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Abstract. A sufficient condition for the existence of a local folding solution to an alternating
Beltrami equation is presented, and the uniformization of local folding solutions is studied.

1. Introduction

1.1. Consider the Beltrami equation

(B) wz̄ = µ(z)wz

in the unit disk D = {z ∈ C : |z| < 1} , where µ: D → C is measurable, µ is
locally bounded in D1 = {z ∈ D : Im z > 0} , i.e. ‖µ|K‖∞ < 1 for every compact
set K in D1 , and 1/µ is locally bounded in D2 = {z ∈ D : Im z < 0} .

Equation (B) can be rewritten in the symmetric form

(B′) A(z)wz +B(z)wz̄ = 0

where A(z) and B(z) are complex-valued measurable functions such that µ =
−A/B in D1 and 1/µ = −B/A in D2 . Let E = D ∩R .

1.2. Let µ be as in 1.1. A function f : D → C is said to be a solution of (B),
if f is continuous, f | (D \R) is in W1,2

loc , and its weak derivatives satisfy (B ′ )
a.e. in D . A solution f in D is a folding solution if it is injective in D1 , in D2

and in E . If, in addition, f(D1) = f(D2) f is a proper folding solution.
In Section 2 below, we provide a sufficient condition for the existence of a

local folding solution, i.e. a local solution which is a folding, and in Section 3, we
check to what extend local folding solutions can be uniformized to a global folding
solution.
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2. Existence of local folding solutions

2.1. Theorem. Let D , D1 , D2 , E and µ be as in 1.1. If there exist
r ∈ (0, 1) , a non-negative integer m , a real-valued real analytic function θ(z) ,
|z| < r with |θ(z)| < 1

2π and a complex-valued real analytic function M(x, y) in
|z| < r , z = x+ iy , with

(2.2) ReM(0, 0) > 0

and such that for |z| < r ,

(2.3) µ(z) = e2iθ(z)[1− y2m+1M(x, y)],

then (B) has a folding solution in some neighborhood of 0 .

Proof. In [SY2, Theorem 1.1] we considered a Beltrami equation (B) with

(M) µ(z) = e2iθ(z)
[
1− %(y)M(z)

]

where θ and % are real-valued functions, and M is a complex-valued function
which satisfy certain conditions. We then applied a process, which we called a
deformation of the complex dilatation, and reduced (B) to a Beltrami equation in
the (ξ, η)-plane with complex dilatation

µ̃(ξ, η) = 1− %(η)M̃(ξ, η)

where % is the same as in (M), and M̃ satisfies a similar condition as M , see
[SY2, pp. 475–477]. The same method can be applied here. Thus we will assume
that θ(z) ≡ 0. We will also assume that m = 0 and that M is a polynomial. The
general case is proved in a similar way.

In view of (2.2), M has the form

(2.4) M(x, y) = 2a+ 2ib+
N∑

n+k=1

qnkz
nz̄k

where N ≥ 1, a and b are real and a > 0.
As in [L, pp. 23–24] we set in (B)

(2.5) w = f(z) = z + c01z̄ +
∞∑

n+k=2

cnkz
nz̄k

with cn0 = 0 for all n > 1. With application of (2.3), one obtains all cnk
(uniquely). Again, exactly as in [L], one can show that the series in (2.5) converges
uniformly in U0 = {z : |z| < r0} for some r0 ∈ (0, r) .
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It remains to show that f is a folding in some neighborhood U of 0 which is
contained in U0 . Let f = u+ iv , then by (2.5)

(2.6) u = 2x− b(x2 + y2) +
∞∑

n+k=3

αnkx
nyk

and

(2.7) v = a(x2 + y2) +
∞∑

n+k=3

βnkx
nyk

for some αnk and βnk which depend on the cnk ’s.
Next, define ϕ: U0 → C by letting

(2.8) ϕ(x, y) =
(
u(x, y), y

)

with u as in (2.6). Then ϕ has a non-zero Jacobian at 0, and hence it is a
diffeomorphism in some neighborhood U1 ⊂ U0 of 0. Consequently, there exists a
mapping F : ϕ(U1)→ C such that f = F ◦ϕ . Since ϕ | U1 is injective, it sufficies
to show that F is a folding. Now, (ϕ | U1)−1 has the form

(2.9) ϕ−1(u, y) =
(
x(u, y), y

)
,

hence,

(2.10) F (u, y) =
(
u, ṽ(u, y)

)
,

where, by (2.7),

(2.11) ṽ(u, y) = v
(
x(u, y), y

)
= a

[
x2(u, y) + y2

]
+

∞∑

n+k=3

βnkx
n(u, y)yk,

or

(2.12) ṽ(u, y) = A0(u) +A1(u)y +A2(u)y2 +

∞∑

k=3

Ak(u)yk

for some functions Ak(u) .
We now show that A1(u) ≡ 0 and A2(u) 6= 0 in some neighborhood of 0.

This will imply that F is a folding in some neighborhood of 0. Indeed, in view of
(2.3), the Jacobian of f vanishes at all points (x, 0). Hence for y = 0,

A1(u) =
∂ṽ(u, y)

∂y

∣∣∣
y=0

= JF |y=0 = Jf◦ϕ−1|y=0 = 0.
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By (2.11) and (2.12)

2A2(0) =
∂2ṽ(0, 0)

∂y2
= 2a > 0,

and by continuity, A2(u) > 0 in |u| < δ for some δ > 0.
Finally, since A2(u) > 0 and A1(u) ≡ 0 for |u| < δ we can get from (2.12)

F (u, y) =
(
u, ṽ(u, y)

)
=
(
u,A0(u) + w2(u, y)

)
,

where

w(u, y) = A
1/2
2 (u)

(
y +

∞∑

k=2

bk(u)yk
)

for some functions bk(u) . This shows that F is a local folding in some neighbor-
hood of 0, and hence so is f .

3. Uniformization

3.1. Let D , D1 , D2 , E and µ be as in 1.1. The main question addressed
in this section is whether the existence of local folding solutions at every point of
E implies the existence of a global folding solution in D .

In the proof of the following theorem, we will use the fact that if f : U → C is
a folding solution such that U∩E is connected, then U∩E has a simply connected
neighborhood V , V ⊂ U such that V ∩ E is connected, and f | V is a proper
folding solution, see [SY1, Lemma 2.2].

3.2. Theorem. Let D , D1 , D2 , E and µ be as in 1.1, and suppose that
every point x in E has a neighborhood Ux , Ux ⊂ D , where (B) has a folding
solution. Then E has a neighborhood V , V ⊂ ⋃x∈E Ux , such that

(i) (B) has a proper folding solution in V .
(ii) (B) has a folding solution g in D1 ∪ V and a folding solution h in D2 ∪ V .

Proof. We first prove (ii). Let x ∈ E . Then x has a simply connected
neighborhood Vx , Vx ⊂ Ux such that Vx ∩ E is connected, and such that (B)
has a proper folding solution fx: Vx → C . Let V =

⋃
x∈E Vx . Since µ is locally

bounded in D1 , (B) has a homeomorphic solution g1 in D1 , cf. [B]. We may
assume that g1(D1) = D1 . We will show that g1 has a homeomorphic extension,
denoted again by g1 , on D1 ∪E . Indeed, given x ∈ E , fx maps Vx \D2 homeo-
morphically onto fx(Vx) , and thus, every subarc of fx(Vx ∩E) is a free boundary

arc of fx(Vx ∩D1) . Let f̂x = f | Vx ∩D1 . Then, g1 ◦ f̂−1
x is conformal, and hence

has a homeomorphic extension on fx(Vx\D2) . Therefore, g1 has a homeomorphic
extension on D1 ∪ (E ∩ Vx) . Consequently, g1 has a homeomorphic extension on
D1 ∪E . We may assume that g1(E) = E .

We now define g in D1 ∪ V as follows. If z ∈ D1 ∪ E , we set g(z) = g1(z) .

Given x in E , we define g in Vx ∩ D2 by letting g(z) = g1 ◦ f̂−1
x ◦ fx(z) . The
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mapping g is well defined in V ∩D2 , since by the uniqueness theorem for proper
folding solutions [SY1, Theorem 3.2], once two points have the same image by a
proper folding solution, they will have the same image under any other folding
solution. Clearly, g is a folding solution in D1 ∪ V .

The mapping h for (ii) is constructed in the same way. As for (i), note that
g | V , with g and V as above, is a proper folding solution of (B) in V , as needed.

In spite of Theorem 3.2 and contrary to the uniformization theorem, we have
the following two theorems.

3.3. Theorem. Let D , D1 , D2 , E be as in 1.1. Given a point z0 ∈ D \E ,
there exists µ as in 1.1 such that

(i) (B) has a local folding solution at every point of E .
(ii) (B) has a global solution in D .

(iii) Every global solution of (B) in D branches at z0 , and in particular, (B) has
no (global) folding solution in D .

Proof. Let T (z) = i(z − 1
4 )(1 − 1

4z) and ψ(z) = z2 . Let E′ be the con-
nected component of ψ−1

(
T−1(E)

)
, which contains the point 1

2 . Let ϕ be a
diffeomorphism of D onto itself such that ϕ(z0) = 0 and ϕ(E) = E′ , and let
F (x, y) = (x, |y|) . Set f = F ◦ T ◦ ψ ◦ ϕ and µ = µf . Then µ satisfies the
conditions of 1.1, f is a solution of (B) in D , and every point x of E has a
neighborhood Ux where f | Ux is a local proper folding solution of (B). Note that
f branches at z0 with local index i(z0, f) = 2.

We now show that every other global solution branches at z0 . Suppose that g
is a solution in D . We may assume that Im z0 < 0. The case Im z0 > 0 is similar.
Let G1 = D1 , let G2 be the subdomain of D which lies between E and ϕ−1(L)
where L is the intersection of D with the imaginary axes, and let G3 = D2 \G2 .
Next for i = 1, 2, 3, let fi = f | Gi and hi = g ◦ f−1

i . Then h1 and h3 are

defined in D1 , and h2 is defined in D1 \F ◦T ◦ψ(L) . Since g and all fi are W1,2
loc

solutions of (B) off E it follows that each hi is analytic. Also,

(3.4) g = hi ◦ fi.
The mappings f1 and f2 extend homeomorphically on G1∪E and G2∪E , respec-
tively, and they coincide on E . Therefore, h1 and h2 have the same boundary
values on E , and hence h1 = h2 in D1 \ L′ , where L′ = T ◦ ψ(L) . However, h1

is analytic in D1 , therefore h2 can be extended analytically to D1 , and h1 = h2

in D1 .
Finally, f2 and f3 coincide on ϕ−1(L) , therefore h2 and h3 have the same

boundary values on L′ and therefore h2 = h3 in D1 \L′ , and hence in D1 , when
continued analytically across L′ .

We obtain that h1 = h2 = h3 := h is analytic in D1 , and has a continuous
extension on D1∪E , and in view of (3.4), satisfy g = h◦f . Therefore g branches
at z0 and consequently there is no global folding solution in D .
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In view of the last theorem, one may ask: Suppose that (B) has a global
solution in D which folds along E , and which is locally injective off E . Does it
follow that (B) has a global folding solution in D? The following example answers
this question negatively.

3.5. Theorem. Given D , D1 , D2 , E as in 1.1, there exists µ satisfying
the conditions of 1.1 such that

(i) (B) has a global solution in D , which folds along E and is locally injective
off E .

(ii) (B) has no global folding solution in D .

Proof. For k = 0, 1, . . . , 8, let zk = eikπ/8 , and let Ik denote the subarc of
∂D1 having end points zk−1 and zk . Let Q′ denote the square having vertices at
the points 1

4 i ,
3
4 i ,

3
4 i− 1

2 and 1
4 i− 1

2 .

Let f be a mapping of D onto D1 which has the following properties:
(a) f(z) = z̄ for Im z ≤ 0.
(b) f(z0) = 1, f(z1) = i , f(z2) = 3

4 i , f(z3) = 3
4 i − 1

2 , f(z4) = 1
4 i − 1

2 ,
f(z5) = 1

4 i , f(z6) = 1
8 i , f(z7) = i and f(z8) = −1.

(c) f is a local diffeomorphism in D1 , injective on each arc Ik , and maps I1
and I8 into |z| = 1 and each other arc Ik into a line segment.

(d) f(D1) = D1 \
([

1
8 i,

1
4 i
]
∪
[

1
2 i, i

])
, where f | D1 covers every point of Q′

twice, and every point in D1 \
([

1
8 i, i

]
∪Q′

)
once.

Then µ = µf satisfies the conditions of 1.1, and f is a solution of (B)
which folds along E and is a local homeomorphism in D \ E . Let Q denote
the connected component of f−1(Q′) whose boundary meets I4 , and let D0 =
D \

(
Q ∪

[
−i,− 1

8 i
])

. Then f0 = f | D0 is a proper folding solution in D0 which

maps D0 onto E ∪D1 \
[

1
8 i, i

]
.

Suppose now that (B) has a global folding solution in D . Then, by the
uniqueness theorem for proper folding solutions [SY1, Theorem 3.2], g | D0 =
h ◦ f0 , for some mapping h which is conformal in int f(D0) = D1 \

[
1
8 i, i

]
:= D′1 .

However, g is homeomorphic in D2 , and g = h ◦ f , hence h has a homeomorphic
extension on D1 , denoted again by h .

Now f−1( 1
2 i) consists of three points b1 ∈ D1 , b2 ∈ D2 and b3 ∈ ∂D1 , or

more precisely b3 ∈ I7 , and thus a small neighborhood V of b3 relative D1 is
mapped by f into Q′ . It follows that g−1(w) has two pre-image points in D1 ,
whenever w ∈ g(V ) = h

(
f(V )

)
, contradicting the assumption that g is a folding.

3.6. Remark. In [SY3] we showed that the existence of local folding solution
at every point of E does not imply the existence of a (global) folding solution in D .
There, the proof was based on the fact that |a2| ≤ 2 for every schlicht function
f(z) = z + a2z

2 + · · · in D .
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