

|ξ|c−1|̂̃χg(ξ)|2 dξ ≤ C
(∫

R

|χ̃(x)g(x)|p |x|αp dx
)2/p

= C

(∫

R

|χ(x)g(x)|p dx
)2/p

≤ C‖g‖2Lp(R),

Combining (4.5)–(4.7) now proves (4.4) in the case g ∈ C∞0 (R) .
The equation (4.4) may now be proved in the case g ∈ C0(R) by approximat-

ing g by positive functions in C∞0 (R) .

4.10. Proof of Theorem B in Section 1.1. We repeat the proof of
Theorem 2.6 with E = B replaced by E = R . See Section 4.1. We also replace
χ(x) by χM (x) and observe that the number C in (4.5) will be independent
of M . According to Corollary 4.8 that number C will also be independent of
ε = t(x)− t(x′) .
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5. Proof for n > 1

5.1. Notation. For a measurable function t: R+ −→ B and f0 ∈ C0(R+)
we define

(5.1) [Rtf0 ](r) =

∫ ∞

0

χ(r) rc/2−1/q r1/2 Jn/2−1(rρ) ρ1/2 eit(r)ρ
a

ρ−s f0(ρ) dρ.

5.2. Lemma. Let 2 ≤ q ≤ 2/c and let Rt be defined by the for-
mula (5.1) . Then Rt can be extended to a t -uniformly bounded mapping
L2(R+) −→ Lq(R+) , if (2.2) is satisfied.

Proof. Write Rt = Rt,1 +Rt,2 , where

[Rt,1f0 ](r) =

(
2

π

)1/2 ∫ ∞

0

χ(r)rc/2−1/p∗ cos

(
rρ− n

4
+
π

4

)
eit(r)ρ

a

ρ−sf0(ρ) dρ.

As in the proof of Theorem 4.9 we temporarily change notation and replace q by
p∗ , the conjugate exponent of some exponent p .

It follows from Theorem 3.6 that

|[R∗t,2g0 ](ρ)| ≤ C
∫ ∞

0

χ(r)rc/2−1/p∗ 1

1 + rρ
ρ−s|g0(r)| dr, g0 ∈ C0(R+),

where C is independent of g0 . According to Theorem 4.9 Rt,1 can be extended to
a t -uniformly bounded mapping L2(R+) −→ Lp

∗
(R+) . Hence the theorem will be

proved if we can show that the remainder R∗t,2 can be extended to a t -uniformly
bounded mapping Lp(R+) −→ L2(R+) .

Write R∗t,2g0 = χR∗t,2g0 + ψR∗t,2g0 . Without loss of generality we can assume
that g0 ≥ 0.

5.2.1. Estimate for χR∗t,2 . By Hölder’s inequality there is a number C
independent of g0 such that

|[R∗t,2g0 ](ρ)| ≤ Cρ−s
∫ ∞

0

χ(r) rc/2−1/p∗g0(r) dr ≤ Cρ−s‖g0‖Lp(R+).

Upon squaring and integrating,

‖χR∗t,2g0‖2L2(R+) ≤ C‖g0‖2Lp(R+),

where C is independent of g0 .
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5.2.2. Estimates for ψR∗t,2 . We shall use the fact that there is a number
C independent of g0 such that

(5.2)

∫ 1

0

[Is(χ̃g0)](t)2 dt ≤ C ‖g0‖2Lp(R+),

where χ̃(r) = χ(r) rc/2−1/p∗ . The proof of this is postponed to Section 5.2.3. We
have to estimate

(5.3)

∫ ∞

1

(∫ 1/ρ

0

χ(r) rc/2−1/p∗ ρ−s g0(r) dr

)2

dρ,

and

(5.4)

∫ ∞

1

(∫ ∞

1/ρ

χ(r) r−1+c/2−1/p∗ ρ−1−s g0(r) dr

)2

dρ.

Let us deal with (5.4) first. We make the change of variables ρ 7→ t(ρ) = 1/ρ
and therefore consider the integral

∫ 1

0

t2s
(∫ ∞

t

χ(r) r−1+c/2−1/p∗ g0(r) dr

)2

dt.

Using max{t, r − t} ≤ r we get

ts
∫ ∞

t

χ(r) r−1+c/2−1/p∗ g0(r) dr = ts
∫ ∞

t

r−1 χ̃(r) g0(r) dr

≤
∫ ∞

t

rs−1 χ̃(r) g0(r) dr ≤
∫ ∞

t

|t− r|s−1 χ̃(r) g0(r) dr ≤ C[Is(χ̃g0)](t).

After squaring and integrating with respect to t (5.2) yields
∫ ∞

1

(∫ ∞

1/ρ

χ(r) r−1+c/2−1/p∗ ρ−1−s g0(r) dr

)2

dρ ≤ C‖g0‖2Lp(R+)

where C is independent of g0 .
The equation (5.3) is dealt with in a similar way to get

∫ ∞

1

(∫ 1/ρ

0

χ(r) rc/2−1/p∗ ρ−s g0(r) dr

)2

dρ

=

∫ 1

0

(
ts−1

∫ t

0

χ(r) rc/2−1/p∗ g0(r) dr

)2

dt

≤
∫ 1

0

(∫ t

0

|t− r|s−1 χ̃(r) g0(r) dr

)2

dt

≤ C
∫ 1

0

[Is(χ̃g0)](t)2 dt ≤ C ‖g0‖2Lp(R+).

We have proved that

‖ψR∗t,2g0‖2L2(R+) ≤ C‖g0‖2Lp(R+),

where C is independent of g0 .
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5.2.3. Proof of the estimate (5.2). The function g0 may be extended with
0 so as to be continuous on R with compact support in R+ . Hence Is(χ̃g0) as well
as its Fourier transform belongs to L2(R). Parseval’s formula and Theorem 3.3
give

∫ 1

0

[Is(χ̃g0)](t)2 dt ≤ ‖Is(χ̃g0)‖2L2(R) =
1

2π

∫

R

|τ |−2s|(χ̃g0)̂ (τ)|2 dt.

It is easy to verify that
1
2c >

1
2c− 1

2 + s ≥ 0

with equality on the right if and only if s = 1
4 . Therefore, if we choose p̃ such

that
1

p̃
− 1

p
=
c

2
− 1

2
+ s,

then 2 ≥ p̃ and 0 ≤ 1/p∗ − c/2 < 1− 1/p̃ . We can now apply Theorem 3.4 with
γ = s and α = 1/p∗ − c/2 and Hölder’ s inequality with p̃ and p̃∗ ( p̃ ≤ p) to get
that there is a number C independent of g0 such that

∫

R

|τ |−2s |(χ̃g0)̂ (τ)|2 dt ≤ C
(∫

R

|r|αp̃|χ̃(r) g0(r)|p̃ dr
)2/p̃

= C‖χg0‖2Lp̃(R+) ≤ C‖g0‖2Lp(R+).

5.3. Remark. The method for estimating R∗t,2 is the same as in Sjölin [21, p.
139–140]. Here we have generalised it to other values of the involved parameters.

5.4. Remark. One might suggest to majorise the integral in e.g. (5.4) using
Minkowski’s and Hölder’s inequality. It is straightforward to show that a necessary
condition for such a majorisation is that the integral

∫ ∞

0

|χ(r) r−1/2+s+c/2−1/p∗ |p∗ dr

is convergent which happens if and only if

(5.5) 1
2c− 1

2 + s > 0.

However, as we have seen in Section 5.2.3, (5.5) is fulfilled in the case (2.2i) but
not fulfilled in the case (2.2ii).

5.5. Proof of Theorem 2.7. We define

(S̃af)[x](t) = |x|δ(q)
∫

Rn

ei(xξ+|tξ|
a) |ξ|−s f(ξ) dξ, t ∈ R.
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Let Bn we denote the open unit ball in Rn . The theorem says that there is a
number C independent of f in the Schwartz subclass of radial functions such that

(5.6) ‖S̃af‖Lq(Bn,L∞(B)) ≤ C‖f0‖L2(R+),

where f(ξ) = f0(|ξ|) |ξ|−n/2+1/2 .
According to Theorem 3.5

(S̃af)[x](t) = (2π)n/2 |x|δ(q)−n/2+1

∫ ∞

0

Jn/2−1(|x|ρ) eit
aρa ρ−sf0(ρ) ρ1/2 dρ.

Using polar coordinates we get that there is a number C independent of f such
that

‖S̃af‖Lq(L∞) = C

(∫ 1

0

sup
t∈B

∣∣∣∣
∫ ∞

0

r(1+c)/2−1/qJn/2−1(rρ)ρ1/2eit
aρaρ−sf0(ρ) dρ

∣∣∣∣
q

dr

)1/q

.

Here the right-hand side can be majorized by C‖f0‖L2(R+) where C is independent

of f by Lemma 5.2. We have proved (5.6).
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