Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 233–248

WEAKLY COMPACT COMPOSITION OPERATORS ON ANALYTIC VECTOR-VALUED FUNCTION SPACES

José Bonet, Paweł Domański, and Mikael Lindström

Universidad Politécnica de Valencia, E. T. S. Arquitectura, Dpto. de Matemática Aplicada ES-46071 Valencia, Spain; jbonet@pleiades.upv.es

A. Mickiewicz University, Faculty of Mathematics and Computer Science ul. Matejki 48/49, PL-60-769 Poznań, Poland; domanski@amu.edu.pl

> ˚Abo Akademi University, Department of Mathematics FI-20500 Åbo, Finland; mlindstr@abo.fi

Abstract. Let X be a Banach space. It is proved that the composition operator on X valued Hardy spaces, weighted Bergman spaces and Bloch spaces is weakly compact or Rosenthal if and only if both id: $X \to X$ and the corresponding composition operator on scalar valued spaces are weakly compact or Rosenthal, respectively.

1. Introduction

Let $\varphi: D \to D$ be an analytic self map of the complex unit disc D. It can be easily proved that if the composition operator C_{φ} : $f \mapsto f \circ \varphi$ on vector-valued (i.e. with values in a Banach space X) Hardy, Bergman or Bloch spaces belongs to some operator ideal, then both its scalar version and the identity operator on X belong to the same ideal. For the ideal of weakly compact operators Liu, Saksman and Tylli [LST] proved the converse for vector-valued Hardy spaces $H_1(X)$, Bergman spaces $B_1(X)$ and $B_{\infty}(X) = H^{\infty}(X)$ as well as for Bloch spaces using analytic methods.

If a vector-valued space of analytic functions $E[X]$ can be represented as the space $L({}^*E, X)$ of all linear bounded operators from the predual of the scalar version of $E[X]$ into X, then we give a very simple functional analytic argument which replaces the more analytic ones in [LST]. In this way we obtain the results for Bloch spaces and extend the results of [LST] to weighted Bergman spaces of infinite order $B^v_{\infty}(X)$. In that part of the paper our main idea is to use the following result due to Saksman and Tylli in ST , see also $[R]$, $[LS]$. Let E, F,

¹⁹⁹¹ Mathematics Subject Classification: Primary 47B38, 47B10, 46E40, 46E15.

The research of the authors was partially supported by DGESIC project no. PB97-0333, the Committee of Scientific Research (KBN), Poland, grant 2P03A 051 15 and Academy of Finland, respectively.

 E_1 , F_1 be Banach spaces and let $R \in \mathcal{L}(E, F)$ and $B \in \mathcal{L}(E_1, F_1)$ be two weakly compact operators. If B or R is compact, then the map $T \mapsto R \circ T \circ B$ from $\mathscr{L}(F_1,E)$ into $\mathscr{L}(E_1,F)$ is weakly compact.

Unfortunately the operator representation mentioned above does not hold in general, for instance, for Hardy spaces $H_1(X)$ or Bergman spaces $B_1(X)$. Thus the main part of the paper is devoted to that case. We are able to extend the methods and the results of [LST] to the classical weighted Bergman spaces $B_1^{\alpha}(X)$, $\alpha \ge -1$, a class which includes both $H_1(X)$ and $B_1(X)$. An essential improvement is done in a formula derived from the so-called Stanton formula (see Lemma 3).

Let us observe that for $1 < p < \infty$ the weighted Bergman space $B_p^v(X)$ and $H_p(X)$ are reflexive whenever X is reflexive. Thus C_φ on these spaces is automatically weakly compact if and only if X is reflexive.

Further, we prove a characterization of compact composition operators on the Bloch space. The sets of interpolation for the Bloch space [Ro] play a crucial role in the proof.

2. Preliminaries

We denote by $H(D, X)$ the space of holomorphic functions from the unit disc D into a Banach space X. As usual $H_p(X)$ stands for the Hardy space of X-valued functions in $H(D, X)$ such that

$$
||f||_{H_p(X)}^p := \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} ||f(re^{i\theta})||_X^p \, d\theta < \infty \qquad \text{for } p < \infty,
$$
\n
$$
||f||_{H^\infty(X)} := \sup_{z \in D} ||f(z)||_X < \infty \qquad \text{for } p = \infty.
$$

Let $v: D \to \mathbf{R}_{+}$ be an arbitrary weight, i.e., bounded continuous positive (which means strictly positive throughout the paper) function. We define the weighted Bergman space $B_p^v(X)$ as the space of those functions $f \in H(D, X)$ with

$$
||f||_{B_{p}^{v}(X)}^{p} := \frac{1}{\pi} \int_{D} ||f(z)||_{X}^{p} v(z) dA(z) < \infty \quad \text{for } p < \infty,
$$

$$
||f||_{B_{\infty}^{v}(X)} := \sup_{z \in D} ||f(z)||_{X} v(z) < \infty \quad \text{for } p = \infty,
$$

where dA denotes the Lebesque area measure on the plane. If $v(z) = (1 - |z|^2)^{\alpha}$, $\alpha > -1$, then we write $B_p^{\alpha}(X)$ and if $\alpha = 0$ we just omit α . If $X = \mathbf{C}$, then we omit X in the notation. For the definition of B_p^{α} cf. [CM]. The Bergman spaces B_{∞}^v appear naturally in the study of growth conditions on analytic functions and in the scalar-case have been considered in many papers, see for example, [BBG], [BBT], [BS], [BDL], [BDLT], [SW1], [SW2].

We denote by $\mathcal{B}(X)$ the X-valued Bloch space of analytic functions $f: D \to$ X with the norm

$$
||f||_{\mathscr{B}(X)} = ||f(0)||_X + \sup_{z \in D} (1 - |z|^2) ||f'(z)||_X < \infty.
$$

In [CH] the composition operators on the Bloch space are treated as weighted composition operators on B^v_∞ spaces.

A map $T \in \mathcal{L}(X)$ from the Banach space X into X is called compact, weakly compact, Rosenthal, if it maps the closed unit ball of X onto a relatively compact, a relatively weakly compact, a conditionally weakly compact set in X . A subset A in X is called conditionally weakly compact, if every sequence in A admits a weak Cauchy subsequence. Clearly every weakly compact operator is Rosenthal. Rosenthal's l_1 theorem implies that $T: X \to Y$ is Rosenthal if and only if T is not an isomorphism on any copy of l_1 in X.

When we write $f \sim g$ for two functions f and g we mean there are strictly positive constants a, b such that $af \leq g \leq bf$ for all the values of the variable.

For the sake of completeness we give a general argument why the considered conditions are necessary for C_{φ} to belong to the considered ideals.

Proposition 1. If $\mathscr J$ is an operator ideal and C_{φ} : $E(X) \to E(X)$ belongs to $\mathscr J$ whenever $E(X)$ is one of the spaces of vector-valued analytic functions $B_p^v(X)$, $H_p(X)$, $\mathscr{B}(X)$, then both id: $X \to X$ and $C_{\varphi}: E \to E$, E the scalar version of the space, belongs to $\mathscr J$.

Proof. Let $0 \neq x_0 \in X$, $l_0 \in X^*$ with $l_0(x_0) = 1$ and $z_0 \in D$. We define the operators

All these operators are continuous, $id_X = r \circ C_{\varphi} \circ p$ and $\eta \circ C_{\varphi} \circ \gamma$ is exactly the scalar composition operator on E . \Box

3. Consequences of the Stanton formula

In [Sh1] Shapiro introduced the generalized Nevanlinna counting function $N_{\varphi,\alpha}$ for $\alpha > 0$. It is defined by

$$
N_{\varphi,\alpha}(w) = \sum_{z \in \varphi^{-1}(w)} \left(\log \left(\frac{1}{|z|} \right) \right)^{\alpha}, \qquad w \in D \setminus \{\varphi(0)\}.
$$

For our purpose it is convenient to introduce the modified Nevanlinna counting function

$$
\widetilde{N}_{\varphi,\alpha}(w) = \sum_{z \in \varphi^{-1}(w)} (1 - |z|^2)^{\alpha - 1} \log\left(\frac{1}{|z|}\right), \qquad w \in D \setminus \{\varphi(0)\}.
$$

The standard Nevanlinna counting function is $N_{\varphi} = N_{\varphi,1} = \tilde{N}_{\varphi,1}$ and the partial Nevanlinna counting function of φ is defined for $0 < r < 1$ by

$$
N_{\varphi}(r, w) = \sum_{z \in \varphi^{-1}(w), \, |z| \le r} \log\bigg(\frac{r}{|z|}\bigg), \qquad w \in D \setminus \{\varphi(0)\}.
$$

The following formula for a continuous subharmonic function u is due to Stanton [St, Theorem 2]:

$$
\frac{1}{2\pi} \int_0^{2\pi} u(\varphi(re^{i\theta})) d\theta = u(0) + \frac{1}{2\pi} \int_D N_\varphi(r, w) d[\Delta(u)](w),
$$

where $r \in (0,1)$ and $\varphi: D \to D$ is analytic, $\varphi(0) = 0$. When $f \in H(D,X)$, $d[\Delta||f||_X](w)$ denotes integration with respect to the distributional Laplacian of $||f||_X$, which is a positive measure on D since the map $z \mapsto ||f(z)||_X$ is subharmonic. This means that for every test function (infinitely differentiable function on **C** with compact support) τ we have

$$
\int \tau(w) d[\Delta ||f||_X](w) = \frac{1}{2\pi} \int ||f(w)||_X \Delta \tau(w) dA(w).
$$

The Stanton formula was applied to composition operators first by Shapiro [Sh1], see also [SS]. We use it to characterize weakly compact operators with the help of the following lemmas.

Lemma 2 [LST, p. 300–301]. If $f: D \to X$ is analytic, $\varphi(0) = 0$ and $0 < r < 1$, then

(1)
$$
\frac{1}{2\pi} \int_0^{2\pi} ||f(\varphi(re^{i\theta})||_X d\theta = ||f(0)||_X + \frac{1}{2\pi} \int_D N_{\varphi}(r, w) d[\Delta(||f||_X)](w),
$$

(2)
$$
||C_{\varphi}(f)||_{H_1(X)} = ||f(0)||_X + \frac{1}{2\pi} \int_D N_{\varphi}(w) d[\Delta(||f||_X)](w).
$$

The next result was proved in [LST] only for $\alpha = 0$:

Lemma 3. If $f: D \to X$ is analytic, $\varphi(0) = 0$ and $\alpha > -1$, then

(3)
$$
\|C_{\varphi}(f)\|_{B_1^{\alpha}(X)} \sim \|f(0)\|_X + \frac{1}{2\pi} \int_D \widetilde{N}_{\varphi,\alpha+2}(w) d[\Delta(\|f\|_X)](w).
$$

Proof. If $0 < r_0 \le r < 1$, then $\frac{1}{2}(1 - r^2) \le \log(1/r) \le C(1 - r^2)$ for some C. By partial integration, for $z \in D$ away from the origin, we have

$$
\int_{|z|}^{1} 2r(1-r^2)^{\alpha} \log\left(\frac{r}{|z|}\right) dr = \int_{|z|}^{1} \frac{(1-r^2)^{\alpha+1}}{r(\alpha+1)} dr
$$

$$
\sim \int_{|z|}^{1} \left(\log\left(\frac{1}{r}\right)\right)^{\alpha+1} \frac{dr}{r} \sim \left(\log\frac{1}{|z|}\right)^{\alpha+2}
$$

$$
\sim (1-|z|^2)^{\alpha+1} \log\left(\frac{1}{|z|}\right).
$$

Further, we have that

$$
\lim_{|z|\to 0^+} \frac{\int_{|z|}^1 2r(1-r^2)^{\alpha} \log(r/|z|) dr}{(1-|z|^2)^{\alpha+1} \log(1/|z|)} = \frac{1}{\alpha+1}.
$$

Indeed, by partial integration

$$
I(|z|) := \int_{|z|}^{1} 2r(1 - r^2)^{\alpha} \log\left(\frac{r}{|z|}\right) dr = \int_{|z|}^{1} \frac{(1 - r^2)^{\alpha + 1}}{r(\alpha + 1)} dr.
$$

Further, let $J(|z|) := (1 - |z|^2)^{\alpha+1} \log(1/|z|)$. Then, by l'Hôpital's rule,

$$
\lim_{|z|\to 0^+} \frac{I(|z|)}{J(|z|)} = \lim_{|z|\to 0^+} \frac{I'(|z|)}{J'(|z|)}
$$
\n
$$
= \lim_{|z|\to 0^+} \frac{1}{2(\alpha+1)^2 |z|^2 \log(1/|z|)(1-|z|^2)^{-1} + \alpha + 1} = \frac{1}{\alpha+1}.
$$

Hence $\int_{|z|}^{1} 2r(1 - r^2)^{\alpha} \log(r/|z|) dr$ and $(1 - |z|^2)^{\alpha+1} \log(1/|z|)$ are comparable with uniform constant for all $|z| > 0$. Thus

(4)

$$
\int_0^1 2r(1-r^2)^{\alpha} N_{\varphi}(r, w) dr = \sum_{z \in \varphi^{-1}(w)} \int_{|z|}^1 2r(1-r^2)^{\alpha} \log\left(\frac{r}{|z|}\right) dr
$$

$$
\sim \sum_{z \in \varphi^{-1}(w)} (1-|z|^2)^{\alpha+1} \log\left(\frac{1}{|z|}\right).
$$

Now multiplying (1) by $2r(1 - r^2)^\alpha$, integrating with respect to r from 0 to 1 and applying Fubini's theorem, we get

$$
\int_{D} ||f(\varphi(w))||_{X} (1 - |w|^2)^{\alpha} dA(w)
$$

$$
\sim ||f(0)||_{X} + \frac{1}{2\pi} \int_{D} \left(\int_{0}^{1} N_{\varphi}(r, w) 2r(1 - r^2)^{\alpha} dr \right) d[\Delta(||f||_{X})](w)
$$

and we conclude from (4) . \Box

For the special case that φ is the identity map we obtain the following formulas:

(5)
$$
\frac{1}{2\pi} \int_0^{2\pi} ||f(re^{i\theta})||_X d\theta = ||f(0)||_X + \frac{1}{2\pi} \int_{rD} \log\left(\frac{r}{|w|}\right) d[\Delta(\|f\|_X)](w),
$$

(6)
$$
||f||_{H_1(X)} = ||f(0)||_X + \frac{1}{2\pi} \int \log\left(\frac{1}{|w|}\right) d[\Delta(\|f\|_X)](w)
$$

(6)
$$
||f||_{H_1(X)} = ||f(0)||_X + \frac{1}{2\pi} \int_D \log\left(\frac{1}{|w|}\right) d[\Delta(||f||_X)](w)
$$

and

(7)
$$
||f||_{B_1^{\alpha}}(X) \sim ||f(0)||_X + \frac{1}{2\pi} \int_D (1 - |w|^2)^{\alpha+1} \log\left(\frac{1}{|w|}\right) d[\Delta(||f||_X)](w).
$$

The estimates (6) and (7) permit to define $B_1^{-1}(X)$ as $H_1(X)$, and therefore we can consider these Hardy spaces as weighted Bergman spaces.

4. Composition operators on weighted Bergman spaces

First we consider the continuity of C_{φ} on $B_1^{\alpha}(X)$. We start with the following result.

Lemma 4. Let $\alpha \geq -1$. If $z \in D$ and $f \in B_1^{\alpha}(X)$, then

$$
||f(z)||_X \le C||f||_{B_1^{\alpha}(X)}(1-|z|^2)^{-(\alpha+2)},
$$

where C is independent of f .

Proof. By [Sm, Lemma 2.5],

$$
|l(f(z))| \le C||l \circ f||_{B_1^{\alpha}} (1-|z|^2)^{-(\alpha+2)}, \qquad l \in X^*,
$$

and C does not depend on l and f. Since $||l \circ f||_{B_1^{\alpha}} \le ||l|| \, ||f||_{B_1^{\alpha}(X)}$ we are done. \Box

It follows immediately from Lemma 4 that evaluations are continuous on $B_1^{\alpha}(X)$, the compact open topology is weaker than the norm one and that $B_1^{\alpha}(X)$ is a Banach space.

Proposition 5. Let $\alpha \geq -1$. The composition operator $C_{\varphi} \colon B_1^{\alpha}(X) \to$ $B_1^{\alpha}(X)$ is continuous. In fact, for each $\alpha \geq -1$ there exists a constant $C(\alpha)$ such that

$$
||C_{\varphi}|| \leq C(\alpha) \bigg(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\bigg)^{\alpha+2}.
$$

Proof. The proof is standard but for completeness we include it. The cases $\alpha = 0$ and $\alpha = -1$ are proved in [LST, Proposition 1]. For $a = \varphi(0)$ let $\varphi_a(z) :=$ $(a-z)/(1-\overline{a}z)$. Then $\psi := \varphi_a \circ \varphi : D \to D$ is analytic, $\psi(0) = 0$ and $\varphi = \varphi_a \circ \psi$. Since $z \mapsto ||f \circ \varphi_a(z)||_X$ is subharmonic, Littlewood subordination theorem

[CM, p. 30] yields

$$
\int_0^{2\pi} ||f \circ \varphi(re^{i\theta})||_X d\theta \le \int_0^{2\pi} ||f \circ \varphi_a(re^{i\theta})||_X d\theta
$$

for all $0 < r < 1$. Therefore,

$$
||C_{\varphi}f||_{B_1^{\alpha}}(x) \le \frac{1}{\pi} \int_D ||f \circ \varphi_a(z)||_X (1 - |z|^2)^{\alpha} dA(z).
$$

By changing the variable in the last integral, we get

$$
||C_{\varphi}f||_{B_1^{\alpha}}(x) \le \frac{1}{\pi} \int_D ||f(w)||_X (1 - |\varphi_a(w)|^2)^{\alpha} \frac{(1 - |a|^2)^2}{|1 - \overline{a}w|^4} dA(w)
$$

$$
\le C(\alpha) \left(\frac{1 + |a|}{1 - |a|}\right)^{\alpha + 2} ||f||_{B_1^{\alpha}}(x) \cdot \Box
$$

By [L, Corollary 2.7], it follows for $\alpha > -1$ that the space B_1^{α} is isomorphic to l_1 . Therefore, by the well-known properties of l_1 , we have:

Proposition 6. Let $\alpha > -1$. The following statements are equivalent:

(a) $C_{\varphi} \colon B_1^{\alpha} \to B_1^{\alpha}$ is non-compact.

(b) $C_{\varphi} \colon B_1^{\alpha} \to B_1^{\alpha}$ is non-Rosenthal.

(c) There exist continuous linear operators $S: l^1 \to B_1^{\alpha}$ and $T: B_1^{\alpha} \to l^1$ such that $T \circ C_{\varphi} \circ S = \mathrm{id}_{l_1}$.

The proposition above can also be obtained using interpolating sequences in B_1^{α} (cf. [HRS, Theorem 3.1]) without referring to the isomorphic classification of B_1^{α} due to Lusky [L].

The following result was proved by Liu, Saksman and Tylli in [LST] for the spaces $H_1(X)$ and $B_1(X)$. We only have to check that the same argument is valid for all spaces $B_1^{\alpha}(X)$. Let us note that the Banach–Steinhaus theorem cannot be used to obtain (9) for any infinite dimensional Banach space X.

The operators V_k defined in the next proposition are related to de la Vallée– Poussin summability kernels.

Proposition 7. Let $\alpha \geq -1$, $k \in \mathbb{N}$ and X a Banach space. Define the operator V_k by setting

$$
V_k f(z) = \sum_{n=0}^k \hat{f}_n z^n + \sum_{n=k+1}^{2k-1} \frac{2k-n}{k} \hat{f}_n z^n
$$

for analytic $f: D \to X$ with the Taylor expansion $f = \sum_{n=0}^{\infty} \hat{f}_n z^n$. Then there is $C > 0$ such that

(8)
$$
||V_k f||_{B_1^{\alpha}(X)} \leq C ||f||_{B_1^{\alpha}(X)}
$$

for all $f \in B_1^{\alpha}(X)$. Moreover, given $\varepsilon > 0$ and $r \in (0,1)$ there is $k_0 = k_0(\varepsilon, r) > 0$ such that for $k \geq k_0$

(9)
$$
||f(z) - V_k f(z)||_X \le \varepsilon ||f||_{B_1^{\alpha}(X)} \quad \text{for all } |z| \le r \text{ and } f \in B_1^{\alpha}(X).
$$

Further, if X is reflexive, respectively does not contain a copy of l_1 , then the operator $V_k: B_1^{\alpha}(X) \to B_1^{\alpha}(X)$ is weakly compact, respectively Rosenthal.

Proof. By [LST, Proposition 2] we know that (8) and (9) are valid for $H_1(X)$ with $C = 2$. Let $f \in B_1^{\alpha}(X)$ and $\alpha > -1$. It is easily seen that

(10)
$$
||f||_{B_1^{\alpha}}(X) = 2 \int_0^1 ||f_r||_{H_1(X)} r (1 - r^2)^{\alpha} dr,
$$

where $g_s(z) = g(sz)$ for $0 < s < 1$. Thus (8) is a direct consequence of the corresponding result for $H_1(X)$ and the relation $V_k f_r = (V_k f)_r$.

For completeness we give the argument from [LST] to obtain (9). Assume that $r \in \left(\frac{1}{2}\right)$ $(\frac{1}{2}, 1)$ and $\varepsilon > 0$ are given. Let $f \in B_1^{\alpha}(X)$ with $||f||_{B_1^{\alpha}(X)} \leq 1$. It follows from (10) that there exist a radius $r' \in (\sqrt{r}, 1)$ and a constant C with $||f_{r'}||_{H_1(X)} \leq C(\alpha+1)(1-\sqrt{r})^{-(\alpha+1)}$. Further we can choose k_0 such that for $k \geq k_0$ we have $||g(z) - V_k g(z)||_X \leq \varepsilon (\alpha + 1)^{-1} (1 - \sqrt{r})^{\alpha + 1} C^{-1} ||g||_{H_1(X)}$ for $|z| \leq \sqrt{r}$ and all $g \in H_1(X)$. Thus, for $|z| \leq r$ we have that $|z/r'| \leq$ $\sqrt{\overline{r}}$, so we get

$$
||f(z) - V_k f(z)||_X = \left\|f_{r'}\left(\frac{z}{r'}\right) - V_k f_{r'}\left(\frac{z}{r'}\right)\right\|_X \leq \varepsilon.
$$

The final statement follows exactly as in [LST]. \Box

Let U be a closed ideal of operators between Banach spaces. For $T \in \mathcal{L}(X)$ define $||T||_{\mathscr{U}} = \inf{||T - S|| : S \in \mathscr{U} }$. Let W and \mathscr{R} be the closed ideal of weakly compact respectively Rosenthal operators on X .

Theorem 8. Let X be reflexive, respectively a Banach space not containing a copy of l_1 . For each $\alpha \geq -1$ there exists a constant $C(\alpha)$ such that for C_φ acting on $B_1^{\alpha}(X)$ we have

$$
||C_{\varphi}||_{\mathscr{U}} \leq C(\alpha) \limsup_{|w| \to 1} \frac{N_{\varphi,\alpha+2}(w)}{(-\log|w|)^{\alpha+2}},
$$

where $\mathscr U$ is $\mathscr W$ respectively $\mathscr R$.

Proof. Let $f \in B_1^{\alpha}(X)$ be arbitrary and fix an arbitrary $r \in (0,1)$. Without loss of generality, we may assume that $\varphi(0) = 0$. We have that $|| f(0) - V_k f(0) ||_X =$ 0. By (2) and (3) we get

$$
||C_{\varphi}(f - V_k f)||_{B_1^{\alpha}(X)} \sim \frac{1}{2\pi} \int_{rD} \widetilde{N}_{\varphi, \alpha+2}(w) d[\Delta(||f - V_k f||_X)](w)
$$

+
$$
\frac{1}{2\pi} \int_{D \setminus rD} \widetilde{N}_{\varphi, \alpha+2}(w) d[\Delta(||f - V_k f||_X)](w)
$$

:= $I_{r,k} + J_{r,k}.$

To estimate the first term $I_{r,k}$ observe that by [Sh2, Corollary 10.4(b)], $N_{\varphi}(w) \leq$ $\log(1/|w|)$ for each $w \in D$. Hence for all $w \in D$

$$
\widetilde{N}_{\varphi,\alpha+2}(w) \leq N_{\varphi}(w) \leq \log\biggl(\frac{1}{|w|}\biggr).
$$

Therefore we get,

$$
I_{r,k} \leq \frac{1}{2\pi} \int_{rD} \log\left(\frac{r}{|w|}\right) d[\Delta(\|f - V_k f\|_X)](w)
$$

+
$$
\frac{1}{2\pi} \log\left(\frac{1}{r}\right) \int_{rD} d[\Delta(\|f - V_k f\|_X)](w).
$$

Hence by (6) ,

$$
\frac{1}{2\pi} \int_{rD} \log\left(\frac{r}{|w|}\right) d[\Delta(\|f - V_k f\|_X)](w) \n= \frac{1}{2\pi} \int_D \log\left(\frac{1}{|w'|}\right) d[\Delta(\|(f - V_k f)_r\|_X)](w') = \|(f - V_k f)_r\|_{H_1(X)}.
$$

Further,

$$
||(f - V_k f)_r||_{H_1(X)} = \frac{1}{2\pi} \int_0^{2\pi} ||(f - V_k f)_r(e^{i\theta})||_X d\theta \le \sup_{|w|=r} ||f(w) - V_k f(w)||_X.
$$

Let now τ be a test function on the plane with $0 \leq \tau \leq 1$, the support of τ is contained in $\frac{1}{2}(r+1)D$ and $\tau \equiv 1$ on rD. Then

$$
\int_{rD} d[\Delta(\|f - V_k f\|_X)](w) \le \int \tau(w) d[\Delta(\|f - V_k f\|_X)](w)
$$

=
$$
\frac{1}{2\pi} \int_{(r+1)D/2} \|f(w) - V_k f(w)\|_X \Delta \tau(w) dA(w)
$$

$$
\le M \int_{(r+1)D/2} \|f(w) - V_k f(w)\|_X dA(w),
$$

where $M := (1/2\pi) \max\{|\Delta \tau(w)| : w \in \mathbb{C}\}\$ is finite. By Proposition 7, we get for every $r \in (0,1)$ that

$$
\lim_{k \to \infty} \sup_{\|f\|_{B_1^{\alpha}(X)} \le 1} I_{r,k} = 0.
$$

For the second term $J_{r,k}$ we first notice that $\widetilde{N}_{\varphi,\alpha+2}(w) \leq 2^{\alpha+1}N_{\varphi,\alpha+2}(w)$ for all $w \in D$. Therefore

$$
J_{r,k} \leq \sup_{w \in D \setminus rD} \left(\frac{N_{\varphi,\alpha+2}(w)}{(-\log|w|)^{\alpha+2}} \right) \frac{2^{\alpha+1}}{2\pi} \int_{D \setminus rD} \left(\log\left(\frac{1}{|w|}\right) \right)^{\alpha+2} d[\Delta(\|f-V_kf\|_X)](w).
$$

Since $\log(1/|w|)$ and $1-|w|^2$ are comparable for all $w \in D \setminus rD$, there is $M(\alpha, r)$ such that by (6) , (7) and (8) ,

$$
J_{r,k} \leq M(\alpha, r) \sup_{w \in D \setminus rD} \frac{N_{\varphi, \alpha+2}(w)}{(-\log|w|)^{\alpha+2}} \|f - V_k f\|_{B_1^{\alpha}(X)}
$$

$$
\leq CM(\alpha, r) \sup_{w \in D \setminus rD} \frac{N_{\varphi, \alpha+2}(w)}{(-\log|w|)^{\alpha+2}} \|f\|_{B_1^{\alpha}(X)}.
$$

Consequently,

$$
||C_{\varphi}||_{\mathscr{U}} \leq C(\alpha) \Biggl\{ \lim_{k \to \infty} \sup_{||f||_{B_1^{\alpha}(X)} \leq 1} I_{k,r} + \lim_{r \to 1} \sup_{||f||_{B_1^{\alpha}(X)} \leq 1} J_{r,k} \Biggr\}
$$

$$
\leq C(\alpha) \limsup_{|w| \to 1} \frac{N_{\varphi, \alpha+2}(w)}{(-\log|w|)^{\alpha+2}}.
$$

Corollary 9. Let $\alpha \geq -1$. Then $C_{\varphi} \colon B_1^{\alpha}(X) \to B_1^{\alpha}(X)$ is weakly compact, respectively Rosenthal, if and only if X is reflexive, respectively does not contain a copy of l_1 , and

(11)
$$
\limsup_{|w|\to 1} \frac{N_{\varphi,\alpha+2}(w)}{(-\log|w|)^{\alpha+2}} = 0.
$$

Proof. One direction follows from Proposition 1. Indeed, by Proposition 6 and Sarason [S] (cf. also [J]) for $\alpha = -1$, every Rosenthal operator C_{φ} on B_1^{α} is compact. By [CM, Example 3.2.6, Theorem 3.12] compactness of C_{φ} on B_p^{α} is independent of $0 < p < \infty$ for $\alpha \ge -1$. Thus with $p = 2$ [Sh1, Theorems 6.8] and 2.3] give that C_{φ} on B_1^{α} is compact if and only if condition (11) is valid.

The converse statement follows directly from Theorem 8.

5. Composition operators on general vector-valued spaces

In this section E denotes a Banach space of analytic functions on the unit disc D which contains the constant functions and such that its closed unit ball $U(E)$ is compact for the compact open topology co. These assumptions imply the following properties of the space E which will be frequently used later.

(a) For every $z \in D$ the evaluation map $\delta_z: E \to \mathbf{C}, \ \delta_z(f) = f(z)$, is continuous and non-zero.

(b) The map $\Delta: D \to E^*$, $\Delta(z) = \delta_z$, $z \in D$, is a vector valued analytic function. Indeed, since E is a separating subset of the dual E^{**} of E^* , we can apply a result of Grosse-Erdmann [GE, Theorem 5.2] which ensures it is enough to check $f \circ \Delta \in H(D)$ for every $f \in E$. This is trivially satisfied.

(c) By the Dixmier–Ng theorem [N], the space

^{*}
$$
E := \{u \in E^* : u \mid U(E) \text{ is co-continuous}\},\
$$

endowed with the norm induced by E^* , is a Banach space and the evaluation map $E \to ({}^*E)^*$, $f \mapsto [u \mapsto u(f)]$ is an isometric isomorphism. In particular *E is a predual of E .

(d) The linear span of the set $\{\delta_z : z \in D\}$ is contained and norm dense in *E. This follows easily from the Hahn–Banach theorem: if $f \in E = (*E)^*$ vanishes on all the evaluation maps it must be zero.

Let X be a Banach space. The vector valued space $E[X]$ associated with E is defined as

$$
E[X] := \{ f \in H(D, X) : x^* \circ f \in E \text{ for every } x^* \in X^* \}.
$$

Given $f \in E[X]$, the map $T_f: X^* \to E$, $T_f(x^*) = x^* \circ f$, is well defined, linear and weak^{*}-pointwise continuous. By the closed graph theorem T_f is continuous and the supremum $||f||_{E[X]} := \sup_{||x^*|| \le 1} ||x^* \circ f||_E$ is finite. We endow $E[X]$ with this norm. Observe that the map $\Delta: D \to {}^*E$ defined in (b) above (also see (d)) belongs to $E[^*E]$ and $||\Delta||_{E[^*E]} = 1$.

A version of the following linearization result for $E = H^{\infty}$ can be found in [M] and for $E = B_{\infty}^{v}$ in [BBG].

Lemma 10. The space $E[X]$ is isomorphic to the space of operators $L({}^*E, X)$ in a canonical way. In particular, it is a Banach space.

Proof. First we define $\chi: L({}^*E, X) \to E[X]$ by $\chi(T) := T \circ \Delta$. The map χ is well defined, linear, continuous and its norm is less than or equal to 1.

Fix $g \in E[X]$ and $u \in {}^*E$ and define $\psi(g)(u) : X^* \to \mathbb{C}$ by $(\psi(g)(u))(x^*) :=$ $u(x^* \circ g)$ for $x^* \in X^*$. Clearly

$$
\left| \left(\psi(g)(u) \right) (x^*) \right| \leq \|u\|_{^*E} \|x^* \circ g\|_E \leq \|u\|_{^*E} \|x^*\|_{X^*} \|g\|_{E[X]},
$$

for all $x^* \in X^*$, by the definition of the norm in $E[X]$. This yields $\psi(g)(u) \in X^{**}$ and $\psi(g) \in L({^*E}, X^{**})$ with $\|\psi(g)\| \le \|g\|_{E[X]}$. On the other hand $\psi(g)(\delta_z) =$ $g(z) \in X$ for all $z \in D$. By the property (d) above we conclude $\psi(g) \in L({}^*E, X)$, and the map $\psi: E[X] \to L({}^*E, X)$ is well defined, linear continuous and its norm is less than or equal to 1.

To complete the proof it is enough to observe that $\psi \circ \chi$ and $\chi \circ \psi$ coincide with the identities on $L(*E, X)$ and $E[X]$ respectively.

Let $\varphi: D \to D$ be holomorphic. The closed graph theorem and the argument in Proposition 1 imply that the composition operator $C_{\varphi}: E[X] \to E[X]$ is continuous if and only if $C_{\varphi}: E \to E$ is continuous. Moreover the result stated in Proposition 1 remains valid for the spaces of type $E[X]$. In order to obtain a converse we proceed as follows. Assume C_{φ} is continuous on E. The transpose map $C'_{\varphi}: E^* \to E^*$ maps $*E$ into itself; indeed, by the property (d) above it is enough to check that $C'_{\varphi}(\delta_z) = \delta_{\varphi(z)}$ belongs to $*E$ for all $z \in D$ which is trivial. Now the isomorphism proved in Lemma 10 transforms the operator C_{φ} on $E[X]$ into the wedge operator $W_{\varphi}: L({^*E}, X) \to L({^*E}, X)$, $W_{\varphi}(T) = \mathrm{id}_X \circ T \circ (C'_{\varphi} | ^*E)$. More precisely, with the notations introduced in the proof of Lemma 10, $(\psi \circ C_{\varphi} \circ \chi)(S) = S \circ (C_{\varphi}'|^* E)$ for every $S \in L(^*E, X)$ which implies $C_{\varphi} = \chi \circ W_{\varphi} \circ \psi$. We are ready to prove the main results in this section.

Proposition 11. Let C_{φ} : $E \to E$ be compact and let X be a Banach space. (1) If X is reflexive, then C_{φ} : $E[X] \to E[X]$ is weakly compact.

(2) If X does not contain a copy of l_1 , then $C_{\varphi}: E[X] \to E[X]$ is a Rosenthal operator.

Proof. Since C'_{φ} * E is a compact operator on * E, we can apply [ST, Theorem 2.9] for part (1) and [LS, Corollary 2.13] for part (2) to the wedge operator W_{φ} to reach the conclusion. \Box

Corollary 12 [LST, Theorem 4]. Let $\varphi: D \to D$ be holomorphic and let X be a Banach space. The operator C_{φ} on the Bloch space $\mathscr{B}(X)$ is weakly compact (respectively Rosenthal) if and only if C_{φ} is Rosenthal on \mathscr{B} and X is reflexive (respectively X does not contain a copy of l_1).

Proof. First observe that the Bloch space $\mathscr B$ satisfies the assumptions we impose on the general space E considered in this section. In fact, if $f \in \mathcal{B}$, it follows by integration that

$$
\max_{|z| \le r} |f(z)| \le \left\{ 1 + \frac{1}{2} \log \left(\frac{1+r}{1-r} \right) \right\} ||f||_{\mathscr{B}} \qquad (0 \le r < 1).
$$

Therefore, every bounded set in \mathscr{B} is relatively compact with respect to the compact-open topology and point evaluations are bounded linear functionals on \mathscr{B} . To see that the closed unit ball $U(\mathscr{B})$ of \mathscr{B} is a compact subset of (\mathscr{B}, co) it is enough to observe that $U(\mathscr{B})$ is a normal family by Montel's theorem. If $f_n \to f$ with respect to the co-topology and $||f_n||_{\mathscr{B}} \leq 1$ for all n, then also $f'_n \to f'$ in the *co*-topology and consequently $||f||_{\mathscr{B}} \leq 1$.

It is now easy to see that the vector valued Bloch space $\mathscr{B}(X)$ coincides with the space $\mathscr{B}[X]$ defined in this section and that

$$
||f||_{\mathscr{B}[X]} \le ||f||_{\mathscr{B}(X)} \le 2||f||_{\mathscr{B}[X]}
$$

for every $f \in \mathscr{B}[X]$.

By Proposition 11, it remains to show that every Rosenthal composition operator on \mathscr{B} is compact. This is proved below. \Box

A sequence $(z_n) \subset D$ is called δ -separated if $\inf_{n \neq k} |(z_n - z_k)/(1 - \overline{z}_k z_n)| >$ $\delta > 0$.

Proposition 13. There is a constant $\delta > 0$ such that if (w_n) in D is δ separated, then there exist a continuous linear operator R: $l^{\infty} \to \mathscr{B}$ and functions $h_k := R(e_k) \in \mathscr{B}$ such that

$$
h'_k(w_n) = 0
$$
, if $n \neq k$, $(1 - |w_n|^2)h'_n(w_n) = 1$.

Proof. By the proof of Proposition 1 in [MM] (see [Ro]), there are two continuous linear operators

$$
S: \mathscr{B} \to l^{\infty}, \qquad S(f) = ((1 - |w_n|^2) f'(w_n))_n
$$

and

$$
T: l^{\infty} \to \mathcal{B}, \qquad T((\xi_n))z = \sum_{n=1}^{\infty} \xi_n \frac{1}{3\overline{w}_n} \frac{(1-|w_n|^2)^3}{(1-\overline{w}_n z)^3}
$$

such that $\|\text{id} - ST\| < 1$. Thus ST has an inverse $(ST)^{-1}$: $l^{\infty} \to l^{\infty}$, and therefore S has a right inverse $R := T(ST)^{-1}$: $l^{\infty} \to \mathscr{B}$. Since $SR(e_k) = e_k$ for all k, we get that $(1 - |w_n|^2)h'_k(w_n) = \delta_{nk}$ for all n and k.

Proposition 14. The following statements are equivalent:

(a) $C_{\varphi} \colon \mathscr{B} \to \mathscr{B}$ is non-compact.

(b) There exist continuous linear operators $R: l^{\infty} \to \mathscr{B}$ and $Q: \mathscr{B} \to l^{\infty}$ such that $Q \circ C_{\varphi} \circ R = id_{l_{\infty}}$.

(c) C_{φ} : $\mathscr{B} \to \mathscr{B}$ is not a Rosenthal operator.

In [LST] the equivalence (a) \Leftrightarrow (c) is obtained by other methods.

Proof. (a) \Rightarrow (b): Since C_{φ} is non-compact, by [MM, Theorem 2], there is a sequence $(z_n) \in D$ and a constant $\varepsilon > 0$ so that $|\varphi(z_n)| \to 1$ and

$$
\frac{(1-|z_n|^2)|\varphi'(z_n)|}{1-|\varphi(z_n)|^2} \ge \varepsilon \quad \text{for all } n \ge 1.
$$

Since $|\varphi(z_n)| \to 1$, passing to a subsequence, we can apply Proposition 13 and get a continuous linear operator $R: l^{\infty} \to \mathscr{B}$ and functions $h_k := R(e_k) \in \mathscr{B}$ such that $\ddot{}$

$$
h'_k(\varphi(z_n)) = 0, \quad \text{if} \quad n \neq k, \qquad \left(1 - |\varphi(z_n)|^2\right) h'_n\left(\varphi(z_n)\right) = 1.
$$

Hence $R(\xi) = \sum_{k=1}^{\infty} \xi_k h_k$ for all $\xi = (\xi_k) \in c_0$. Now we define a map

$$
Q: \mathscr{B} \to l^{\infty}, \qquad Q(f) = \left(\frac{1 - |\varphi(z_n)|^2}{\varphi'(z_n)} f'(z_n)\right)_n.
$$

Since

$$
||Q(f)|| \leq \frac{1}{\varepsilon} \sup_{n} |f'(z_n)| (1 - |z_n|^2) \leq \frac{1}{\varepsilon} ||f||_{\mathscr{B}} \quad \text{for all } f \in \mathscr{B},
$$

the map is well defined, linear and continuous. For every $\xi = (\xi_n) \in c_0$,

$$
Q \circ C_{\varphi} \circ R(\xi) = \left(\left(1 - |\varphi(z_n)|^2 \right) \sum_{k=1}^{\infty} \xi_k h'_k \big(\varphi(z_n) \big) \right)_n.
$$

Consequently, we get that $Q \circ C_{\varphi} \circ R(\xi) = \xi$ for all $\xi \in c_0$. Using a result of Rosenthal [Rs, Proposition 1.2] we get the conclusion.

The implications (b) \Rightarrow (c) and (c) \Rightarrow (a) are obvious. □

Corollary 15. Let v be a weight on D. Let C_{φ} be continuous on B_{∞}^v . The operator C_{φ} is weakly compact (respectively Rosenthal) on $B_{\infty}^{v}(X)$ if and only if C_{φ} is Rosenthal on B_{∞}^{v} and X is reflexive (respectively X does not contain a copy of l_1).

Proof. It is well known (e.g. [BS], [BBT]) that the space B_{∞}^{v} satisfies the conditions imposed on the general space E considered in this section. Moreover it is easy to see that the vector valued space $B^v_\infty(X)$ coincides isometrically with the space $B_{\infty}^v[X]$ defined here.

The *associated weight* is defined by

$$
\tilde{v}(z) = \left(\sup\{|f(z)| : \|f\|_v \le 1\}\right)^{-1}, \qquad z \in D.
$$

It is better tied to the space B^v_∞ than v itself [BBT], and $B^v_\infty = B^{\tilde{v}}_\infty$ holds isometrically. By [BDLT] the operator C_{φ} is continuous on B_{∞}^{v} if and only if

$$
\sup_{z\in D}\frac{v(z)}{\tilde{v}(\varphi(z))}<\infty.
$$

Moreover, by [BDL, Theorem 1], the operator C_{φ} is Rosenthal on B_{∞}^{v} if and only if it is compact. Hence the conclusion follows from Proposition 11. \Box

If we take $v(z) = 1$ for every $z \in D$ in Corollary 15, we obtain as a particular case Theorem 6 and part of Theorem 7 in [LST].

To conclude we consider only radial weights v, that is, $v(z) = v(|z|)$. A radial weight v is called *essential*, if there exists a $C > 0$ such that $v(z) \leq \tilde{v}(z) \leq Cv(z)$. We can now apply [BDLT, Theorem 3.3] to get the following corollary.

Corollary 16. Let v be an essential weight. Then $C_{\varphi} \colon B_{\infty}^{v}(X) \to B_{\infty}^{v}(X)$ is weakly compact (respectively Rosenthal) if and only if X is reflexive (respectively does not contain a copy of l_1) and

$$
\lim_{r \to 1} \sup_{\{z : |\varphi(z)| > r\}} \frac{v(z)}{v(\varphi(z))} = 0 \quad \text{or} \quad \|\varphi\|_{\infty} < 1.
$$

As a consequence of Lemma 4 and Fatou's lemma, the weighted Bergman spaces B_p^{α} , $1 \le p < \infty$, $\alpha \ge -1$, satisfy the conditions imposed on the scalar valued Banach space E . This permits to use Proposition 6 and Proposition 11 to get consequences on vector-valued composition operators on spaces of type $B_p^{\alpha}[X]$ as defined in this section. It is important to point out that the classical vectorvalued space $B_p^{\alpha}(X)$ is continuously included in but different from $B_p^{\alpha}[X]$. This is the reason why we had to treat composition operators defined on them with another method.

References

- [BBG] Bierstedt, K.D., J. Bonet, and A. Galbis: Weighted spaces of holomorphic functions on bounded domains. - Michigan Math. J. 40, 1996, 271–297.
- [BBT] BIERSTEDT, K.D., J. BONET, and J. TASKINEN: Associated weights and spaces of holomorphic functions. - Studia Math. 127, 1998, 70–79.
- [BS] BIERSTEDT, K.D., and W.H. SUMMERS: Biduals of weighted Banach spaces of analytic functions. - J. Austral. Math. Soc. Ser. A 54, 1993, 70–79.
- [BDL] BONET, J., P. DOMAŃSKI, and M. LINDSTRÖM: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. - Bull. Canad. Math. 42, 1999, 139–148.
- [BDLT] BONET, J., P. DOMAŃSKI, M. LINDSTRÖM, and J. TASKINEN: Composition operators between weighted Banach spaces of analytic functions. - J. Austral. Math. Soc. 64, 1998, 101–118.
- [CH] CONTRERAS, M., and A. HERNÁNDEZ-DÍAZ: Weighted composition operators between weighted Banach spaces of analytic functions. - Preprint, Sevilla, 1999.
- [CM] Cowen, C., and B. MacCluer: Composition Operators on Spaces of Analytic Functions. - CRC Press, Boca Raton, 1995.
- [GE] Grosse-Erdmann, K.-G.: The Borel–Okada theorem revisited. Habilitationsschrift, Fern Universität, Hagen, 1992.
- [HRS] Hedenmalm, H., S. Richter, and K. Seip: Interpolation sequences and invariant subspaces of given index in the Bergman spaces. - J. Reine Angew. Math. 477, 1996, 13–30.
- [J] JARCHOW, H.: Compactness properties of composition operators. Preprint, Zürich, 1998.
- [LS] LINDSTRÖM, M., and G. SCHLÜCHTERMANN: Composition of operator ideals. Math. Scand. 84, 1999, 284–296.
- [LST] LIU, P., E. SAKSMAN, and H.-O. TYLLI: Small composition operators on analytic vectorvalued function spaces. - Pacific J. Math. 184, 1998, 295–309.
- [L] Lusky, W.: On generalized Bergman spaces. Studia Math. 119, 1996, 77–95.
- [MM] MADIGAN, K.M., and A. MATHESON: Compact composition operators on Bloch spaces. - Trans. Amer. Math. Soc. 347, 1995, 2679–2687.
- [M] Mujica, J.: Linearization of bounded holomorphic mappings on Banach spaces. Trans. Amer. Math. Soc. 324, 1991, 867–887.
- [N] Ng, K.: On a theorem of Diximier. Math. Scand. 29, 1971, 279–280.
- [R] RACHER, G.: On the tensor product of weakly compact operators. Math. Ann. 294, 1992, 267–275.
- [Ro] Rochberg, R.: Interpolation by functions in the Bergman spaces. Michigan Math. J. 29, 1982, 229–236.
- [Rs] Rosenthal, H.P.: On relatively disjoint families of measures with some applications to Banach space theory. - Studia Math. 37, 1970, 155–190.
- [ST] Saksman, E., and H.-O. Tylli: Weak compactness of multiplication operators on spaces of bounded linear operators. - Math. Scand. 70, 1992, 91–111.
- [S] SARASON, D.: Weak compactness of holomorphic composition operators on H^1 . Functional Analysis and Operator Theory, Lecture Notes in Math. 1511, Springer-Verlag, 1992, 75–79.
- [Sh1] Shapiro, J.O.: The essential norm of a composition operator. Ann. Math. 125, 1987, 375–404.
- [Sh2] Shapiro, J.O.: Composition Operators and Classical Function Theory. Springer-Verlag, 1993.
- [SS] SHAPIRO, J.O., and C. SUNDBERG: Compact composition operators on L^1 . Proc. Amer. Math. Soc. 145, 1990, 443–449.
- [St] Stanton, C.S.: Counting functions and majorizations theorems for Jensen measures. Pacific J. Math. 125, 1986, 459–449.
- [Sm] Smith, W.: Composition operators between Bergman and Hardy spaces. Trans. Amer. Math. Soc. 348, 1996, 2331–2348.
- [SW1] SHIELDS, A.L., and D.L. WILLIAMS: Bounded projections, duality, and multipliers in spaces of harmonic functions. - J. Reine Angew. Math. 299/300, 1978, 256–279.
- [SW2] SHIELDS, A.L., and D.L. WILLIAMS: Bounded projections and the growth of harmonic conjugates in the disc. - Michigan Math. J. 29, 1982, 3–25.
- [W] WOJTASZCZYK, P.: Banach Spaces for Analysts. Cambridge, 1991.
- [Z] Zhu, K.: Operator Theory in Functions Spaces. Dekker, 1990.

Received 13 September 1999