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Abstract. We present necessary and sufficient conditions on the pre-Schwarzian f ′′/f ′ for
G = f(D) to be a John disk. Our results extend theorems proved by Chuaqui, Osgood and
Pommerenke. In the last part of this paper we obtain some new results connecting a functional of
f ′′/f ′ introduced by Gehring and Pommerenke with John disks.

1. Introduction

This paper is concerned with the connection between the pre-Schwarzian or
logarithmic derivative f ′′/f ′ and certain geometrical properties of G = f(D)
when f is a conformal mapping of the unit disc D in C . In particular, we study
the situation when G is a (bounded) John disk. We are able to give a sufficient
condition on the norm

‖f ′′/f ′‖1 = sup
z∈D

(1− |z|2)

∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣

for G to be a John disk. This is the main result of the present paper. Simi-
lar results on the Schwarzian and the pre-Schwarzian derivatives for G to be a
quasidisk are proved earlier by Ahlfors and Weill, [AW], and by Becker and Pom-
merenke [BP]. Our proof is based on ideas in a paper of Chuaqui, Osgood and
Pommerenke, [COP], which again rely on a theorem of Pommerenke. In Section 2
we prove a quantitatively refined version of Pommerenke’s theorem, and this im-
provement is used later in our paper. In Section 3 we give a new sufficient condition
on the pre-Schwarzian for G = f(D) to be a John disk, and in Section 4 we also
obtain a necessary condition on f ′′/f ′ when G is a John disk. Theorem 4.3 is the
main result mentioned above. In Section 5 we prove some new results concerning
a function σζ introduced in [COP].

We thank Bruce Palka and Frederick W. Gehring for useful discussions and
comments during the preparation of this paper and also Yngve Lamo for reading
the first draft of Section 5 of the manuscript very carefully.
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2. Bounded John disks and conformal mappings

In this section we first give a new proof of one version of Pommerenke’s
theorem mentioned in the introduction. The growth condition on f ′ is expressed
by constants that are related to the constant c ∈ [1,∞) , G being a c -John disk
in the terminology of Näkki and Väisälä, [NV]. Our proof will hopefully also shed
more light on the geometric ideas in the argument, and at the same time we fill in
a gap in the (original) proof both in [P1] and [P2] in using Corollary 1.6, [P2]. But
the main reason for giving this proof is that a closer inspection of the argument
leads to a sharper version of Pommerenke’s result.

We first need some definitions and basic results. The following definition is
based on the classical definition by John, [J].

Definition 2.1. A bounded simply connected plane domain G is called a
c-John disk for c ≥ 1 with John center w0 ∈ G if for each w1 ∈ G there exists a
rectifiable arc γ , called a John curve, in G with end points w1 and w0 such that

(1) σl(w) ≤ cd(w, ∂G)

for all w on γ , where σl(w) denotes the euclidean length of γ[w1, w] , the subarc
of γ between w1 and w , and d(w, ∂G) denotes the distance between w and the
boundary ∂G of G .

Remark. Unbounded John disks, and more generally unbounded John do-
mains, are introduced in [NV], but for the rest of this paper we will understand
by a John disk a bounded John disk.

Using the terminology of [NV] the following set is called a length carrot with
core γ and vertex w1 :

(2) carl(γ, c) =
⋃{

B(w, σl(w)/c); w ∈ γ \ {w0, w1}
}

where: B(x, r) = {y; |x− y| < r} .
We also need the following result from [GHM] or [NV]:

Theorem 2.2. A bounded simply connected domain G is a c -John disk
with John center w0 ∈ G if and only if, up to constants, carl(γ, c) ⊂ G for every
hyperbolic segment γ in G terminating in w0 .

Remark. It is well known that any point w0 ∈ G can be chosen as John
center by modifying the constant c if necessary.

The following result is due to Pommerenke, ([P1]; see also [P2, p. 97]).

Theorem 2.3. Let f map D = B(0, 1) conformally onto G . Then the
following conditions are equivalent:

(i) G is a John disk.
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(ii) There exist constants M > 0 and δ ∈ (0, 1) such that for each ζ ∈ T , the
unit circle, and for 0 ≤ r ≤ % < 1

|f ′(%ζ)| ≤M |f ′(rζ)|
(

1− %
1− r

)δ−1

.

Proof. (i) ⇒ (ii): Knowing that G is a John disk, we choose w0 = f(0)
as the John center and the hyperbolic segments as the John curves; G can be
assumed to be a c -John disk with respect to this choice, where c ∈ [1,∞) . Hence
for w = f(rζ) and w1 = f(%ζ) , we have

σl(w) ≤ c d(w, ∂G) for all % ∈ [r, 1).

Equivalently: ∫ 1

r

|f ′(tζ)| dt ≤ c d(w, ∂G).

By the well-known distortion inequality, [P2, p. 9], we obtain from this inequality

(3)

∫ 1

r

|f ′(tζ)| dt ≤ c |f ′(rζ)|(1− r2) ≤ 2c|f ′(rζ)|(1− r).

We next define

ψ(r) = (1− r)−1/2c

∫ 1

r

|f ′(tζ)| dt,

and we obtain

ψ′(r) =
1

2c
(1− r)−(1/2c)−1

∫ 1

r

|f ′(tζ)| dt− (1− r)−1/2c|f ′(rζ)|

= (1− r)−1/2c

[
1

2c
(1− r)−1

∫ 1

r

|f ′(tζ)| dt− |f ′(rζ)|
]
≤ 0,

where the inequality follows from (3). Therefore ψ is non-increasing on (0, 1) and
hence

(4) (1− r)−1/2c

∫ 1

r

|f ′(tζ)| dt ≥ (1− %)−1/2c

∫ 1

%

|f ′(tζ)| dt,

for 0 ≤ r ≤ % < 1.
Now we need the following:

Lemma 2.4. If % ≤ t ≤ 1
2 (1 + %) , then |f ′(%ζ)| ≤ 16|f ′(tζ)| .
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Proof. From [O] we have that for every conformal mapping f : D → C , the
following inequality is valid

|f ′′(z)/f ′(z)| ≤ 4(1− |z|)−1.

Hence ∣∣∣∣log

∣∣∣∣
f ′(tζ)

f ′(rζ)

∣∣∣∣
∣∣∣∣ ≤

∫ t

r

∣∣∣∣
f ′′(sζ)

f ′(sζ)

∣∣∣∣ ds ≤
∫ t

r

4ds

1− s ≤ log 16

when r < t ≤ 1
2 (1 + r) , and the inequality of the lemma follows.

From this lemma we obtain

∫ 1

%

|f ′(tζ)| dt ≥
∫ (1+%)/2

%

|f ′(tζ)| dt ≥ 1

16
|f ′(%ζ)|

∫ (1+%)/2

%

dt =
1

32
|f ′(%ζ)|(1− %).

Combining this inequality with (4) we obtain

(1− %)1−(1/2c)|f ′(%ζ)| ≤ 32(1− %)−1/2c

∫ 1

%

|f ′(tζ)| dt

= 32ψ(%) ≤ 32ψ(r) = 32(1− r)−1/2c

∫ 1

r

|f ′(tζ)| dt

≤ 64c(1− r)1−(1/2c)|f ′(rζ)|,

where the last inequality is a consequence of (3). In other words,

∣∣∣∣
f ′(%ζ)

f ′(rζ)

∣∣∣∣ ≤ 64c

(
1− %
1− r

)(1/2c)−1

whenever 0 ≤ r ≤ % < 1. This is (ii) of our theorem, with M = 64c and δ = 1/2c .

(ii) ⇒ (i): We assume that (ii) holds and want to calculate:

σl(w) =

∫ %

r

|f ′(tζ)| dt ≤M |f ′(rζ)|
∫ 1

r

(
1− t
1− r

)δ−1

dt

= M |f ′(rζ)|(1− r)1−δ
∫ 1

r

(1− t)δ−1 dt

= M |f ′(rζ)|(1− r)1−δ 1

δ
(1− r)δ

≤ M

δ
|f ′(rζ)|(1− r2) ≤ 4M

δ
d(w, ∂G).

The last inequality is a consequence of the well-known distortion inequality. Hence
G is a 4M/δ -John disk with John center in w0 = f(0) and with the hyperbolic
lines terminating in w0 as the John curves.
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Remarks. (a) In [P1] and [P2] two more conditions are proved to be equiva-
lent to (i) and (ii) of Theorem 2.3. We omit these conditions since they are of less
interest in the following.

(b) If we take a closer look at the constants of our theorem, we observe that
if 4M/δ < 1, our proof will lead to the impossible conclusion that

σl(w) < d(w, ∂G),

since inequality should hold for every w1 on the hyperbolic line connecting f(0)
with the boundary. Hence we must have 4M ≥ δ .

From the fact that

(1− %)s < (1− %)s1

when s1 < s < 0 for % ∈ (0, 1), we also make the following observation. If we
assume that ∣∣∣∣

f ′(%ζ)

f ′(rζ)

∣∣∣∣ ≤M
(

1− %
1− r

)δ−1

; 0 ≤ r ≤ % < 1

for all ζ ∈ T , with M < 1
8 (and of course 4M ≥ δ) , then we obtain that G is a

c -John disk with John center f(0), with hyperbolic lines as John curves, and with

c = 4M/δ.

Starting with this fact, from the second implication of Theorem 2.3 we obtain the
inequality

∣∣∣∣
f ′(%ζ)

f ′(rζ)

∣∣∣∣ ≤
256M

δ

(
1− %
1− r

)(δ/8M)−1

; 0 ≤ r ≤ % < 1

for all ζ ∈ T . For r = 0, we observe that

(5) |f ′(%ζ)| = O
(
(1− %)(δ/8M)−1

)
as %→ 1−,

while our starting assumption was

(6) |f ′(%ζ)| = O
(
(1− %)δ−1

)
as %→ 1− .

Since in this case δ/8M > δ , (5) is a stronger condition than (6). Hence we may
as well assume that M ≥ 1

8 in Theorem 2.3(ii).

We therefore have
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Theorem 2.5. Let f : D→ G be a conformal bijection. Then the following
are true:

(i) If G is a c -John disk with c ≥ 1 with John center f(0) and with hyperbolic
lines as the John curves, then for all ζ ∈ T and 0 ≤ r ≤ % < 1 , we have

∣∣∣∣
f ′(%ζ)

f ′(rζ)

∣∣∣∣ ≤ 64c

(
1− %
1− r

)(1/2c)−1

.

(ii) If there exist constants M > 0 and δ ∈ (0, 1) with 4M ≥ δ and M ≥ 1
8

such that for all ζ ∈ T and all 0 ≤ r ≤ % < 1 ,

∣∣∣∣
f ′(%ζ)

f ′(rζ)

∣∣∣∣ ≤M
(

1− %
1− r

)δ−1

,

then G is a 4M/δ -John disk with John center f(0) and with hyperbolic lines as
the John curves.

Proof. Follows from the proof of Theorem 2.3 and the remarks above.

3. The Nehari class

We recall the definition of the Schwarzian derivative of a locally injective
mermorphic function f : D→ C ( C the Riemann sphere):

Sf (z) =

(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

at each point where f is analytic, and by Sf (z) = S1/f (z) at the poles of f . We
also introduce the norm on the family of Schwarzian derivatives:

‖Sf‖2 = sup
z∈D

(1− |z|2)2|Sf (z)|.

We have the following classical result proved by Nehari, [N] in 1949:

Theorem 3.1. If f is locally injective and meromorphic on D and ‖Sf‖2 ≤
2 , then f is injective.

Remarks. Hille, [H], proved that the constant 2 is sharp. Chuaqui, Osgood
and Pommerenke, [COP], introduced the notation the Nehari class N for the
functions satisfying the assumption of Theorem 3.1.

Gehring and Pommerenke studied the class N in a paper in 1984, [GP]. They
proved that f(D) is a Jordan domain on the Riemann sphere except for the case
when f(D) is the image of a parallel strip

{
z ; | Im z| < 1

4π
}



John disks and the pre-Schwarzian derivative 211

under a Möbius transformation. Such a domain is clearly not a John disk. In par-
ticular, the case when f ∈ N and f ′′(0) = 0 has been studied in [GP]. Theorem 2
of this paper claims that either f(D) is a Jordan domain on C or the image of a
parallell strip under a similarity map. However, the function

f(z) =

[
log

{
e−iπ/4

z + i

1− z

}
− i
(
π

4
+ 2

)]−1

is in the class N, f ′′(0) = 0, f(1) = f(−i) = 0 and f(D) is bounded. Hence
f(D) is the domain bounded by two circles with a common tangent at origin, and
consequently not of the type discribed above.

Definition 3.2. A K -quasidisk is the image in C of a disk or a half plane
under a K -quasiconformal mapping f : C→ C. The boundary of a K -quasidisk
is a K -quasicircle.

(For this definition and the definition of a quasiconformal mapping, see [L].)
It is a well-known fact that every bounded quasidisk is a John disk; [NV,

pp. 40–42]. The opposite does not hold.
We also have the following classical result proved by Ahlfors and Weill in

1962, [AW]:

Theorem 3.3. If f : D → C is locally injective and meromorphic and
‖Sf‖2 < 2 , then f(D) is a quasidisk.

In view of this result and the results in [GP], one may be tempted to believe
that if f ∈ N and f(D) is a Jordan domain, then f(D) is a quasidisk. However,
according to [COP] there are f ∈ N such that f(D) is a Jordan domain on C
but f(D) is not a John disk, and hence f(D) is not a quasidisk. But in [COP]
the following surprising result is proved:

Theorem 3.4. If f ∈ N and f(D) is a John disk, then f(D) is a quasidisk.

We also need the following

Definition 3.5. The class N0 is given by

N0 = {f ∈ N ; f(0) = 0, f ′(0) = 1, f ′′(0) = 0}.

In [COP] also the following is proved:

Theorem 3.6. Let f ∈ N0 . Then the following are equivalent:

(i) f(D) is a John disk.

(ii) lim sup
|z|→1

(1− |z|2) Re

{
z
f ′′(z)
f ′(z)

}
< 2 .

(iii) lim sup
|z|→1

(1− |z|2)

∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣ < 2.
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We are able to prove a result of the same type in a more general setting.

Theorem 3.7. If f : D→ C is conformal and

lim sup
|z|→1

(1− |z|2) Re

{
z
f ′′(z)
f ′(z)

}
< 2,

then f(D) is a John disk.

Proof. By the assumption there exists a β ∈ (0, 2) and r0 ∈ (0, 1) such that
when r0 ≤ τ < 1, then

Re

{
ζ
f ′′(τζ)

f ′(τζ)

}
≤ β

1− τ2

for all ζ ∈ T . Choosing ε ∈ (0, 2− β) , we also have an r1 ∈ (0, 1), r1 ≥ r0 , such
that

Re

{
ζ
f ′′(τζ)

f ′(τζ)

}
<

2τ − ε
1− τ2

when τ ∈ [r1, 1) for all ζ ∈ T .
From this we obtain, when 0 ≤ r1 ≤ r ≤ % < 1,

log

(
(1− %2)|f ′(%ζ)|
(1− r2)|f ′(rζ)|

)
=

∫ %

r

(
Re

{
ζ
f ′′(τζ)

f ′(τζ)

}
− 2τ

1− τ2

)
dτ

< −ε
∫ %

r

dτ

1− τ2
= −ε

2
log

(
1 + %

1 + r
· 1− r

1− %

)

or equivalently

∣∣∣∣
f ′(%ζ)

f ′(rζ)

∣∣∣∣ <
(

1 + r

1 + %

)1+(ε/2)(
1− %
1− r

)(ε/2)−1

; 0 ≤ r1 ≤ r ≤ % < 1.

Consequently, for all ζ ∈ T and 0 ≤ r1 ≤ r ≤ % < 1, we have

(7)

∣∣∣∣
f ′(%ζ)

f ′(rζ)

∣∣∣∣ ≤
(

1− %
1− r

)(ε/2)−1

.

To apply Theorem 2.3 in order to conclude that G = f(D) is a John disk, we
must remove the restriction r ≥ r1 above. To do this we first observe that from
the proof of Theorem 2.3 it follows that the inequality (7) implies that σl(w) ≤
cd(w, ∂G) for w1 = f(%ζ) and w = f(rζ) when 0 ≤ r1 ≤ r ≤ % < 1 and γ
denotes the hyperbolic segment, where c = c(ε) > 1. This implies immediately
that

(8) diam (γ[w1, w]) ≤ cd(w, ∂G)
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for such choice of w and w1 . If we next consider f(∆1) where ∆1 = {z; |z| ≤ r1} ,
we have

(9) diam
(
f(∆1)

)
= λ0 <∞

and

(10) dist
(
f(∆1), ∂G

)
= δ0 > 0.

If γ(w,w1) denotes the geodesic segment from f(0) to w1 = f(%ζ) , and if
w = f(rζ) now assuming that 0 ≤ r < r1 < % < 1, we obtain

diam
(
γ(w,w1)

)
≤ diam

(
γ(w,w0)

)
+ diam

(
γ(w0, w1)

)

where w0 = f(r1ζ) . Hence:

(11) diam
(
γ(w,w1)

)
≤ λ0 + cd(w0, ∂G) ≤ λ0 + c(δ0 + λ0)

from (8), (9) and (10).

If we now introduce

c1 = (1 + c) · λ0/δ0,

we obtain from (11) that

diam
(
γ(w,w0)

)
≤ (c+ c1) · δ0 ≤ c2d(w, ∂G)

if c2 = c+ c1 .

The remaining case when 0 ≤ r < % < r1 < 1 is treated similarly. Hence we
obtain

diam
(
γ(w,w0)

)
≤ c0d(w, ∂G)

for some c0 > 1 and all 0 ≤ r ≤ % < 1. The constant c0 is independent of ζ ∈ T ,
so we have proved with the notations of [NV] that G ∈ card , and by Lemma 2.10,
p. 9, [NV], it follows that G = f(D) is a John disk.

Remark. The proof is quite similar to the proof of Theorem 3.6 in [COP],
except that our proof also considers the case when r < r1 .
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4. The pre-Schwarzian derivative

Let f : D → C be analytic and locally injective. Then we introduce the
notation

Lf (z) = f ′′(z)/f ′(z),

the pre-Schwarzian derivative of f . Also, we introduce the norm

‖Lf‖1 = sup
z∈D

(1− |z|2)

∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣.

This notation was introduced by Astala and Gehring in 1986, [AG]. But the same
quantities were actually studied earlier by Becker in 1971, [B], and by Becker
and Pommerenke in 1984, [BP]. It is interesting to notice that there are several
analogies between the Schwarzian and the pre-Schwarzian derivatives (see also
[AG] and [AH]). Becker proved in [B], the following analogue of Nehari’s theorem:

Theorem 4.1. If f : D→ C is analytic and locally injective and ‖Lf‖1 ≤ 1 ,
then f is injective.

In 1984 the following analogue of the Ahlfors/Weill theorem (Theorem 3.3),
was proved by Becker and Pommerenke, [BP]:

Theorem 4.2. If f : D→ C is analytic and locally injective and ‖Lf‖1 < 1 ,
then G = f(D) is a quasidisk.

As a direct consequence of Theorem 3.7 of the present paper we obtain

Theorem 4.3. If f : D → C is conformal and ‖Lf‖1 < 2 , then G = f(D)
is a John disk. The constant 2 is the best possible.

Proof. We have by our assumption

lim sup
|z|→1

(1− |z|2) Re

{
z
f ′′(z)
f ′(z)

}
≤ sup
z∈D

(1− |z|2)

∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣ < 2,

and the result follows from Theorem 3.7.
If F0(z) = 1

2 log[(1 + z)/(1 − z)] , then ‖LF0‖1 = 2 and F0(D) is an infinite
strip and hence not a John disk.

Remark. Returning to the Schwarzian derivative for a moment, it is a natural
question to ask at this point whether there exists a constant K > 0 such that when
f is conformal and ‖Sf‖2 < K , then G = f(D) is a John disk. The answer to
this question is no. This can be seen in the following way. If f is a Møbius
transformation mapping D onto a half plane, then ‖Sf‖2 = 0 but f(D) is not
a John disk in our language. But if we add the assumption f ′′(0) = 0, it follows
from [GP] and [AW] that if ‖Sf‖2 < 2, then f(D) is a bounded quasidisk and
hence a John disk. The constant 2 is the best possible, since for the function F0

introduced above, we have F ′′0 (0) = 0 and ‖SF0‖2 = 2 but F0(D) is not a John
disk. (For the case of unbounded John disks we refer to [NV, Section 9].)
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Theorem 3.7 gives a sufficient condition for f(D) to be a John disk. Can this
condition also be necessary? (From Theorem 3.6 it follows that this is the case
whenever f ∈ N0 .) We have not been able to settle this question completely, but
we can give one necessary condition for f(D) to be a John disk.

Proposition 4.4. If f : D→ C is conformal and f(D) is a c -John disk for
c ≥ 1 with respect to the hyperbolic segments terminating at f(0) , then for each
ζ ∈ T we have

(12) lim inf
r→1

(1− r2) Re

{
ζ
f ′′(rζ)

f ′(rζ)

}
≤ 2− 1

c
.

Proof. Assume for contradiction that f(D) is a c -John disk in the sense of
our assumption and at the same time that there exists a ζ0 ∈ T such that (12)
does not hold. Hence, there is an r0 ∈ (0, 1) and an ε > 0 such that for τ ∈ [r0, 1)
we have

(1− τ2) Re

{
ζ0
f ′′(τζ0)

f ′(τζ0)

}
> 2− 1

c
+ 2ε.

From this follows for 0 ≤ r0 ≤ r ≤ % < 1:

log

(
(1− %2)|f ′(%ζ0)|
(1− r2)|f ′(rζ0)|

)
=

∫ %

r

(
Re

{
ζ0
f ′′(τζ0)

f ′(τζ0)

}
− 2τ

1− τ2

)
dτ

>

∫ %

r

2− 1/c+ 2ε− 2τ

1− τ2
dτ

>

(
1

2c
− ε
)

log

(
1 + r

1 + %
· 1− %

1− r

)
.

Therefore

(13)

∣∣∣∣
f ′(%ζ0)

f ′(rζ0)

∣∣∣∣ >
1

2
√

2

(
1− %
1− r

)(1/2c)−1−ε

for 0 ≤ r0 ≤ r ≤ % < 1. But from Theorem 2.5 we also have

(14)

∣∣∣∣
f ′(%ζ0)

f ′(rζ0)

∣∣∣∣ ≤ 64c

(
1− %
1− r

)(1/2c)−1

for 0 ≤ r ≤ % < 1 when f(D) is a c -John disk in our sense. Letting %→ 1− and
fixing r , we observe that (13) is in contradiction with (14).
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5. The function σζ

In [COP] the following function is introduced:

σζ(r) = Re{ζ2Sf (rζ)} − 1
2 [Im{ζLf (rζ)}]2

for ζ ∈ T and r ∈ [0, 1). This function is defined for f analytic and locally
injective in the unit disk. It will follow from this section that certain properties
of the function σζ(r) are closely related to the question whether Ω = f(D) is a
John disk or not.

Let f : D→ Ω be a conformal equivalence and suppose that f has an angular
limit at ζ ∈ T . Then f(ζ) is said to be well-accessible if there is a Jordan arc γ
in D ending at ζ and a constant M > 0 such that

diam
(
f
(
γ(z)

))
≤Md

(
f(z), ∂Ω

)
,

where γ(z) denotes the part of γ from z to ζ and diam denotes the diameter.
The following result is proved in [COP, Theorem 9, p. 104]):

Proposition 5.1. If f : D→ Ω is a conformal equivalence and

lim inf
r→1

(1− r2)2σζ(r) = 2,

then f(ζ) is not well-accessible.

Remark. The assumption in [COP] is that f is analytic and locally univalent.
But the argument is leaning on previous results in the same paper where the
assumption that f is conformal is essential. In [COP] also the assumption stated
is lim infr→1(1 − r2)2σζ(r) ≥ 2, but we will show later in this section that the
case lim infr→1(1 − r2)2σζ(r) > 2 is not compatible with the assumption that f
is analytic in D .

If f is a conformal mapping onto a John disk, then all the boundary points are
well-accessible with a constant M independent of ζ . Conversely, if all boundary
points are uniformly well-accessible, then Ω is a John disk, [COP, p. 81].

In [GP] the authors introduce another function p = pζ : R → R which is
closely related to the function σζ defined above. For completeness we will give a
short explanation of how pζ is used in the proof of the theorem in [GP] mentioned
in the remark after Theorem 3.1 in our present paper.

The assumption is that f is locally univalent and meromorphic in D , ‖Sf‖2 ≤
2 and f ′′(0) = 0. It follows immediately from Nehari’s theorem (Theorem 3.1),
that f is univalent. For each fixed ζ ∈ T we introduce the function

hζ(t) = ζ
et − 1

et + 1
, t ∈ T =

{
w;−π

2
< Imw <

π

2

}
.
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Next we study the function
gζ = f ◦ hζ .

For t ∈ R , we introduce r = |hζ(t)| = (et − 1)/(et + 1). After some calculations
we obtain

(15) Im{Lgζ (t)} = 1
2 (1− r2) Im{ζLf (rζ)}

for each z = tζ that is not a pole of f , and

(16) Re{Sgζ (t)} = − 1
2 + 1

4 (1− r2)2 Re{ζ2Sf (rζ)}.

Next we introduce the function vζ : R→ R by

vζ(t) =

{
|g′ζ(t)|−1/2 for gζ(t) 6=∞,
0 for gζ(t) =∞.

Clearly vζ is a non-negative, continuous function with possible zeros only at the
poles of gζ . If we now introduce the function

(17) pζ(t) = − 1
2 Re{Sgζ (t)}+

(
1
2 Im{Lgζ (t)}

)2
,

we obtain after some calculations

(18) v′′ζ = pζ · vζ
except where gζ has a pole. From the assumption ‖Sf‖2 ≤ 2 it follows that

(1− r2)2 Re{ζ2Sf (rζ)} ≤ 2.

Combining this with (16), we obtain that Re{Sgζ (t)} ≤ 0, and from (17) we
then obtain that pζ(t) ≥ 0. From (18) and the continuity of vζ this leads to
the conclusion that vζ is a non-negative and convex function on R . Using the
condition f ′′(0) = 0, we obtain that v′ζ(0) = 0, which then implies that vζ has
its minimum at t = 0 where vζ(0) > 0 since the condition f ′′(0) = 0 implies that
gζ has no pole at 0. These observations now lead to the conclusion that vζ(t) > 0
for all t ∈ R , i.e. gζ has no poles. Since this is true for all ζ ∈ T , we conclude f
must be analytic and hence conformal.

Observe that the condition ‖Sf‖2 ≤ 2 so far has only been used to establish
the fact that pζ(t) ≥ 0 wherever it is defined. Hence we will obtain the same
information about vζ by simply assuming pζ(t) ≥ 0 for a fixed ζ ∈ T . The more
restrictive assumption pζ(t) ≥ 0 for all t ∈ R and all ζ ∈ T likewise implies that
f is analytic in D . It is therefore a natural question to ask what we can conclude
about Ω = f(D) under the condition pζ(t) ≥ 0 for all t ∈ R and all ζ ∈ T . It
turns out that we obtain some of the same information about Ω as in the case
when we assume that f ∈ N . But a natural condition should relate to f and not
to gζ . To this end, we need the following:
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Lemma 5.2. If f is analytic and locally univalent in D and pζ and σζ are
defined as above, we have

pζ(t) = 1
8

[
2− σζ(r)(1− r2)2

]

where ζ ∈ T and t = log(1− r)/(1− r) .

Proof. From (15), (16) and (17) we obtain

pζ(t) = − 1
2 Re

{
Sgζ (t)

}
+
(

1
2 Im

{
Lgζ (t)

})2

= 1
4 − 1

8 (1− r2)2 Re
{
ζ2Sf (rζ)

}
+ 1

16 (1− r2)2
(
Im
{
ζLf (rζ)

})2

= 1
8

[
2− (1− r2)2

(
Re
{
ζ2Sf (rζ)

}
− 1

2

(
Im
{
ζLf (rζ)

})2)]

= 1
8

[
2− σζ(r)(1− r2)2

]
.

We are now able to prove the following analogue of Theorem 2, [GP]:

Proposition 5.3. If f : D→ Ω is a conformal eqivalence satisfying f ′′(0) = 0
and

(19) sup
z∈D

(1− r2)2σζ(r) ≤ 2 (z = rζ)

then either

(i) Ω is unbounded, or
(ii) f has a continuous extension to D, and there exist positive constants M1

and M2 such that

|f(z)− f(z′)| ≤M1

(
log

3

|z − z′|

)−1

(z, z′ ∈ D)

and

|f(rζ)− f(ζ)| ≤M2

[
dist

(
f(rζ), ∂Ω

)]1/2
(r ∈ [0, 1), ζ ∈ T).

Proof. According to Lemma 5.2 the assumption (19) is equivalent to pζ(t) ≥ 0
for all t ∈ R and all ζ ∈ T . Returning to the proof of Theorem 2, [GP], we observe
that under the assumptions pζ(t) ≥ 0 and f ′′(0) = 0, we can conclude that vζ
is convex and non-negative on R with its minimum at t = 0. However, at this
point our argument deviates from the course of the proof of [GP], since we cannot
conclude in our case that Im{Lgζ (t)} = 0 on an interval [0, t0] if pζ(t) = 0 on this
interval. (To do this we would need Re{ζSf (rζ)}(1− r2)2 ≤ 2.) We now consider
two different cases:

(a) pζ0(t) ≡ 0 on [0,∞) for at least one ζ0 ∈ T .
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(b) pζ(t1) > 0 for some t1 = t1(ζ) for all ζ ∈ T .

Case (a): It follows from equation (18) that v′′ζ ≡ 0 on [0,∞) , and therefore

vζ(t) ≡ vζ(0) = α > 0 since v′ζ(0) = 0. Hence |g′ζ(t)| ≡ α−2 = A > 0 by the
definition of vζ . Therefore

l(gζ [0, t]) =

∫ t

0

|g′ζ(s)| ds = A · t

for all t ∈ [0,∞) . In particular l
(
f [0, ζ)

)
= l
(
gζ [0,∞)

)
=∞ . Also, the connection

between gζ and f implies that

|f ′(rζ)| = 2(1− r2)−1|g′ζ(t)| = 2(1− r2)−1 ·A.

The well-known distortion inequalities now give

1
2A = 1

4 (1− r2)|f ′(rζ)| ≤ d
(
f(rζ), ∂Ω

)
≤ (1− r2)|f ′(rζ)| = 2A.

Assume now for contradiction that γ = f
(
[0, ζ)

)
is a bounded set in C . Then the

set
E =

{
z ∈ C; d(z, γ) ≤ 1

4A
}

is a compact subset of Ω containing γ as a subset. Since f−1: Ω→ D is contin-
uous, f−1(E) is a compact subset of D . But [0, ζ) ⊂ f−1(E) , and [0, ζ) is not
contained in a compact subset of D . Hence γ is unbounded and therefore Ω is
unbounded.

Case (b): We first claim that our assumption leads to the existence of a
smallest t0 = t0(ζ) < ∞ for each ζ ∈ T such that v′ζ(t) > 0 for all t > t0(ζ) .
We first observe that the assumption that pζ(t1) > 0 and the fact that vζ is
non-decreasing leads to the fact that

v′′ζ (t1) ≥ pζ(t1) · vζ(0) = B > 0.

Hence there exists a δ > 0 such that t1 − δ < t < t1 + δ implies that v′′ζ (t) >
1
2B > 0. By the mean value theorem from calculus we then obtain v′ζ(t1) =
v′ζ(t1 − δ) + v′′ζ (τ) · δ for some τ ∈ (t1 − δ, t1) and hence by the convexity of vζ
and the fact that v′ζ(0) = 0, we have

v′ζ(t1) ≥ 1
2B · δ > 0.

By the convexity of vζ we then obtain

v′ζ(t) > 0 for all t ≥ t1.
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For fixed ζ , we will introduce the notation

t0(ζ) = inf{t; v′ζ(t) > 0}.

Next we claim that τ0 = sup
{
t0(ζ); ζ ∈ T

}
<∞ .

Assume for contradiction that there is a sequence {ζn} in T such that
limn→∞ t0(ζn) = ∞ . Without loss of generality we may assume that {ζn} con-
verges to a ζ0 ∈ T . We claim that this together with the fact that t0(ζ0) < ∞
will lead to a contradiction. In fact, v′ζ(t) is continuous as a function of ζ and t
by the definition. Hence since v′ζ0(t2) = C > 0 for some t2 ∈ (t0(ζ0),∞) , there
exists δ > 0 and ε > 0 such that when

t ∈ (t2 − δ, t2 + δ) ∧ ζ ∈ {eisζ0; |s| < ε},

then v′ζ(t) >
1
2C , and consequently t0(ζ) < t2 − δ for all such ζ . But choosing n

large enough, we obtain t0(ζn) > t2− δ and ζn ∈ {eisζ0; |s| < ε} , a contradiction.
Let α = min{v′ζ(τ0 + 1); ζ ∈ T} . Clearly α > 0. Hence v′ζ(t) ≥ α for

t ≥ τ0 + 1 for all ζ , and we can continue the argument as in the proof of the
corresponding case of Theorem 2 in [GP].

Remark. We have not been able to prove that f has a homeomorphic
extension to D as in the corresponding cases in the [GP] approach, neither to prove
that Ω in the unbounded case is the image of a strip T =

{
w;− 1

2π < Imw < 1
2π
}

under a Möbius transformation.

We will now take a closer look at the connection between σζ(t) and John
disks. We will first return to our remark following Proposition 5.1.

We can prove the following:

Proposition 5.4. If f : D→ C is analytic and locally univalent, then

lim inf
r→1

(1− r2)2σζ(r) ≤ 2

for each ζ ∈ T .

To prove this result we need the classical Sturm’s comparison theorem:

Lemma 5.5. If y = yj(x) is a nontrivial solution of the differential equation

(fjy
′)′ + gjy = 0, j = 1, 2,

and furthermore, f1 ≥ f2 > 0 and g1 ≤ g2 , then there is at least one zero of y2

between each pair of consecutive zeros of y1 , or y2 ≡ Cy1 in the interval between
these two zeros.

(Proof of Lemma [K, p. 125].)
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Proof of Proposition 5.4. We assume for contradiction that for some ζ

lim inf
r→1

(1− r2)2σζ(r) > 2.

From Lemma 5.2, this assumption is equivalent to

lim sup
t→∞

pζ(t) < 0.

Hence, there exists an ε > 0 and a t0 ∈ R such that for t ≥ t0 we have pζ(t) < −ε .
The differential equation

y′′ + εy = 0

has the (non-trivial) general solution

(20) y = C1 cos
(√
ε · t

)
+ C2 sin

(√
ε · t

)

where (C1, C2) 6= (0, 0).
Using Lemma 5.5 with f1 = f2 ≡ 1, g1 = ε and g2 = −pζ , we conclude that

a non-trivial solution of
v′′ζ − pζ · vζ = 0

has at least one zero between two of the zeros of (20). This leads to the situation
that f has a pole at z = tζ if vζ(t) = 0, while the case when vζ(t) = 0 for t > t0
implies that g′ζ ≡ ∞ . Hence we can conclude that under the assumption that f
is analytic in D ,

lim inf
r→1

(1− r2)2σζ(r) ≤ 2.

In the remaining part of this paper we shall need the following lemma.

Lemma 5.6. If v , w , P and Q are real continuous functions on [0,∞)
satisfying the following conditions:

(i) v′′ + Pv ≥ 0 and v > 0 ,
(ii) w′′ +Qw ≤ 0 and w > 0 ,

(iii) Q ≥ P ,
(iv) v(0) = w(0) and v′(0) ≥ w′(0) ,
then

v(t)

v(t0)
≥ w(t)

w(t0)
for all t ≥ t0 ≥ 0.

Proof. We introduce the function ω(t) = v(t)/w(t) . Our goal is to prove that
this function is non-decreasing. From our assumption it follows that

ω(0) = 1 and ω′(0) = [v′(0)− w′(0)]/w(0) ≥ 0.

Furthermore we obtain

(ω′w2)′ = (v′ ·w− v ·w′)′ = v′′ ·w− v ·w′′ = w · v
[
v′′

v
− w

′′

w

]
≥ w · v[−P +Q] ≥ 0.

Hence ω′w2 is non-decreasing, and in particular

ω′(t) · w(t)2 ≥ ω′(0) · w(0)2,

and since ω′(0) ≥ 0, this implies that ω′(t) ≥ 0.
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(The idea of this proof is due to N. Steinmetz, [S].)

Theorem 5.7. If f : D→ C is conformal and f ′′(0) = 0 and furthermore

(21) sup
rζ∈D

(1− r2)2σζ(r) < 2,

then Ω = f(D) is a John disk.

Proof. We can without loss of generality assume that |f ′(0)| = 2 by multipli-
cation with a constant if necessary. Introducing vζ as before for each ζ ∈ T we
obtain that

v′′ζ − pζvζ = 0, vζ(0) = |g′ζ(0)|−1/2 =
(
2/|f ′(0)|

)1/2
= 1

and v′ζ(0) = 0 since f ′′(0) = 0. The condition (21) is by Lemma 5.2 equivalent to
the condition that there exists an α > 0 such that

pζ(t) ≥ α > 0 for all t ∈ [0,∞) and for all ζ ∈ T.

In order to apply Lemma 5.6, we consider the initial value problem

w′′ − αw = 0, w(0) = 1, w′(0) = 0,

which has the solution
w(t) = 1

2

[
et
√
α + e−t

√
α
]
.

Clearly w > 0, and with P = −pζ and Q = −α , all the conditions of Lemma 5.6
are satisfied. We also obtain

w(t)/w(t0) =
et
√
α + e−t

√
α

et0
√
α + e−t0

√
α
≥ 1

2
e(t−t0)

√
α for t ≥ t0 ≥ 0.

By the lemma we conclude that

(22) vζ(t)/vζ(t0) ≥ 1
2e

(t−t0)
√
α for t ≥ t0 ≥ 0.

As before we have

et−t0 =
1 + r

1− r ·
1− r0

1 + r0
,

where

r =
et − 1

et + 1
, r0 =

et0 − 1

et + 1
,

and from (22) we then obtain

(23) vζ(t)/vζ(t0) ≥ 1

2

[
1 + r

1− r ·
1− r0

1 + r0

]√α
>

1

2

(
1− r0

1− r

)√α
.
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Again, using the connection between f , gζ and vζ and (23) we obtain

∣∣∣∣
f ′(rζ)

f ′(r0ζ)

∣∣∣∣ =

∣∣∣∣
g′ζ(t)

g′ζ(t0)

∣∣∣∣
(

1− r2
0

1− r2

)

=

∣∣∣∣
vζ(t0)

vζ(t)

∣∣∣∣
2(

1− r2
0

1− r2

)

< 2

(
1− r
1− r0

)2
√
α

·
(

1− r2

1− r2
0

)−1

≤ 2

(
1− r
1− r0

)2
√
α−1

for 0 ≤ r0 ≤ r < 1.

This condition holds for all ζ ∈ T with the same constant α . Hence the conclusion
follows from Theorem 2.3.

Closing remark. It seems as the condition f ′′(0) = 0 is essential for the
proof of Theorem 5.7. It is an open question whether or not this condition can be
omitted. Another question is whether condition (21) can be weakened to

(24) lim sup
r→1

(1− r2)2σζ(r) ≤ α < 2,

where α does not depend on ζ . It seems likely that condition (24) should be
sufficient to conclude that Ω = f(D) is a John disk, but our argument does not
seem to work immediately in this case. Nevertheless, we have a feeling that the
function σζ(r) rather than the Schwarzian or the pre-Schwarzian is the natural
function to study in connection with John disks.

Another natural question to ask is if there is a condition on the pre-Schwarzian
derivative which is both necessary and sufficient for f(D) to be a John disk.

Is it possible to obtain similar results as in [COP] and in the present paper
concerning John disks that are not necessarily bounded?
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