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ES-46071 Valencia, Spain; jbonet@pleiades.upv.es

A. Mickiewicz University, Faculty of Mathematics and Computer Science

ul. Matejki 48/49, PL-60-769 Poznań, Poland; domanski@amu.edu.pl
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Abstract. Let X be a Banach space. It is proved that the composition operator on X -
valued Hardy spaces, weighted Bergman spaces and Bloch spaces is weakly compact or Rosenthal
if and only if both id: X → X and the corresponding composition operator on scalar valued spaces
are weakly compact or Rosenthal, respectively.

1. Introduction

Let ϕ: D → D be an analytic self map of the complex unit disc D . It can be
easily proved that if the composition operator Cϕ: f 7→ f ◦ϕ on vector-valued (i.e.
with values in a Banach space X ) Hardy, Bergman or Bloch spaces belongs to some
operator ideal, then both its scalar version and the identity operator on X belong
to the same ideal. For the ideal of weakly compact operators Liu, Saksman and
Tylli [LST] proved the converse for vector-valued Hardy spaces H1(X) , Bergman
spaces B1(X) and B∞(X) = H∞(X) as well as for Bloch spaces using analytic
methods.

If a vector-valued space of analytic functions E[X] can be represented as the
space L(∗E,X) of all linear bounded operators from the predual of the scalar
version of E[X] into X , then we give a very simple functional analytic argument
which replaces the more analytic ones in [LST]. In this way we obtain the results
for Bloch spaces and extend the results of [LST] to weighted Bergman spaces of
infinite order Bv∞(X) . In that part of the paper our main idea is to use the
following result due to Saksman and Tylli in [ST], see also [R], [LS]. Let E , F ,
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E1 , F1 be Banach spaces and let R ∈ L (E,F ) and B ∈ L (E1, F1) be two weakly
compact operators. If B or R is compact, then the map T 7→ R ◦ T ◦ B from
L (F1, E) into L (E1, F ) is weakly compact.

Unfortunately the operator representation mentioned above does not hold
in general, for instance, for Hardy spaces H1(X) or Bergman spaces B1(X) .
Thus the main part of the paper is devoted to that case. We are able to extend
the methods and the results of [LST] to the classical weighted Bergman spaces
Bα1 (X) , α ≥ −1, a class which includes both H1(X) and B1(X) . An essential
improvement is done in a formula derived from the so-called Stanton formula (see
Lemma 3).

Let us observe that for 1 < p < ∞ the weighted Bergman space Bv
p(X)

and Hp(X) are reflexive whenever X is reflexive. Thus Cϕ on these spaces is
automatically weakly compact if and only if X is reflexive.

Further, we prove a characterization of compact composition operators on the
Bloch space. The sets of interpolation for the Bloch space [Ro] play a crucial role
in the proof.

2. Preliminaries

We denote by H(D,X) the space of holomorphic functions from the unit
disc D into a Banach space X . As usual Hp(X) stands for the Hardy space of
X -valued functions in H(D,X) such that

‖f‖pHp(X) := sup
0≤r<1

1

2π

∫ 2π

0

‖f(reiθ)‖pX dθ <∞ for p <∞,

‖f‖H∞(X) := sup
z∈D
‖f(z)‖X <∞ for p =∞.

Let v: D → R+ be an arbitrary weight, i.e., bounded continuous positive (which
means strictly positive throughout the paper) function. We define the weighted
Bergman space Bvp(X) as the space of those functions f ∈ H(D,X) with

‖f‖pBvp (X) :=
1

π

∫

D

‖f(z)‖pXv(z) dA(z) <∞ for p <∞,

‖f‖Bv∞(X) := sup
z∈D
‖f(z)‖Xv(z) <∞ for p =∞,

where dA denotes the Lebesque area measure on the plane. If v(z) = (1− |z|2)α ,
α > −1, then we write Bαp (X) and if α = 0 we just omit α . If X = C , then we
omit X in the notation. For the definition of Bα

p cf. [CM]. The Bergman spaces
Bv∞ appear naturally in the study of growth conditions on analytic functions and
in the scalar-case have been considered in many papers, see for example, [BBG],
[BBT], [BS], [BDL], [BDLT], [SW1], [SW2].
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We denote by B(X) the X -valued Bloch space of analytic functions f : D →
X with the norm

‖f‖B(X) = ‖f(0)‖X + sup
z∈D

(1− |z|2)‖f ′(z)‖X <∞.

In [CH] the composition operators on the Bloch space are treated as weighted
composition operators on Bv∞ spaces.

A map T ∈ L (X) from the Banach space X into X is called compact,
weakly compact, Rosenthal, if it maps the closed unit ball of X onto a relatively
compact, a relatively weakly compact, a conditionally weakly compact set in X .
A subset A in X is called conditionally weakly compact, if every sequence in A
admits a weak Cauchy subsequence. Clearly every weakly compact operator is
Rosenthal. Rosenthal’s l1 theorem implies that T : X → Y is Rosenthal if and
only if T is not an isomorphism on any copy of l1 in X .

When we write f ∼ g for two functions f and g we mean there are strictly
positive constants a , b such that af ≤ g ≤ bf for all the values of the variable.

For the sake of completeness we give a general argument why the considered
conditions are necessary for Cϕ to belong to the considered ideals.

Proposition 1. If J is an operator ideal and Cϕ: E(X) → E(X) belongs
to J whenever E(X) is one of the spaces of vector-valued analytic functions
Bvp(X) , Hp(X) , B(X) , then both id: X → X and Cϕ: E → E , E the scalar
version of the space, belongs to J .

Proof. Let 0 6= x0 ∈ X , l0 ∈ X∗ with l0(x0) = 1 and z0 ∈ D . We define the
operators

γ: E → E(X), γ(f)(z) = f(z)x0;

η: E(X)→ E, η(f) = l0 ◦ f ;

p: X → E(X), p(x)(z) = x;

r: E(X)→ X, r(f) = f(z0).

All these operators are continuous, idX = r ◦Cϕ ◦ p and η ◦Cϕ ◦ γ is exactly the
scalar composition operator on E .

3. Consequences of the Stanton formula

In [Sh1] Shapiro introduced the generalized Nevanlinna counting function
Nϕ,α for α > 0. It is defined by

Nϕ,α(w) =
∑

z∈ϕ−1(w)

(
log

(
1

|z|

))α
, w ∈ D \ {ϕ(0)}.
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For our purpose it is convenient to introduce the modified Nevanlinna counting
function

Ñ ϕ,α(w) =
∑

z∈ϕ−1(w)

(1− |z|2)α−1 log

(
1

|z|

)
, w ∈ D \ {ϕ(0)}.

The standard Nevanlinna counting function is Nϕ = Nϕ,1 = Ñ ϕ,1 and the partial
Nevanlinna counting function of ϕ is defined for 0 < r < 1 by

Nϕ(r, w) =
∑

z∈ϕ−1(w), |z|≤r
log

(
r

|z|

)
, w ∈ D \ {ϕ(0)}.

The following formula for a continuous subharmonic function u is due to
Stanton [St, Theorem 2]:

1

2π

∫ 2π

0

u
(
ϕ(reiθ)

)
dθ = u(0) +

1

2π

∫

D

Nϕ(r, w) d[∆(u)](w),

where r ∈ (0, 1) and ϕ: D → D is analytic, ϕ(0) = 0. When f ∈ H(D,X) ,
d[∆‖f‖X ](w) denotes integration with respect to the distributional Laplacian of
‖f‖X , which is a positive measure on D since the map z 7→ ‖f(z)‖X is subhar-
monic. This means that for every test function (infinitely differentiable function
on C with compact support) τ we have

∫
τ(w) d[∆‖f‖X ](w) =

1

2π

∫
‖f(w)‖X∆τ(w) dA(w).

The Stanton formula was applied to composition operators first by Shapiro [Sh1],
see also [SS]. We use it to characterize weakly compact operators with the help of
the following lemmas.

Lemma 2 [LST, p. 300–301]. If f : D → X is analytic, ϕ(0) = 0 and
0 < r < 1 , then

1

2π

∫ 2π

0

‖f(ϕ(reiθ)‖X dθ = ‖f(0)‖X +
1

2π

∫

D

Nϕ(r, w) d[∆(‖f‖X)](w),(1)

‖Cϕ(f)‖H1(X) = ‖f(0)‖X +
1

2π

∫

D

Nϕ(w) d[∆(‖f‖X)](w).(2)

The next result was proved in [LST] only for α = 0:
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Lemma 3. If f : D → X is analytic, ϕ(0) = 0 and α > −1 , then

(3) ‖Cϕ(f)‖Bα1 (X) ∼ ‖f(0)‖X +
1

2π

∫

D

Ñ ϕ,α+2(w) d[∆(‖f‖X)](w).

Proof. If 0 < r0 ≤ r < 1, then 1
2 (1− r2) ≤ log(1/r) ≤ C(1− r2) for some C .

By partial integration, for z ∈ D away from the origin, we have

∫ 1

|z|
2r(1− r2)α log

(
r

|z|

)
dr =

∫ 1

|z|

(1− r2)α+1

r(α+ 1)
dr

∼
∫ 1

|z|

(
log

(
1

r

))α+1
dr

r
∼
(

log
1

|z|

)α+2

∼ (1− |z|2)α+1 log

(
1

|z|

)
.

Further, we have that

lim
|z|→0+

∫ 1

|z| 2r(1− r2)α log(r/|z|) dr
(1− |z|2)α+1 log(1/|z|) =

1

α+ 1
.

Indeed, by partial integration

I(|z|) :=

∫ 1

|z|
2r(1− r2)α log

(
r

|z|

)
dr =

∫ 1

|z|

(1− r2)α+1

r(α+ 1)
dr.

Further, let J(|z|) := (1− |z|2)α+1 log(1/|z|) . Then, by l’Hôpital’s rule,

lim
|z|→0+

I(|z|)
J(|z|) = lim

|z|→0+

I ′(|z|)
J ′(|z|)

= lim
|z|→0+

1

2(α+ 1)2|z|2 log(1/|z|)(1− |z|2)−1 + α+ 1
=

1

α+ 1
.

Hence
∫ 1

|z| 2r(1 − r2)α log(r/|z|) dr and (1 − |z|2)α+1 log(1/|z|) are comparable

with uniform constant for all |z| > 0. Thus

(4)

∫ 1

0

2r(1− r2)αNϕ(r, w) dr =
∑

z∈ϕ−1(w)

∫ 1

|z|
2r(1− r2)α log

(
r

|z|

)
dr

∼
∑

z∈ϕ−1(w)

(1− |z|2)α+1 log

(
1

|z|

)
.
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Now multiplying (1) by 2r(1 − r2)α , integrating with respect to r from 0 to 1
and applying Fubini’s theorem, we get

∫

D

∥∥f
(
ϕ(w)

)∥∥
X

(1− |w|2)α dA(w)

∼ ‖f(0)‖X +
1

2π

∫

D

(∫ 1

0

Nϕ(r, w)2r(1− r2)α dr

)
d[∆(‖f‖X)](w)

and we conclude from (4).
For the special case that ϕ is the identity map we obtain the following for-

mulas:

1

2π

∫ 2π

0

‖f(reiθ)‖X dθ = ‖f(0)‖X +
1

2π

∫

rD

log

(
r

|w|

)
d[∆(‖f‖X)](w),(5)

‖f‖H1(X) = ‖f(0)‖X +
1

2π

∫

D

log

(
1

|w|

)
d[∆(‖f‖X)](w)(6)

and

(7) ‖f‖Bα1 (X) ∼ ‖f(0)‖X +
1

2π

∫

D

(1− |w|2)α+1 log

(
1

|w|

)
d[∆(‖f‖X)](w).

The estimates (6) and (7) permit to define B−1
1 (X) as H1(X) , and therefore

we can consider these Hardy spaces as weighted Bergman spaces.

4. Composition operators on weighted Bergman spaces

First we consider the continuity of Cϕ on Bα1 (X) . We start with the following
result.

Lemma 4. Let α ≥ −1 . If z ∈ D and f ∈ Bα1 (X) , then

‖f(z)‖X ≤ C‖f‖Bα1 (X)(1− |z|2)−(α+2),

where C is independent of f .

Proof. By [Sm, Lemma 2.5],

∣∣l
(
f(z)

)∣∣ ≤ C‖l ◦ f‖Bα1 (1− |z|2)−(α+2), l ∈ X∗,

and C does not depend on l and f . Since ‖l ◦ f‖Bα1 ≤ ‖l‖ ‖f‖Bα1 (X) we are
done.

It follows immediately from Lemma 4 that evaluations are continuous on
Bα1 (X) , the compact open topology is weaker than the norm one and that Bα

1 (X)
is a Banach space.



Weakly compact composition operators 239

Proposition 5. Let α ≥ −1 . The composition operator Cϕ: Bα1 (X) →
Bα1 (X) is continuous. In fact, for each α ≥ −1 there exists a constant C(α) such
that

‖Cϕ‖ ≤ C(α)

(
1 + |ϕ(0)|
1− |ϕ(0)|

)α+2

.

Proof. The proof is standard but for completeness we include it. The cases
α = 0 and α = −1 are proved in [LST, Proposition 1]. For a = ϕ(0) let ϕa(z) :=
(a− z)/(1− az) . Then ψ := ϕa◦ϕ: D → D is analytic, ψ(0) = 0 and ϕ = ϕa◦ψ .

Since z 7→ ‖f ◦ ϕa(z)‖X is subharmonic, Littlewood subordination theorem
[CM, p. 30] yields

∫ 2π

0

‖f ◦ ϕ(reiθ)‖X dθ ≤
∫ 2π

0

‖f ◦ ϕa(reiθ)‖X dθ

for all 0 < r < 1. Therefore,

‖Cϕf‖Bα1 (X) ≤
1

π

∫

D

‖f ◦ ϕa(z)‖X(1− |z|2)α dA(z).

By changing the variable in the last integral, we get

‖Cϕf‖Bα1 (X) ≤
1

π

∫

D

‖f(w)‖X
(
1− |ϕa(w)|2

)α (1− |a|2)2

|1− aw|4 dA(w)

≤ C(α)

(
1 + |a|
1− |a|

)α+2

‖f‖Bα1 (X).

By [L, Corollary 2.7], it follows for α > −1 that the space Bα
1 is isomorphic

to l1 . Therefore, by the well-known properties of l1 , we have:

Proposition 6. Let α > −1 . The following statements are equivalent:

(a) Cϕ: Bα1 → Bα1 is non-compact.
(b) Cϕ: Bα1 → Bα1 is non-Rosenthal.
(c) There exist continuous linear operators S: l1 → Bα1 and T : Bα1 → l1 such

that T ◦ Cϕ ◦ S = idl1 .

The proposition above can also be obtained using interpolating sequences in
Bα1 (cf. [HRS, Theorem 3.1]) without referring to the isomorphic classification of
Bα1 due to Lusky [L].

The following result was proved by Liu, Saksman and Tylli in [LST] for the
spaces H1(X) and B1(X) . We only have to check that the same argument is valid
for all spaces Bα1 (X) . Let us note that the Banach–Steinhaus theorem cannot be
used to obtain (9) for any infinite dimensional Banach space X .

The operators Vk defined in the next proposition are related to de la Vallée–
Poussin summability kernels.
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Proposition 7. Let α ≥ −1 , k ∈ N and X a Banach space. Define the
operator Vk by setting

Vkf(z) =
k∑

n=0

f̂nz
n +

2k−1∑

n=k+1

2k − n
k

f̂nz
n

for analytic f : D → X with the Taylor expansion f =
∑∞
n=0 f̂nz

n . Then there is
C > 0 such that

(8) ‖Vkf‖Bα1 (X) ≤ C‖f‖Bα1 (X)

for all f ∈ Bα1 (X) . Moreover, given ε > 0 and r ∈ (0, 1) there is k0 = k0(ε, r) > 0
such that for k ≥ k0

(9) ‖f(z)− Vkf(z)‖X ≤ ε‖f‖Bα1 (X) for all |z| ≤ r and f ∈ Bα1 (X).

Further, if X is reflexive, respectively does not contain a copy of l1 , then the
operator Vk: Bα1 (X)→ Bα1 (X) is weakly compact, respectively Rosenthal.

Proof. By [LST, Proposition 2] we know that (8) and (9) are valid for H1(X)
with C = 2. Let f ∈ Bα1 (X) and α > −1. It is easily seen that

(10) ‖f‖Bα1 (X) = 2

∫ 1

0

‖fr‖H1(X)r(1− r2)α dr,

where gs(z) = g(sz) for 0 < s < 1. Thus (8) is a direct consequence of the
corresponding result for H1(X) and the relation Vkfr = (Vkf)r .

For completeness we give the argument from [LST] to obtain (9). Assume
that r ∈ ( 1

2 , 1) and ε > 0 are given. Let f ∈ Bα
1 (X) with ‖f‖Bα1 (X) ≤ 1. It

follows from (10) that there exist a radius r′ ∈ (
√
r , 1) and a constant C with

‖fr′‖H1(X) ≤ C(α + 1)(1 − √r )−(α+1) . Further we can choose k0 such that for
k ≥ k0 we have ‖g(z) − Vkg(z)‖X ≤ ε(α + 1)−1(1 − √r )α+1C−1‖g‖H1(X) for
|z| ≤ √r and all g ∈ H1(X) . Thus, for |z| ≤ r we have that |z/r′| ≤ √r , so we
get

‖f(z)− Vkf(z)‖X =

∥∥∥∥fr′
(
z

r′

)
− Vkfr′

(
z

r′

)∥∥∥∥
X

≤ ε.

The final statement follows exactly as in [LST].

Let U be a closed ideal of operators between Banach spaces. For T ∈ L (X)
define ‖T‖U = inf{‖T − S‖ : S ∈ U } . Let W and R be the closed ideal of
weakly compact respectively Rosenthal operators on X .
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Theorem 8. Let X be reflexive, respectively a Banach space not containing
a copy of l1 . For each α ≥ −1 there exists a constant C(α) such that for Cϕ
acting on Bα1 (X) we have

‖Cϕ‖U ≤ C(α) lim sup
|w|→1

Nϕ,α+2(w)

(− log |w|)α+2
,

where U is W respectively R .

Proof. Let f ∈ Bα1 (X) be arbitrary and fix an arbitrary r ∈ (0, 1). Without
loss of generality, we may assume that ϕ(0) = 0. We have that ‖f(0)−Vkf(0)‖X =
0. By (2) and (3) we get

‖Cϕ(f − Vkf)‖Bα1 (X) ∼
1

2π

∫

rD

Ñ ϕ,α+2(w) d[∆(‖f − Vkf‖X)](w)

+
1

2π

∫

D\rD
Ñ ϕ,α+2(w) d[∆(‖f − Vkf‖X)](w)

:= Ir,k + Jr,k.

To estimate the first term Ir,k observe that by [Sh2, Corollary 10.4(b)], Nϕ(w) ≤
log(1/|w|) for each w ∈ D . Hence for all w ∈ D

Ñ ϕ,α+2(w) ≤ Nϕ(w) ≤ log

(
1

|w|

)
.

Therefore we get,

Ir,k ≤
1

2π

∫

rD

log

(
r

|w|

)
d[∆(‖f − Vkf‖X)](w)

+
1

2π
log

(
1

r

)∫

rD

d[∆(‖f − Vkf‖X)](w).

Hence by (6),

1

2π

∫

rD

log

(
r

|w|

)
d[∆(‖f − Vkf‖X)](w)

=
1

2π

∫

D

log

(
1

|w′|

)
d[∆(‖(f − Vkf)r‖X)](w′) = ‖(f − Vkf)r‖H1(X).

Further,

‖(f − Vkf)r‖H1(X) =
1

2π

∫ 2π

0

‖(f − Vkf)r(e
iθ)‖X dθ ≤ sup

|w|=r
‖f(w)− Vkf(w)‖X .
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Let now τ be a test function on the plane with 0 ≤ τ ≤ 1, the support of τ is
contained in 1

2 (r + 1)D and τ ≡ 1 on rD . Then

∫

rD

d[∆(‖f − Vkf‖X)](w) ≤
∫
τ(w) d[∆(‖f − Vkf‖X)](w)

=
1

2π

∫

(r+1)D/2

‖f(w)− Vkf(w)‖X∆τ(w) dA(w)

≤M
∫

(r+1)D/2

‖f(w)− Vkf(w)‖X dA(w),

where M := (1/2π) max{|∆τ(w)| : w ∈ C} is finite. By Proposition 7, we get for
every r ∈ (0, 1) that

lim
k→∞

sup
‖f‖Bα

1
(X)≤1

Ir,k = 0.

For the second term Jr,k we first notice that Ñ ϕ,α+2(w) ≤ 2α+1Nϕ,α+2(w)
for all w ∈ D . Therefore

Jr,k ≤ sup
w∈D\rD

(
Nϕ,α+2(w)

(− log |w|)α+2

)
2α+1

2π

∫

D\rD

(
log

(
1

|w|

))α+2

d[∆(‖f − Vkf‖X)](w).

Since log(1/|w|) and 1−|w|2 are comparable for all w ∈ D \ rD , there is M(α, r)
such that by (6), (7) and (8),

Jr,k ≤M(α, r) sup
w∈D\rD

Nϕ,α+2(w)

(− log |w|)α+2
‖f − Vkf‖Bα1 (X)

≤ CM(α, r) sup
w∈D\rD

Nϕ,α+2(w)

(− log |w|)α+2
‖f‖Bα1 (X).

Consequently,

‖Cϕ‖U ≤ C(α)
{

lim
k→∞

sup
‖f‖Bα

1
(X)≤1

Ik,r + lim
r→1

sup
‖f‖Bα

1
(X)≤1

Jr,k

}

≤ C(α) lim sup
|w|→1

Nϕ,α+2(w)

(− log |w|)α+2
.

Corollary 9. Let α ≥ −1 . Then Cϕ: Bα1 (X)→ Bα1 (X) is weakly compact,
respectively Rosenthal, if and only if X is reflexive, respectively does not contain
a copy of l1 , and

(11) lim sup
|w|→1

Nϕ,α+2(w)

(− log |w|)α+2
= 0.
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Proof. One direction follows from Proposition 1. Indeed, by Proposition 6
and Sarason [S] (cf. also [J]) for α = −1, every Rosenthal operator Cϕ on Bα1 is
compact. By [CM, Example 3.2.6, Theorem 3.12] compactness of Cϕ on Bαp is
independent of 0 < p < ∞ for α ≥ −1. Thus with p = 2 [Sh1, Theorems 6.8
and 2.3] give that Cϕ on Bα1 is compact if and only if condition (11) is valid.

The converse statement follows directly from Theorem 8.

5. Composition operators on general vector-valued spaces

In this section E denotes a Banach space of analytic functions on the unit
disc D which contains the constant functions and such that its closed unit ball
U(E) is compact for the compact open topology co . These assumptions imply the
following properties of the space E which will be frequently used later.

(a) For every z ∈ D the evaluation map δz: E → C , δz(f) = f(z) , is
continuous and non-zero.

(b) The map ∆: D → E∗ , ∆(z) = δz , z ∈ D , is a vector valued analytic
function. Indeed, since E is a separating subset of the dual E∗∗ of E∗ , we can
apply a result of Grosse-Erdmann [GE, Theorem 5.2] which ensures it is enough
to check f ◦∆ ∈ H(D) for every f ∈ E . This is trivially satisfied.

(c) By the Dixmier–Ng theorem [N], the space

∗E := {u ∈ E∗ : u | U(E) is co -continuous},

endowed with the norm induced by E∗ , is a Banach space and the evaluation map
E → (∗E)∗ , f 7→ [u 7→ u(f)] is an isometric isomorphism. In particular ∗E is a
predual of E .

(d) The linear span of the set {δz : z ∈ D} is contained and norm dense
in ∗E . This follows easily from the Hahn–Banach theorem: if f ∈ E = (∗E)∗

vanishes on all the evaluation maps it must be zero.
Let X be a Banach space. The vector valued space E[X] associated with E

is defined as

E[X] := {f ∈ H(D,X) : x∗ ◦ f ∈ E for every x∗ ∈ X∗ }.

Given f ∈ E[X] , the map Tf : X∗ → E , Tf (x∗) = x∗ ◦ f , is well defined, linear
and weak∗ -pointwise continuous. By the closed graph theorem Tf is continuous
and the supremum ‖f‖E[X] := sup‖x∗‖≤1 ‖x∗ ◦f‖E is finite. We endow E[X] with
this norm. Observe that the map ∆: D → ∗E defined in (b) above (also see (d))
belongs to E[∗E] and ‖∆‖E[∗E] = 1.

A version of the following linearization result for E = H∞ can be found in
[M] and for E = Bv∞ in [BBG].

Lemma 10. The space E[X] is isomorphic to the space of operators L(∗E,X)
in a canonical way. In particular, it is a Banach space.
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Proof. First we define χ: L(∗E,X) → E[X] by χ(T ) := T ◦∆. The map χ
is well defined, linear, continuous and its norm is less than or equal to 1.

Fix g ∈ E[X] and u ∈ ∗E and define ψ(g)(u) : X∗ → C by
(
ψ(g)(u)

)
(x∗) :=

u(x∗ ◦ g) for x∗ ∈ X∗ . Clearly
∣∣(ψ(g)(u)

)
(x∗)

∣∣ ≤ ‖u‖∗E‖x∗ ◦ g‖E ≤ ‖u‖∗E‖x∗‖X∗‖g‖E[X],

for all x∗ ∈ X∗ , by the definition of the norm in E[X] . This yields ψ(g)(u) ∈ X∗∗
and ψ(g) ∈ L(∗E,X∗∗) with ‖ψ(g)‖ ≤ ‖g‖E[X] . On the other hand ψ(g)(δz) =
g(z) ∈ X for all z ∈ D . By the property (d) above we conclude ψ(g) ∈ L(∗E,X) ,
and the map ψ: E[X]→ L(∗E,X) is well defined, linear continuous and its norm
is less than or equal to 1.

To complete the proof it is enough to observe that ψ ◦ χ and χ ◦ ψ coincide
with the identities on L(∗E,X) and E[X] respectively.

Let ϕ: D → D be holomorphic. The closed graph theorem and the argu-
ment in Proposition 1 imply that the composition operator Cϕ: E[X] → E[X]
is continuous if and only if Cϕ: E → E is continuous. Moreover the result
stated in Proposition 1 remains valid for the spaces of type E[X] . In order
to obtain a converse we proceed as follows. Assume Cϕ is continuous on E .
The transpose map C ′ϕ: E∗ → E∗ maps ∗E into itself; indeed, by the prop-
erty (d) above it is enough to check that C ′ϕ(δz) = δϕ(z) belongs to ∗E for all
z ∈ D which is trivial. Now the isomorphism proved in Lemma 10 transforms
the operator Cϕ on E[X] into the wedge operator Wϕ: L(∗E,X) → L(∗E,X) ,
Wϕ(T ) = idX ◦ T ◦ (C ′ϕ|∗E) . More precisely, with the notations introduced in the
proof of Lemma 10, (ψ ◦Cϕ ◦χ)(S) = S ◦ (C ′ϕ|∗E) for every S ∈ L(∗E,X) which
implies Cϕ = χ ◦Wϕ ◦ ψ . We are ready to prove the main results in this section.

Proposition 11. Let Cϕ: E → E be compact and let X be a Banach space.
(1) If X is reflexive, then Cϕ: E[X]→ E[X] is weakly compact.
(2) If X does not contain a copy of l1 , then Cϕ: E[X]→ E[X] is a Rosenthal

operator.

Proof. Since C ′ϕ|∗E is a compact operator on ∗E , we can apply [ST, Theo-
rem 2.9] for part (1) and [LS, Corollary 2.13] for part (2) to the wedge operator
Wϕ to reach the conclusion.

Corollary 12 [LST, Theorem 4]. Let ϕ: D → D be holomorphic and let X
be a Banach space. The operator Cϕ on the Bloch space B(X) is weakly compact
(respectively Rosenthal) if and only if Cϕ is Rosenthal on B and X is reflexive
(respectively X does not contain a copy of l1 ).

Proof. First observe that the Bloch space B satisfies the assumptions we
impose on the general space E considered in this section. In fact, if f ∈ B , it
follows by integration that

max
|z|≤r

|f(z)| ≤
{

1 +
1

2
log

(
1 + r

1− r

)}
‖f‖B (0 ≤ r < 1).
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Therefore, every bounded set in B is relatively compact with respect to the
compact-open topology and point evaluations are bounded linear functionals on B .
To see that the closed unit ball U(B) of B is a compact subset of (B, co) it is
enough to observe that U(B) is a normal family by Montel’s theorem. If fn → f
with respect to the co -topology and ‖fn‖B ≤ 1 for all n , then also f ′n → f ′ in
the co -topology and consequently ‖f‖B ≤ 1.

It is now easy to see that the vector valued Bloch space B(X) coincides with
the space B[X] defined in this section and that

‖f‖B[X] ≤ ‖f‖B(X) ≤ 2‖f‖B[X]

for every f ∈ B[X] .

By Proposition 11, it remains to show that every Rosenthal composition op-
erator on B is compact. This is proved below.

A sequence (zn) ⊂ D is called δ -separated if infn6=k |(zn − zk)/(1− zkzn)| >
δ > 0.

Proposition 13. There is a constant δ > 0 such that if (wn) in D is δ -
separated, then there exist a continuous linear operator R: l∞ → B and functions
hk := R(ek) ∈ B such that

h′k(wn) = 0, if n 6= k, (1− |wn|2)h′n(wn) = 1.

Proof. By the proof of Proposition 1 in [MM] (see [Ro]), there are two con-
tinuous linear operators

S: B → l∞, S(f) =
(
(1− |wn|2)f ′(wn)

)
n

and

T : l∞ → B, T
(
(ξn)

)
z =

∞∑

n=1

ξn
1

3wn

(1− |wn|2)3

(1− wnz)3

such that ‖id − ST‖ < 1. Thus ST has an inverse (ST )−1: l∞ → l∞ , and
therefore S has a right inverse R := T (ST )−1: l∞ → B . Since SR(ek) = ek for
all k , we get that (1− |wn|2)h′k(wn) = δnk for all n and k .

Proposition 14. The following statements are equivalent:

(a) Cϕ: B → B is non-compact.

(b) There exist continuous linear operators R: l∞ → B and Q: B → l∞ such
that Q ◦ Cϕ ◦R = idl∞ .

(c) Cϕ: B → B is not a Rosenthal operator.
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In [LST] the equivalence (a) ⇔ (c) is obtained by other methods.
Proof. (a) ⇒ (b): Since Cϕ is non-compact, by [MM, Theorem 2], there is a

sequence (zn) ∈ D and a constant ε > 0 so that |ϕ(zn)| → 1 and

(1− |zn|2)|ϕ′(zn)|
1− |ϕ(zn)|2 ≥ ε for all n ≥ 1 .

Since |ϕ(zn)| → 1, passing to a subsequence, we can apply Proposition 13 and get
a continuous linear operator R: l∞ → B and functions hk := R(ek) ∈ B such
that

h′k(ϕ(zn)) = 0, if n 6= k,
(
1− |ϕ(zn)|2

)
h′n
(
ϕ(zn)

)
= 1.

Hence R(ξ) =
∑∞
k=1 ξkhk for all ξ = (ξk) ∈ c0 . Now we define a map

Q: B → l∞, Q(f) =

(
1− |ϕ(zn)|2
ϕ′(zn)

f ′(zn)

)

n

.

Since

‖Q(f)‖ ≤ 1

ε
sup
n
|f ′(zn)|(1− |zn|2) ≤ 1

ε
‖f‖B for all f ∈ B ,

the map is well defined, linear and continuous. For every ξ = (ξn) ∈ c0 ,

Q ◦ Cϕ ◦R(ξ) =

((
1− |ϕ(zn)|2

) ∞∑

k=1

ξkh
′
k

(
ϕ(zn)

))

n

.

Consequently, we get that Q ◦ Cϕ ◦ R(ξ) = ξ for all ξ ∈ c0 . Using a result of
Rosenthal [Rs, Proposition 1.2] we get the conclusion.

The implications (b) ⇒ (c) and (c) ⇒ (a) are obvious.

Corollary 15. Let v be a weight on D . Let Cϕ be continuous on Bv∞ . The
operator Cϕ is weakly compact (respectively Rosenthal) on Bv

∞(X) if and only
if Cϕ is Rosenthal on Bv∞ and X is reflexive (respectively X does not contain a
copy of l1 ).

Proof. It is well known (e.g. [BS], [BBT]) that the space Bv
∞ satisfies the

conditions imposed on the general space E considered in this section. Moreover
it is easy to see that the vector valued space Bv

∞(X) coincides isometrically with
the space Bv∞[X] defined here.

The associated weight is defined by

ṽ(z) =
(
sup{|f(z)| : ‖f‖v ≤ 1}

)−1
, z ∈ D.

It is better tied to the space Bv∞ than v itself [BBT], and Bv∞ = Bṽ∞ holds
isometrically. By [BDLT] the operator Cϕ is continuous on Bv∞ if and only if

sup
z∈D

v(z)

ṽ
(
ϕ(z)

) <∞.

Moreover, by [BDL, Theorem 1], the operator Cϕ is Rosenthal on Bv∞ if and only
if it is compact. Hence the conclusion follows from Proposition 11.
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If we take v(z) = 1 for every z ∈ D in Corollary 15, we obtain as a particular
case Theorem 6 and part of Theorem 7 in [LST].

To conclude we consider only radial weights v , that is, v(z) = v(|z|) . A radial
weight v is called essential, if there exists a C > 0 such that v(z) ≤ ṽ(z) ≤ Cv(z) .
We can now apply [BDLT, Theorem 3.3] to get the following corollary.

Corollary 16. Let v be an essential weight. Then Cϕ: Bv∞(X)→ Bv∞(X) is
weakly compact (respectively Rosenthal) if and only if X is reflexive (respectively
does not contain a copy of l1 ) and

lim
r→1

sup
{z:|ϕ(z)|>r}

v(z)

v
(
ϕ(z)

) = 0 or ‖ϕ‖∞ < 1.

As a consequence of Lemma 4 and Fatou’s lemma, the weighted Bergman
spaces Bαp , 1 ≤ p < ∞ , α ≥ −1, satisfy the conditions imposed on the scalar
valued Banach space E . This permits to use Proposition 6 and Proposition 11 to
get consequences on vector-valued composition operators on spaces of type Bα

p [X]
as defined in this section. It is important to point out that the classical vector-
valued space Bαp (X) is continuously included in but different from Bα

p [X] . This
is the reason why we had to treat composition operators defined on them with
another method.
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