Annales Academise Scientiarum Fennicae
Mathematica
Volumen 26, 2001, 233-248

WEAKLY COMPACT COMPOSITION
OPERATORS ON ANALYTIC
VECTOR-VALUED FUNCTION SPACES

José Bonet, Pawel Domanski, and Mikael Lindstréom

Universidad Politécnica de Valencia, E. T. S. Arquitectura, Dpto. de Matematica Aplicada
ES-46071 Valencia, Spain; jbonet@pleiades.upv.es

A. Mickiewicz University, Faculty of Mathematics and Computer Science
ul. Matejki 48/49, PL-60-769 Poznari, Poland; domanski@amu.edu.pl

Abo Akademi University, Department of Mathematics
FI1-20500 Abo, Finland; mlindstr@abo.fi

Abstract. Let X be a Banach space. It is proved that the composition operator on X -
valued Hardy spaces, weighted Bergman spaces and Bloch spaces is weakly compact or Rosenthal
if and only if both id: X — X and the corresponding composition operator on scalar valued spaces
are weakly compact or Rosenthal, respectively.

1. Introduction

Let ¢: D — D be an analytic self map of the complex unit disc D. It can be
easily proved that if the composition operator C,: f — fo¢ on vector-valued (i.e.
with values in a Banach space X ) Hardy, Bergman or Bloch spaces belongs to some
operator ideal, then both its scalar version and the identity operator on X belong
to the same ideal. For the ideal of weakly compact operators Liu, Saksman and
Tylli [LST] proved the converse for vector-valued Hardy spaces Hi(X), Bergman
spaces B1(X) and B (X) = H*®(X) as well as for Bloch spaces using analytic
methods.

If a vector-valued space of analytic functions E[X] can be represented as the
space L(*FE,X) of all linear bounded operators from the predual of the scalar
version of F[X] into X, then we give a very simple functional analytic argument
which replaces the more analytic ones in [LST]. In this way we obtain the results
for Bloch spaces and extend the results of [LST] to weighted Bergman spaces of
infinite order BY (X). In that part of the paper our main idea is to use the
following result due to Saksman and Tylli in [ST], see also [R], [LS]. Let E, F,
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Ey, Fy be Banach spaces and let R € £ (E,F) and B € Z(E1, Fy) be two weakly
compact operators. If B or R is compact, then the map T — RoT o B from
Z(F1,E) into ZL(E1, F) is weakly compact.

Unfortunately the operator representation mentioned above does not hold
in general, for instance, for Hardy spaces H;(X) or Bergman spaces Bi(X).
Thus the main part of the paper is devoted to that case. We are able to extend
the methods and the results of [LST] to the classical weighted Bergman spaces
B{f(X), a > —1, a class which includes both H;(X) and B;(X). An essential
improvement is done in a formula derived from the so-called Stanton formula (see
Lemma 3).

Let us observe that for 1 < p < oo the weighted Bergman space B (X)
and Hp(X) are reflexive whenever X is reflexive. Thus C, on these spaces is
automatically weakly compact if and only if X is reflexive.

Further, we prove a characterization of compact composition operators on the
Bloch space. The sets of interpolation for the Bloch space [Ro] play a crucial role
in the proof.

2. Preliminaries

We denote by H(D,X) the space of holomorphic functions from the unit
disc D into a Banach space X. As usual H,(X) stands for the Hardy space of
X -valued functions in H(D, X) such that

27
10
100 = 0 oo [ IAe ) fedo <o forp< oo
<r

||fHH°°(X) = Sug If(2)]|x < o0 for p = oo.
z€

Let v: D — R, be an arbitrary weight, i.e., bounded continuous positive (which
means strictly positive throughout the paper) function. We define the weighted
Bergman space By (X) as the space of those functions f € H(D, X) with

00 = 7 [ IFGIE0(EdAR) <00 forp <

1l B2 (x) == sup 1f(2)lxv(z) < oo for p = oo,
FAS

where dA denotes the Lebesque area measure on the plane. If v(z) = (1 — |2]?),
a > —1, then we write By(X) and if a = 0 we just omit a. If X = C, then we
omit X in the notation. For the definition of B cf. [CM]. The Bergman spaces
BY  appear naturally in the study of growth conditions on analytic functions and
in the scalar-case have been considered in many papers, see for example, [BBG],
[BBT], [BS], [BDL], [BDLT], [SW1], [SW2].
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We denote by #(X) the X -valued Bloch space of analytic functions f: D —
X with the norm

£ a0y = 1£O)lx + sup(1 = [=2) ()] x < oe.

In [CH] the composition operators on the Bloch space are treated as weighted
composition operators on BY  spaces.

A map T € Z(X) from the Banach space X into X is called compact,
weakly compact, Rosenthal, if it maps the closed unit ball of X onto a relatively
compact, a relatively weakly compact, a conditionally weakly compact set in X .
A subset A in X is called conditionally weakly compact, if every sequence in A
admits a weak Cauchy subsequence. Clearly every weakly compact operator is
Rosenthal. Rosenthal’s [; theorem implies that T: X — Y is Rosenthal if and
only if 7' is not an isomorphism on any copy of /3 in X.

When we write f ~ g for two functions f and g we mean there are strictly
positive constants a, b such that af < g < bf for all the values of the variable.

For the sake of completeness we give a general argument why the considered
conditions are necessary for C', to belong to the considered ideals.

Proposition 1. If ¢ is an operator ideal and Cy,: E(X) — E(X) belongs
to ¢ whenever E(X) is one of the spaces of vector-valued analytic functions
Bp(X), Hy(X), #(X), then both id: X — X and C,: E — E, E the scalar
version of the space, belongs to 7 .

Proof. Let 0 # z¢p € X, lp € X* with lp(zg) =1 and zg € D. We define the
operators

v E— E(X),  y(f)z)=f(z)ze
n BE(X)—E, n(f)=lolf;
p X — E(X), p@)(z)=um;
rB(X) =X, r(f)= f(2).

All these operators are continuous, idx = roC, op and noC, o+ is exactly the
scalar composition operator on E. o

3. Consequences of the Stanton formula

In [Shl] Shapiro introduced the generalized Nevanlinna counting function
Ny« for oo > 0. It is defined by

Neatw) = 3 (1(5)) . weD w0k

z€p~ 1 (w)
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For our purpose it is convenient to introduce the modified Nevanlinna counting
function

o) = ¥ @-FRiog( L), weD\ (o)

z€p~ 1 (w)

The standard Nevanlinna counting function is N, = Ny, 1 = N o,1 and the partial
Nevanlinna counting function of ¢ is defined for 0 < r < 1 by

Nrw = X (). weD\pO)

ceo-itmy iz A

The following formula for a continuous subharmonic function u is due to
Stanton [St, Theorem 2]:

1 2T

- 1
o /. u(gp(rele)) df = u(0) + Py /D Ny (r,w) d[A(u)](w),
where r € (0,1) and ¢: D — D is analytic, ¢(0) = 0. When f € H(D,X),
d[A]| f|lx](w) denotes integration with respect to the distributional Laplacian of
| f|lx , which is a positive measure on D since the map z — || f(2)||x is subhar-
monic. This means that for every test function (infinitely differentiable function
on C with compact support) 7 we have

[ rtw)dalflxlw = 5 [15w)xAr(w) daw).

The Stanton formula was applied to composition operators first by Shapiro [Sh1],
see also [SS]. We use it to characterize weakly compact operators with the help of
the following lemmas.

Lemma 2 [LST, p. 300-301]. If f: D — X is analytic, ¢(0) = 0 and
0<r<1, then

W 5 [ Il o =170 + 5 [ Nolrow) diA L) w),

2 ICo (Pl =IOl + 5 [ Notw)dladlfolw).

The next result was proved in [LST] only for a = 0:
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Lemma 3. If f: D — X is analytic, ¢(0) =0 and « > —1, then

(3) 1Co (Nl Bgx) ~ 10l x + % /D N para(w) dIA(| f]1x)](w).

Proof. If 0 < rg <r <1, then 1(1—r?) <log(1/r) < C(1—r?) for some C.
By partial integration, for z € D away from the origin, we have

e ey

~ (1= [yt log(ﬁ)

y f‘; 2r(1 — r2)®log(r/|z|) dr 1
st (1— 2Pt log(1/2) a+1

Further, we have that

Indeed, by partial integration

I(|z]) := /|:|27“(1—r) log(|z|>dr—/|:|%dr.

Further, let J(|z]) := (1 — |2]?)**log(1/|z|). Then, by 'Hopital’s rule,

. I(]z]) . 1'(|2])
lim = lim
1zl—0t J(|z])  1z1—=0t+ J'(]2])

1 1
p— 1. p— .
ot 2(a+ D22 log(1/12)(1 — 2" +a+1 a+l

Hence f 2r(1 — r2)*log(r/|z]) dr and (1 — |z|?)**!log(1/|z]) are comparable
with unlform constant for all |z| > 0. Thus

/0127*(1—7*2)0‘N¢(r,w)dr: 3 /2r1—r log(’r|>d7’

z€p~ 1 (w)

~ ¥ <1—rz|2>a+llog(, |>

z€p~ 1 (w)

(4)
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Now multiplying (1) by 2r(1 — 72)%, integrating with respect to 7 from 0 to 1
and applying Fubini’s theorem, we get

[ o)1= oy dae)

~ (0 ||X+—/(/ Ny (r,w)2r(1 — 12)° dr) AIA (1)) ()

and we conclude from (4). o
For the special case that ¢ is the identity map we obtain the following for-
mulas:

© 5 [ Ue)xdd = 15O + 5 [ tog( L) dailsllw),
©) Il = 15O + 5= [ 108( ) dlatllolw)
and

@) Wlazoo ~ 1FOls + 5 [ 0= uP) a“log(wﬂ)d[A(HfHX)](w).

The estimates (6) and (7) permit to define By '(X) as H;(X), and therefore
we can consider these Hardy spaces as weighted Bergman spaces.
4. Composition operators on weighted Bergman spaces

First we consider the continuity of C', on Bf(X). We start with the following
result.

Lemma 4. Let « > —1. If z€ D and f € B{(X), then

17 () x < CllfllBax) (1 — [27) 7,
where C' is independent of f.
Proof. By [Sm, Lemma 2.5],
1(f(2)] <Clio fllpe(1 =27, Te X,
and C does not depend on [ and f. Since [[lo f|lpe < [[I|| || fl[B=(x) We are
done. o

It follows immediately from Lemma 4 that evaluations are continuous on
B{(X), the compact open topology is weaker than the norm one and that B{*(X)
is a Banach space.
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Proposition 5. Let o > —1. The composition operator C,: B{(X) —
B{*(X) is continuous. In fact, for each a > —1 there exists a constant C(«) such

that oo
.l < e (50

Proof. The proof is standard but for completeness we include it. The cases
a =0 and a = —1 are proved in [LST, Proposition 1]. For a = ¢(0) let ¢,(z) :=
(a —2)/(1 —@az). Then 9 := p,0p: D — D is analytic, 1(0) = 0 and ¢ = p, 0.

Since z — ||f o ¢q(2)]|x is subharmonic, Littlewood subordination theorem
[CM, p. 30] yields

27 27
/ 1f o (re®)||x db < / 1f o @a(re®)||x b
0 0

for all 0 < r < 1. Therefore,

1
ICoflagco) < 7 [ £ paladllx (1= )" dAG:)

By changing the variable in the last integral, we get

o (1 —af?)?
11 —aw|*

ICo gy < 7 [ 1)l (1= pa(w)P) dA(w)

1+ a a+2
<c@(151) Wlson.s

By [L, Corollary 2.7], it follows for o > —1 that the space B is isomorphic
to Iy. Therefore, by the well-known properties of [;, we have:

Proposition 6. Let o > —1. The following statements are equivalent:

(a) C,: BYf — BY* is non-compact.

(b) Cy: By — BY{' is non-Rosenthal.

(¢) There exist continuous linear operators S: I' — B® and T: B¢ — I! such

that ToCy, 0S5 =1idy, .

The proposition above can also be obtained using interpolating sequences in
BY (cf. [HRS, Theorem 3.1]) without referring to the isomorphic classification of
BY due to Lusky [L].

The following result was proved by Liu, Saksman and Tylli in [LST] for the
spaces Hq(X) and B;(X). We only have to check that the same argument is valid
for all spaces B{(X). Let us note that the Banach-Steinhaus theorem cannot be
used to obtain (9) for any infinite dimensional Banach space X .

The operators V), defined in the next proposition are related to de la Vallée—
Poussin summability kernels.
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Proposition 7. Let a« > —1, k € N and X a Banach space. Define the
operator Vi by setting

2k—1

Vi f (2 anz + > Qk_nA z"

n=k+1

for analytic f: D — X with the Taylor expansion f =Y, fnz”. Then there is
C > 0 such that

(8) Vi fllBex) < Cll fllBex)

for all f € B{(X). Moreover, given ¢ > 0 and r € (0,1) thereis ko = ko(g,7) >0
such that for k > kg

@) ) =Vef(2)llx <ellfllaex)  forall [z] <r and f € By (X).

Further, if X is reflexive, respectively does not contain a copy of ly, then the
operator Vi: B{(X) — B{(X) is weakly compact, respectively Rosenthal.

Proof. By [LST, Proposition 2] we know that (8) and (9) are valid for H(X)
with C =2. Let f € B{(X) and a > —1. It is easily seen that

1
(10) 1l ) = 2 / 1ol (L — 72) dr,

where g¢s(z) = g(sz) for 0 < s < 1. Thus (8) is a direct consequence of the
corresponding result for H;(X) and the relation Vi f, = (Vif),.

For completeness we give the argument from [LST] to obtain (9). Assume
that r € (3,1) and € > 0 are given. Let f € B{(X) with [ fllBoxy < 1. It
follows from (10) that there exist a radius r’ € (y/r,1) and a constant C' with
| fr ey xy) < Cla+1)(1 - V)~ (@) Further we can choose ko such that for
k > ko we have [lg(z) — Vag(2)llx < e(a +1)7H(1 = v/r)*TC7 gl gy (x) for
|z| < /r and all g € Hy(X). Thus, for |z| < r we have that |z/r'| < \/r, so we

get
z z
o (5) v (5] =+
X

The final statement follows exactly as in [LST]. o

1/ (2) = Vief(2)lx =

Let % be a closed ideal of operators between Banach spaces. For T' € .Z(X)
define ||T'||o, = inf{||T — S|| : S € #}. Let # and % be the closed ideal of
weakly compact respectively Rosenthal operators on X.
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Theorem 8. Let X be reflexive, respectively a Banach space not containing
a copy of l;. For each o > —1 there exists a constant C(«) such that for C,,
acting on BY(X) we have

. Np,a+2(w)
Cy,lley < C(a)limsup 2 ,
|Collw = CLORRAP Thogfufjer

where % is W respectively Z% .

Proof. Let f € Bff(X) be arbitrary and fix an arbitrary r € (0,1). Without
loss of generality, we may assume that ¢(0) = 0. We have that || f(0)—Vif(0)||x =
0. By (2) and (3) we get

ICos = Villsg ) ~ 5= | puaralw) dIA(IS = Ve l0)l(w)

1 ~
+ o N g ar2(w) dIA(| f = Vi fllx)](w)
D\rD
= drk + Jr,k'

To estimate the first term I, j, observe that by [Sh2, Corollary 10.4(b)], N, (w) <
log(1/|w|) for each w € D. Hence for all w € D

N pasa(w) < Npw ><1og( 1 )

[l

Therefore we get,

o< 5 [ g5 ) dia(ls - Vi)
+amto(2) [ aalls - vl

L 10g(L)d[A(Ilf—kaHX)](w)
™ JrD w|
“5 ), log(wlfr) AN = Vel 0Nw') = I = Vi)l .
Further,
1 [ if
1 = Vi)l o) = %/0 1(f = Vif)r(e7)]x dbf < |SL|1£ | f(w) = Vif(w)] x-
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Let now 7 be a test function on the plane with 0 < 7 < 1, the support of 7 is
contained in 3(r 4+ 1)D and 7 =1 on rD. Then

/ A[A(f = Vifllx)l(w) < /T(w) d[A(|f = Viefllx))(w)
rD

- 1) = Vi ()]l x Ar(w) dA(w)
(r4+1)D/2

<M 1) = Vicf () x dA(w),
(r+1)D/2

where M := (1/27) max{|A7(w)| : w € C} is finite. By Proposition 7, we get for
every r € (0,1) that
lim sup I =0.
k=00 ||f||Bfé(X)S1
For the second term .J, j; we first notice that ]A\?@’a+2(w) < 29N, (po(w)
for all w € D. Therefore

Noat2(w) 20! L\
Ira Swesﬁ{)rp((—ﬁgmnaﬂ) o /D\TD(IOg<m)> AT = Villx))w)

Since log(1/|w|) and 1— |w|? are comparable for all w € D\ rD, there is M(a,7)
such that by (6), (7) and (8),

Ny qt2(w)
Jrp < M(o,r) sup £ f=Vifllge
( ) weD\rD (_ 10g |w|)a+2 H HBl %)
Ny q42(w)
< CM(a,r) sup Pt fllBe(x)-
( >w€D\rD (_ log\w|)"‘+2” HBl 0

Consequently,
1Cyll2 < C’(a){ lim sup  Ip,+ lim  sup Jr,k}
k=00 ”f”BlO‘(X)Sl T_>1||f||Bl‘3‘(X)S1
Ny at2(w)

< () limsup .
(TP og )+

Corollary 9. Let a > —1. Then Cy,: BY(X) — B{'(X) is weakly compact,
respectively Rosenthal, if and only if X is reflexive, respectively does not contain
a copy of 1y, and

. N, e Q(w)
11 lim sup poot =0
) P Clogul)+?
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Proof. One direction follows from Proposition 1. Indeed, by Proposition 6
and Sarason [S] (cf. also [J]) for o = —1, every Rosenthal operator C, on Bf{' is
compact. By [CM, Example 3.2.6, Theorem 3.12] compactness of C;, on By is
independent of 0 < p < oo for a > —1. Thus with p = 2 [Shl, Theorems 6.8
and 2.3] give that C, on B is compact if and only if condition (11) is valid.

The converse statement follows directly from Theorem 8. o

5. Composition operators on general vector-valued spaces

In this section E denotes a Banach space of analytic functions on the unit
disc D which contains the constant functions and such that its closed unit ball
U(FE) is compact for the compact open topology co. These assumptions imply the
following properties of the space F which will be frequently used later.

(a) For every z € D the evaluation map J,: E — C, 6.(f) = f(z), is
continuous and non-zero.

(b) The map A: D — E*, A(z) = 6,, z € D, is a vector valued analytic
function. Indeed, since F is a separating subset of the dual E** of E*, we can
apply a result of Grosse-Erdmann [GE, Theorem 5.2] which ensures it is enough
to check fo A € H(D) for every f € E. This is trivially satisfied.

(c) By the Dixmier-Ng theorem [N], the space

*E:={u€ E":u|U(FE)is co-continuous},

endowed with the norm induced by E*, is a Banach space and the evaluation map
E — (*E)*, f— [uw u(f)] is an isometric isomorphism. In particular *FE is a
predual of F.

(d) The linear span of the set {6, : z € D} is contained and norm dense
in *E. This follows easily from the Hahn-Banach theorem: if f € E = (*E)*
vanishes on all the evaluation maps it must be zero.

Let X be a Banach space. The vector valued space E[X] associated with E
is defined as

EX]:={fe€e HD,X):2"o f € E for every z* € X*}.

Given f € E[X], the map Ty: X* — E, Ty(z*) = 2* o f, is well defined, linear
and weak *-pointwise continuous. By the closed graph theorem T is continuous
and the supremum | f|| pix] := supy <1 [|#* o f| = is finite. We endow E[X] with
this norm. Observe that the map A: D — *E defined in (b) above (also see (d))
belongs to E[*E] and ||Al|gpg = 1.

A version of the following linearization result for £ = H®° can be found in
[M] and for £ = BY, in [BBG].

Lemma 10. The space E[X] is isomorphic to the space of operators L(*E, X)
in a canonical way. In particular, it is a Banach space.
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Proof. First we define y: L(*E, X) — E[X]| by x(T) :=T o A. The map x
is well defined, linear, continuous and its norm is less than or equal to 1.

Fix g € E[X] and u € *E and define ¢(g)(u) : X* — C by (¢(g)(uv))(z*) :=
u(z* o g) for z* € X*. Clearly

| (¥(9)(w)(@)] < ull-gllz" o glle < llull-plz [ x-lgllex),

for all * € X*, by the definition of the norm in E[X]. This yields ¢ (g)(u) € X**
and ¢(g) € L(*E, X**) with [|1(g)| < [|g|lg(x)- On the other hand (g)(d.) =
g(z) € X for all z € D. By the property (d) above we conclude ¥ (g) € L(*E, X),
and the map ¢: F[X] — L(*F, X) is well defined, linear continuous and its norm
is less than or equal to 1.

To complete the proof it is enough to observe that 1 o y and y o1 coincide
with the identities on L(*E, X) and E[X] respectively. o

Let ¢: D — D be holomorphic. The closed graph theorem and the argu-
ment in Proposition 1 imply that the composition operator C,: E[X] — E[X]
is continuous if and only if C,: F — E is continuous. Moreover the result
stated in Proposition 1 remains valid for the spaces of type E[X]|. In order
to obtain a converse we proceed as follows. Assume C, is continuous on F.
The transpose map C:O: E* — E* maps *E into itself; indeed, by the prop-
erty (d) above it is enough to check that C[(0.) = d,(.) belongs to *E for all
z € D which is trivial. Now the isomorphism proved in Lemma 10 transforms
the operator C, on E[X] into the wedge operator W,: L(*E,X) — L(*E, X),
W,(T) =idx o T o (C,|*E). More precisely, with the notations introduced in the
proof of Lemma 10, (¢ o Cy, 0 x)(S) = So (CL[*E) for every S € L(*E, X) which
implies C, = x o W, 0. We are ready to prove the main results in this section.

Proposition 11. Let C,: F — E be compact and let X be a Banach space.

(1) If X is reflexive, then C,: E[X] — E[X] is weakly compact.

(2) If X does not contain a copy of 11, then Cy,: E[X]| — E[X] is a Rosenthal
operator.

Proof. Since CJ,|*E is a compact operator on *E, we can apply [ST, Theo-
rem 2.9] for part (1) and [LS, Corollary 2.13] for part (2) to the wedge operator
W, to reach the conclusion. o

Corollary 12 [LST, Theorem 4]. Let ¢: D — D be holomorphic and let X
be a Banach space. The operator C, on the Bloch space (X)) is weakly compact
(respectively Rosenthal) if and only if C, is Rosenthal on % and X is reflexive
(respectively X does not contain a copy of Iy ).

Proof. First observe that the Bloch space # satisfies the assumptions we
impose on the general space E considered in this section. In fact, if f € A, it
follows by integration that

max ) < {1+ (10 sls <)

|z|<r 2 1—r



Weakly compact composition operators 245

Therefore, every bounded set in 4 is relatively compact with respect to the
compact-open topology and point evaluations are bounded linear functionals on %.
To see that the closed unit ball U(%) of £ is a compact subset of (£, co) it is
enough to observe that U(%) is a normal family by Montel’s theorem. If f,, — f
with respect to the co-topology and ||fn|lz < 1 for all n, then also f/ — f’ in
the co-topology and consequently ||f]la < 1.

It is now easy to see that the vector valued Bloch space (X)) coincides with
the space H[X]| defined in this section and that

1fllzix) < Ifllzx) < 20fllzix)

for every f € #[X].
By Proposition 11, it remains to show that every Rosenthal composition op-
erator on % is compact. This is proved below. o

A sequence (z,) C D is called d-separated if inf,,«x [(zn — 21)/(1 — Zg2n)| >
d>0.

Proposition 13. There is a constant § > 0 such that if (w,) in D is §-
separated, then there exist a continuous linear operator R: [*° — % and functions
hi := R(e) € # such that

Proof. By the proof of Proposition 1 in [MM] (see [Ro]), there are two con-
tinuous linear operators

S: B -1, S(f) = ((1—|wal®)f (wn)),
and

1 (1= [wa]?)?
T (1 —Wp2)3

T:1° - B, T(&))z= 25n3
n=1

such that |lid — ST| < 1. Thus ST has an inverse (ST)"1:1>® — [, and
therefore S has a right inverse R := T(ST)™1: 1> — %. Since SR(ex) = e for
all k, we get that (1 — |wy|?)h},(wy,) = 8y for all n and k. o

Proposition 14. The following statements are equivalent:

(a) Cp: B — A is non-compact.

(b) There exist continuous linear operators R: [*° — % and Q: % — |>° such
that Qo C, o R =1id;_ .

(c) Cp: BB — A is not a Rosenthal operator.
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In [LST] the equivalence (a) < (c) is obtained by other methods.
Proof. (a) = (b): Since C, is non-compact, by [MM, Theorem 2], there is a
sequence (z,) € D and a constant € > 0 so that |p(z,)] — 1 and

1_ n2 ! n
=l Pl )l o o a1

1— ’W(Zn)|2
Since |p(z,)| — 1, passing to a subsequence, we can apply Proposition 13 and get
a continuous linear operator R: [ — 2 and functions hj := R(er) € # such

that
hi(o(za)) =0, if n#k, (1= |o(z)*) b (¢(2a)) = 1.
Hence R(&) =Y poy &khy for all € = (&) € ¢o. Now we define a map

Q:B—1°, Q) = (%J’()) |

Since
1 1
1QUAHII < gsglp\f'(znﬂ(l — |z l?) < gl\f\!@ for all f € &,

the map is well defined, linear and continuous. For every & = (§,,) € ¢,

Qo CpoR(e) = (1= Iplan)?) Y- 6tk (o() )
k=1 n
Consequently, we get that @ o Cy, 0 R(§) = £ for all £ € ¢p. Using a result of
Rosenthal [Rs, Proposition 1.2] we get the conclusion.
The implications (b) = (c) and (¢) = (a) are obvious. o

Corollary 15. Let v be a weight on D. Let C, be continuous on BS, . The
operator C,, is weakly compact (respectively Rosenthal) on BY (X) if and only
if Cy, is Rosenthal on BY, and X is reflexive (respectively X does not contain a
copy of ly).

Proof. 1t is well known (e.g. [BS]|, [BBT]) that the space B}, satisfies the
conditions imposed on the general space E considered in this section. Moreover
it is easy to see that the vector valued space BY (X) coincides isometrically with
the space BY [X] defined here.

The associated weight is defined by

s —1
0(z) = (sup{lf () : Ifllo <1}) ., z€D.
It is better tied to the space BY, than v itself [BBT], and BY = BY holds
isometrically. By [BDLT] the operator C, is continuous on BY if and only if
sup )
2eD U(p(2))

Moreover, by [BDL, Theorem 1], the operator C,, is Rosenthal on BY, if and only
if it is compact. Hence the conclusion follows from Proposition 11. o

< Q.
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If we take v(z) =1 for every z € D in Corollary 15, we obtain as a particular
case Theorem 6 and part of Theorem 7 in [LST].

To conclude we consider only radial weights v, that is, v(z) = v(|z|). A radial
weight v is called essential, if there exists a C' > 0 such that v(z) < 9(z) < Cv(z).
We can now apply [BDLT, Theorem 3.3| to get the following corollary.

Corollary 16. Let v be an essential weight. Then C,: By (X) — BY (X) is
weakly compact (respectively Rosenthal) if and only if X is reflexive (respectively
does not contain a copy of ly) and

v(z) 0

lim sup ——F== or llelloo < 1.
=1 Ll (2)[>r) V((2))

As a consequence of Lemma 4 and Fatou’s lemma, the weighted Bergman
spaces By, 1 < p < oo, a > —1, satisfy the conditions imposed on the scalar
valued Banach space E. This permits to use Proposition 6 and Proposition 11 to
get consequences on vector-valued composition operators on spaces of type B [X]
as defined in this section. It is important to point out that the classical vector-
valued space B(X) is continuously included in but different from B[X]. This
is the reason why we had to treat composition operators defined on them with

another method.
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