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MATRICES FOR FENCHEL–NIELSEN COORDINATES
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Abstract. We give an explicit construction of matrix generators for finitely generated Fuch-
sian groups, in terms of appropriately defined Fenchel–Nielsen (F-N) coordinates. The F-N coordi-
nates are defined in terms of an F-N system on the underlying orbifold; this is an ordered maximal
set of simple disjoint closed geodesics, together with an ordering of the set of complementary pairs
of pants. The F-N coordinate point consists of the hyperbolic sines of both the lengths of these
geodesics, and the lengths of arc defining the twists about them. The mapping from these F-N
coordinates to the appropriate representation space is smooth and algebraic. We also show that the
matrix generators are canonically defined, up to conjugation, by the F-N coordinates. As a corol-
lary, we obtain that the Teichmüller modular group acts as a group of algebraic diffeomorphisms
on this Fenchel–Nielsen embedding of the Teichmüller space.

1. Introduction

There are several different ways to describe a closed Riemann surface of genus
at least 2; these include its representation as an algebraic curve; its representation
as a period matrix; its representation as a Fuchsian group; its representation as
a hyperbolic manifold, in particular, using Fenchel–Nielsen (F-N) coordinates; its
representation as a Schottky group; etc. One of the major problems in the overall
theory is that of connecting these different visions. Our primary goal in this paper
is to construct a bridge between F-N coordinates, for an arbitrary 2-orbifold with
finitely generated fundamental group, and matrix generators for the corresponding
Fuchsian group.

The usual view of F-N coordinates is that they consist of the lengths and twists
about a maximal number of disjoint simple closed geodesics, here called coordinate
geodesics (for a closed surface of genus g , this maximal number is 3g−3). We start
with these geodesics being undirected, and we use the hyperbolic sines of these
lengths (the twists can also be described as lengths of geodesic arcs) as coordinates.
It is obvious that the lengths of the geodesics are intrinsic on the surface. Fenchel
and Nielsen, in their original unpublished manuscript [6] showed that this space
of coordinates is naturally homeomorphic to the Teichmüller space. It follows
that the twists cannot be intrinsic on the surface, but it is generally known that
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the twists can be canonically defined on the surface marked with a basis for the
fundamental group; a proof of this fact appears in Section 9.

One of our results is that the exponential map is universal in the following
sense. Following Wolpert [18], we choose the twist to be independent of the length
of the geodesic we are twisting about. Then, for any maximal set of simple disjoint
geodesics on a hyperbolic orbifold S0 , with finitely generated fundamental group, a
quasiconformal deformation of S0 has all its corresponding F-N coordinates (real)
algebraic if and only if the corresponding (appropriately normalized) Fuchsian
group is a discrete subgroup of some PSL(2,k) , where k is a (real) number field.

A corollary of the above is that the Teichmüller modular group acts on any
such space of F-N coordinates as a group of algebraic diffeomorphisms.

An F-N system consists of a hyperbolic base orbifold, S0 , with finitely gener-
ated fundamental group, together with a maximal set, L1, . . . , Lp , of simple dis-
joint geodesics, none parallel to the boundary. These coordinate geodesics divide
S0 into pairs of pants, P1, . . . , Pq . We also assume that the geodesics and pairs
of pants are given in a particular order; see Section 2.1. It is well known (see [1])
that, for any given F-N system, the space of F-N coordinates is real-analytically
equivalent to the appropriate (reduced) Teichmüller space.

Our first major goal is to write down formulae for matrix generators for the
Fuchsian group described by a point in the given F-N coordinate space. The
necessary information concerning the topology is encoded in the signature and
in the pairing table, defined in Section 8. In the first step, in Section 6, we
explicitly describe a set of hyperbolic isometries which generate the corresponding
Fuchsian group; then, in Section 7, we give formulae for these isometries as matrices
in PSL(2,R) . For the first step, we follow the procedure of Fenchel and Nielsen [6];
we start with Fuchsian groups representing pairs of pants, these are orbifolds
of genus 0 with three boundary components, including orbifold points (matrices
representing generators for these groups are constructed in Section 5), and then
use combination theorems to glue these pants groups together.

Our construction yields a well-defined set of hyperbolic isometries, which de-
pend only on the signature of the base orbifold, the pairing table, which describes
the topology of the F-N system, and the point in the corresponding coordinate
space; these isometries are independent of the conformal or hyperbolic structure
on the base orbifold.

The formulae for our matrix generators are sufficiently explicit for us to im-
mediately observe that the entries in the matrices are (real) algebraic functions
of the F-N coordinates. In fact, as functions of the parameters, the entries in the
matrices are obtained by taking a finite number of degree two field extensions of
the field of rational functions of the parameters. We also immediately observe
that the arguments of these square roots are bounded away from zero, so that the
mapping from F-N coordinates to the space of discrete faithful representations of
the fundamental group is smooth. We make these observations here, and again in
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the recapitulation, but will not repeat them at each stage of the process.

We write our result in the form of an explicit algorithm, which is stated
in Section 8. For any given F-N system, the algorithm yields a set of explicit
formulae for the entries in the matrix generators, where these entries depend on
the particular point in the F-N coordinate space.

We also need to reverse the above process. In Section 9, we start with a set
of matrices, generating a discrete group G ; we assume these have been defined
by the above process. We show that these matrices uniquely define the signature
of the underlying orbifold, the pairing table describing the F-N system, and the
coordinate point in this system. It follows that our map from F-N coordinates to
an appropriate space of discrete faithful representations of the fundamental group
is injective, and that the twists are canonically defined on the Teichmüller space.

In Section 10, we give precise statements of our results, which include a new
version of the original Fenchel–Nielsen theorem.

In Section 11, we explicitly work through the algorithm for one case of a closed
surface of genus 3. In this case, the F-N system has one dividing geodesic and 5
non-dividing geodesics.

The algorithm, as stated, yields matrices that could be simpler, even for
genus 2; in Section 12, we give a variation of this algorithm which yields simpler
matrices in most cases, and then, in Section 13, we work out this algorithm for the
case of three non-dividing geodesics on a closed surface of genus 2. The other case
of a closed surface of genus 2, with one dividing geodesic and two non-dividing
geodesics, appears in [14].

We also present a second variation of the algorithm in Section 14. In this sec-
ond variation, the zero twist coordinate position for the handle closing generators
is always given by the common orthogonal between two geodesics in the universal
covering lying over the same coordinate geodesic. However, this second variation
is in some sense less explicit, in that, for any given F-N system, the entries in the
matrices are defined algorithmically, rather than being given by explicit formulae.

For orbifolds of dimension 3, our results here extend almost immediately to
quasifuchsian groups of the first kind. There are also related results for other
classes of Kleinian groups; these will be explored elsewhere.

Some of the ideas and computations used here, as well as various versions of
the negative trace theorem, have appeared in print. References for these include
Abikoff [1], Fenchel [5], Fenchel and Nielsen [6], Fine and Rosenberger [7], Fricke
and Klein [8], Gilman and Maskit [10]; Jörgensen [11], Rosenberger [16], Seppälä
and Sorvali [17], Wolpert [18]; see also [13] and [15].

This work was in part inspired by the work of Buser and Silhol [3], who worked
out explicit F-N coordinates for certain algebraic curves. The author also wishes
to thank Irwin Kra and Dennis Sullivan for informative conversations.
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2. Topological preliminaries

We assume throughout that all orbifolds are complete, orientable, of dimen-
sion 2, and have non-abelian, finitely generated (orbifold) fundamental group. We
denote the hyperbolic plane by H2 ; we will usually regard H2 as being the up-
per half-plane endowed with its usual hyperbolic metric, so that the group of all
orientation-preserving isometries of H2 is canonically identified with PSL(2,R) .

Let S be a hyperbolic orbifold; that is, there is a finitely generated Fuchsian
group F so that S = H2/F . Topologically, S is a surface of genus g with some
number of boundary elements; there are also some number of orbifold points. Ge-
ometrically, we regard the orbifold points as boundary elements, so that there are
three types of boundary elements. The punctures or parabolic boundary elements,
are in natural one-to-one correspondence with the conjugacy classes of maximal
parabolic cyclic subgroups of F ; the orbifold points, or elliptic boundary elements,
are in natural one-to-one correspondence with the conjugacy classes of maximal
elliptic cyclic subgroups of F ; the order of a puncture is ∞ ; the order of an orb-
ifold point is the order of a corresponding maximal elliptic cyclic subgroup; and the
holes, or hyperbolic boundary elements, are in natural one-to-one correspondence
with the conjugacy classes of hyperbolic boundary subgroups of F .

A boundary subgroup H ⊂ F is a maximal hyperbolic cyclic subgroup, whose
axis, the boundary axis, bounds a half-plane that is precisely invariant under H
in F . The elements of a boundary subgroup are called boundary elements ; the
boundary axis projects to the corresponding boundary geodesic on S , which is
parallel to the boundary. The size of the corresponding boundary element is half
the length of this boundary geodesic; that is, if a is a generator of the boundary
subgroup H , then its size σ is given by 2 cosh(σ) = | tr(a)| . If a generates a
boundary subgroup of G , then the corresponding axis A separates H2 into two
half-planes. The boundary half-plane is precisely invariant under 〈a〉 1 in G . The
other half-plane, which is not precisely invariant (unless G is elementary), is called
the action half-plane.

The orbifold S is completely described, up to quasiconformal deformation,
by its genus g ; the number of boundary elements n that are either punctures or
elliptic orbifold points; the orders α1, . . . , αn of these points; and the number m
of holes.

As usual, we encode this information in the signature

(g, n,m;α1, . . . , αn).

When we do not need to know the actual values of the αi , we write the signature as
simply (g, n+m) . Since we require S to be hyperbolic, there are some well-known
restrictions on these numbers.

1 The group generated by a, . . . is denoted by 〈a, . . .〉 .
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It is well known that there are at most p = 3g − 3 + n + m simple disjoint
geodesics L1, . . . , Lp on an orbifold of signature (g, n+m) , where none of the Li
is parallel to the boundary. There are also m boundary geodesics, which we label
as Lp+1, . . . , Lp+m .

For the remainder of this section, we will consider a geodesic to be defined
modulo orientation; that is, we do not distinguish between a geodesic and its
inverse.

2.1. F-N systems. An F-N system on S is an ordered set of p+m simple
disjoint geodesics—this is the maximal possible number of such geodesics, together
with an ordering of the other n boundary elements, where the ordering satisfies
the conditions below. We write the F-N system either as L1, . . . , Lp+m, b1, . . . , bn
or as L1, . . . , Lp, b1, . . . , bn+m , or as L1, . . . , Lp+n+m . It will always be clear from
the context which system of notation we are using.

Except in Section 4, we will assume throughout that S is not a pair of pants;
that is, p > 0.

None of the first p geodesics of an F-N system are parallel to the boundary;
they are the coordinate geodesics. The coordinate geodesics divide S into q =
2g − 2 + n + m pairs of pants, P1, . . . , Pq , each of which is a hyperbolic orbifold
of signature (0, n0 + m0) , n0 + m0 = 3. Each coordinate geodesic is either a
boundary element of two distinct pairs of pants, or corresponds to two boundary
elements of the same pair of pants.

There is in general no canonical way to order and direct the coordinate
geodesics, and to order the pairs of pants they divide the surface into. From
here on, we assume that the coordinate geodesics and boundary elements, and
also the pairs of pants, have been ordered in accordance with the following set of
rules.

2.1.1. Rules for order.

(i) If there is a dividing coordinate geodesic, then L1 is dividing; in any case, if
q ≥ 2, then L1 lies between P1 and P2 .

(ii) If q ≥ 3, then L2 lies between P1 and P3 .

(iii) The first q − 1 coordinate geodesics, and the q pairs of pants, P1, . . . , Pq ,
are ordered so that, for every j = 3, . . . , q − 1, there is an i = i(j) , with
1 ≤ i(j) < j , so that Lj lies on the common boundary of Pi and Pj .
The coordinate geodesics L1, . . . , Lq−1 are called the attaching geodesics; the
coordinate geodesics Lq, . . . , Lp are called the handle geodesics.

(iv) The hyperbolic boundary elements b1, . . . , bm precede the parabolic boundary
elements, which, in turn precede the elliptic boundary elements. Also, the
elliptic boundary elements are in decreasing order.

From here on, we reserve the indices, m , n , p and q , for the meanings given
above.
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2.2. F-N coordinates. Let G0 be a given finitely generated Fuchsian
group, and let S0 = H2/G0 . A (quasiconformal) deformation of G0 is a discrete
faithful representation ψ of G0 into PSL(2,R) , where there is a quasiconformal
homeomorphism f : H2 → H2 inducing ψ . Two such deformations, ψ and ψ′ are
equivalent if there is an element a ∈ PSL(2,R) so that ψ(g) = aψ′(g)a−1 for all
g ∈ G0 .

Let ψ: G0 → G be a quasiconformal deformation. The F-N coordinates of
(the equivalence class of) ψ are given by the following vector:

Φ = (s1, . . . , sp+m, t1, . . . , tp) ∈ (R+)p+m ×Rp.

The geodesics L1, . . . , Lp, Lp+1, . . . , Lp+m are well defined on S = H2/G .
The length of Li on S , i = 1, . . . , p + m , is 2σi , where si = sinhσi . Also, for
i = 1, . . . , p , the twist about Li is 2τi , where ti = sinh τi ; this will be explained
in Section 6.

2.3. Pairs of pants. Each pair of pants P has three boundary elements;
in most cases, the ordering of the coordinate geodesics and boundary elements of
S0 induces an ordering of the boundary elements of P . There are two exceptional
cases in which there are two boundary elements of P corresponding to just one
coordinate geodesic of S0 .

In the first exceptional case, S0 is a torus with one boundary component, so
two of the boundary elements of P are hyperbolic, necessarily of the same size,
and the other boundary element can be of any type. Since the torus with one
boundary component is elliptic (i.e., admits a conformal involution with 3 or 4
fixed points), one cannot tell the difference between the two boundary elements
of P corresponding to the one coordinate geodesic on S0 . We make an arbitrary
choice of which of these two boundary elements precedes the other; since the elliptic
involution acts ineffectively on the Teichmüller space, it makes no difference which
choice we make.

In the second exceptional case, all three boundary elements of P are neces-
sarily hyperbolic. Here, one of the boundary elements of P corresponds to an
attaching geodesic, which is also a dividing geodesic of S0 , while the other two
boundary elements both correspond to the same non-dividing handle geodesic. In
this case, b1 , the first boundary element, necessarily corresponds to the dividing
geodesic. The other two boundary elements, b2 and b3 , are necessarily hyperbolic
of the same size. As above, if S0 is elliptic or hyperelliptic, then the choice of
which boundary element of P to call b2 and which to call b3 is arbitrary, and it
does not matter which choice we make. If S0 is not elliptic or hyperelliptic, then
one can make a canonical choice; this will be done in Section 6. Until then, we
leave it that this choice is made somehow.

We now return to the general case. Between any two boundary elements of
P , bi and bj , there is a unique simple orthogonal geodesic arc Nij ⊂ P . That
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is, if bi is parabolic, then Nij has infinite length, with an infinite endpoint at
the parabolic puncture; if bi is elliptic, then Nij has one endpoint at this elliptic
orbifold point; if bi is hyperbolic, then Nij is orthogonal to the corresponding
boundary geodesic.

In the case that bi is hyperbolic, with boundary geodesic Li , then the two
common orthogonals to the two other boundary elements of P meet Li at two
distinct points of Li ; these two points divide Li into two arcs of equal length.

We will use the following notation throughout. The boundary elements of the
pair of pants, Pi , are labeled as bi,1, bi,2, bi,3 , in the order given above.

2.4. Directing the coordinate and boundary geodesics. We need to
specify a direction for each coordinate geodesic. In general, we direct L1 so that
P1 lies on the right as we traverse L1 in the positive direction. In the exceptional
cases that S0 is elliptic or hyperelliptic, this choice of a first direction is necessarily
arbitrary; however, as mentioned above, it is irrelevant which choice is made.

We say that two geodesics on the boundary of some pair of pants P are
consistently oriented with respect to P , if P lies on the right as we traverse either
geodesic in the positive direction, or if P lies on the left as we traverse either
geodesic in the positive direction.

Assume that L1, . . . , Lj , j ≥ 1, have been directed. If Lj+1 lies on the
boundary of two distinct pairs of pants, or is a boundary geodesic, then there is a
lowest index i , so that Lj+1 lies on the boundary of Pi . Since j + 1 > 1, Lj+1

corresponds to either bi,2 or bi,3 , for bi,1 must correspond to some attaching
geodesic, Lj′ , j

′ ≤ j . We direct Lj+1 so that Lj+1 and Lj′ are consistently
oriented as boundary elements of Pi .

If Lj+1 is a handle geodesic, with the same pair of pants, Pi , on both sides
of Lj+1 , then the direction of Lj+1 is more complicated. As above, we will see
in Section 6 that this choice can be made canonically; for the moment, we assume
that this choice has been made somehow.

3. SL(2,R) and PSL(2,R)

There is a canonical identification of PSL(2,R) with the group of orientation-
preserving isometries of H2 ; each such transformation has two representatives
in SL(2,R) . There is likewise a canonical identification of PGL(2,R) with the
group of all plane hyperbolic isometries; each such isometry has two representatives
in S±L(2,R) , the group of real 2× 2 matrices with determinant ±1.

We will use the following convention throughout. If ã is a matrix in S±L(2,R) ,
then the corresponding hyperbolic isometry is denoted by a .

We will usually use this notation in reverse; that is, given the isometry a , we
will choose a representative matrix ã ∈ S±L(2,R) . Also, all hyperbolic isome-
tries (i.e., all transformations) that are not explicitly identified as reflections, are
assumed to be orientation-preserving.
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A Fuchsian group F is algebraic if there is a (real) number field k so that
F ⊂ PSL(2,k) . Correspondingly, the orbifold S = H2/F is algebraic if F is
algebraic.

We remark that a Fuchsian group F , with generators a1, . . . , ai . . . , is alge-
braic if and only if the numbers, ai(0), ai(1), ai(∞) , are all algebraic.

For our purposes, from here on, a Fuchsian group is a non-Abelian finitely
generated discrete subgroup of PSL(2,R) ; it is elementary if it contains an Abelian
subgroup of finite index, and non-elementary otherwise. Unless explicitly stated
otherwise, all Fuchsian groups will be assumed to be non-elementary2 .

4. Reflections and geometric generators

It will often be convenient to have an order among the different kinds of
hyperbolic isometries. We say that hyperbolic transformations are higher than
the parabolic ones, which in turn are higher than the elliptic ones; further, elliptic
transformations of higher (finite) order are higher than elliptic transformations of
lower order.

An elliptic transformation a of order α is primitive if | tr(a)| = 2 cos(π/α) ;
that is, a is a geometrically primitive rotation.

4.1. Transformations with disjoint axes. Let a1 , a2 and a3 = (a1a2)−1

be elements of PSL(2,R) . If ai is hyperbolic, then its axis Ai is, as usual, the
hyperbolic line connecting its fixed points. If ai is parabolic or elliptic, then its
axis Ai is its fixed point, which lies either on the circle at infinity or is an interior
point of H2 .

We will use the following conventions throughout: If aβα is a given element of
PSL(2,R) , then its axis is denoted by Aβα .

In general, if X ⊂ H2 , then we denote the Euclidean closure of X by X .
Also, in general, two lines, L and L′ , are disjoint if L̄∩ L̄′ = ∅ , in particular, the
axes of a1 and a2 are disjoint if Ā1 ∩ Ā2 = ∅ .

If a is elliptic or parabolic, then we say that the line M is orthogonal to A
if M passes through A , or ends at A . We now have that, independent of the
type of ai and aj , if ai and aj have disjoint axes, then these axes have a unique
common orthogonal.

4.2. Reflections in lines. For every hyperbolic line M , there is a well-
defined reflection r , whose fixed point set is equal to M .

Let M1 and M2 be distinct lines; denote reflection in Mi by ri , and let
a = r1r2 . Then a is hyperbolic, respectively, parabolic, respectively, elliptic, if
M1 and M2 are disjoint, respectively, meet at the circle at infinity, respectively,
cross inside H2 . If a is hyperbolic, then | tr(a)| = 2 coshλ , where λ is the distance

2 Among Fuchsian groups, the (2, 2,∞) -triangle group is uniquely elementary but not Abelian;

it shares many important properties with the non-elementary Fuchsian groups.
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between M1 and M2 ; if a is elliptic, then | tr(a)| = 2| cos θ| , where θ is the angle
between M1 and M2 .

4.3. Matrices for reflections. The matrices in S±L(2,R) of determinant
−1 and trace 0 correspond to reflections in lines. One can regard the choice of a
matrix for a reflection as being equivalent to a choice of a direction on the fixed
line (see Fenchel [5]). More precisely, we choose the matrix

r̃ =
1

x− y

(
x+ y −2xy

2 −x− y

)

to correspond to the reflection in the upper half-plane with fixed line ending at
x and y , where x is the positive endpoint of this line. Then by continuity, the
reflection with matrix

r̃ =

(
1 −2y
0 −1

)

has its positive fixed point at ∞ and its negative fixed point at y .
If M1 and M2 are disjoint directed hyperbolic lines, then we say that the pos-

itive endpoints of M1 and M2 are adjacent to mean that both negative endpoints
lie on the same arc of the circle at infinity between these positive endpoints.

Easy observations now show the following.

Proposition 4.1. Let r̃1, r̃2 ∈ S±L(2,R) represent reflections in the disjoint
directed lines M1 , M2 , respectively. Then tr(r̃1r̃2) > 0 if and only if the positive
endpoints of M1 and M2 are adjacent.

Proposition 4.2. Let r̃1, r̃2 ∈ S±L(2,R) represent reflections in the directed
lines M1 , M2 , respectively, where M1 and M2 have exactly one endpoint on the
circle at infinity in common. Then tr(r̃1r̃2) = +2 if and only if the common
endpoint is either the positive endpoint, or the negative endpoint, of both lines.

Proposition 4.3. Let r̃1, r̃2 ∈ S±L(2,R) represent reflections in the di-
rected lines M1 , M2 , respectively, where M1 and M2 intersect at an interior
point of H2 . Then tr(r̃1r̃2) = 2 cos θ , where θ is the angle between the positive
endpoints of M1 and M2 .

4.4. Hyperbolic triangles. In Euclidean geometry, a triangle is completely
determined by three lines, no two of which are parallel; in hyperbolic geometry,
the situation is somewhat more complicated. For our purposes, a triangle D is
the intersection of the three closed half-planes, R1, R2, R3 , bounded by the three
distinct lines, M1,M2,M3 , respectively, provided that, for i = 1, 2, 3, Mi ∩ D
contains a non-trivial open arc of Mi . This arc, Mi ∩D , is called a side of D .

Every pair of these lines, Mi and Mj , defines a vertex, vi,j , which is the com-
mon orthogonal of Mi and Mj ; this vertex is hyperbolic, respectively, parabolic,
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respectively, elliptic, if Mi and Mj are disjoint, respectively, meet at the circle at
infinity, respectively, meet at an interior point of H2 .

We remark that the triangle D is not necessarily uniquely determined by the
three lines, M1,M2,M3 .

We say that D is a Poincaré triangle if the interior angle at every elliptic
vertex is of the form, π/α , α ∈ Z , α ≥ 2.

A triangle D is degenerate if two of the bounding lines are each orthogonal
to the third. The orientation preserving half of the group generated by reflections
in the three sides of a degenerate triangle is elementary.

Let ri denote reflection in Mi , i = 1, 2, 3; set a1 = r2r3 , a2 = r3r1 , and
a3 = r1r2 .

Poincaré’s polygon theorem asserts that if D is a Poincaré triangle, then the
group Ĵ = 〈r1, r2, r3〉 is discrete; D is a fundamental polygon for Ĵ ; and Ĵ has
the following presentation:

Ĵ = 〈r1, r2, r3 : r2
1 = r2

2 = r2
3 = (r1r2)α3 = (r2r3)α1 = (r3r1)α2 = 1〉,

where the statement (rirj)
αk = aαkk = 1 has its usual meaning if the vertex vi,j

is elliptic of order αk ; it means that ak is parabolic if vi,j is parabolic; and it has
no meaning if vi,j is hyperbolic. That is, ak is hyperbolic, respectively, parabolic,
respectively, elliptic of order αk , if and only if the vertex vi,j is hyperbolic, re-
spectively, parabolic, respectively, elliptic of order αk .

We note that Ak is the common orthogonal to Mi and Mj . Further, if ak
is hyperbolic, then | tr(ak)| = 2 coshλk , where λk is the distance between Mi

and Mj ; if ak is parabolic, then | tr(ak)| = 2, and if ak is elliptic of order αk ,
then | tr(ak)| = 2 cosπ/αk .

Let J be the orientation-preserving half of Ĵ . If D is a Poincaré triangle,
then H2/J is a pair of pants, where the boundary element bi is the projection
of Ai .

If D is a Poincaré triangle, then we say that a1 = r2r3 and a2 = r3r1 are
geometric generators of a pants group. On course, in this case, a2 and a3 , or a3

and a1 , are also geometric generators of the same pants group.
It is well known that every pants group, including the triangle groups, has a

set of geometric generators; in fact, these generators are unique up to conjugation
in the pants group, up to orientation, and up to a choice of which of the three
generators to call a1 , and which to call a2 .

4.5. Appropriate orientation. Let a1 and a2 be hyperbolic isometries
with disjoint axes.

If a1 and a2 are both hyperbolic, then A1 and A2 are naturally directed.
If the region between these two axes lies on the left as one traverses one of these
axes in the positive direction, and it lies on the right as one traverses the other
axis in the positive direction, then a1 and a2 are not appropriately oriented.



Matrices for Fenchel–Nielsen coordinates 277

If either a1 or a2 is elliptic of order 2, then a1 and a2 are appropriately
oriented.

Every parabolic element imparts a natural direction to the circle at infinity,
as does every elliptic element of order at least 3. If a1 and a2 are both either
parabolic or elliptic of order at least 3, then they are appropriately oriented if
they impart the same direction to the circle at infinity.

Suppose a1 is hyperbolic and a2 is either parabolic or elliptic of order at
least 3. Let H be the half-plane bounded by A1 , where H ⊃ A2 , and let S be
the arc of the circle at infinity on H . Then a1 and a2 are appropriately oriented
if they impart the same direction to S .

4.6. The negative trace theorem.

Theorem 4.1. Let ã1 and ã2 be matrices in SL(2,R) , where a2 is not
higher than a1 .

A. If A1 and A2 are not disjoint, then a1 and a2 are geometric generators
of a pants group if and only if a1 is hyperbolic and a2 is elliptic of order 2 .

B. If A1 and A2 are disjoint, then a1 and a2 are geometric generators of a
pants group if and only if the following hold:
(i) T = tr(ã1) tr(ã2) tr(ã1ã2) ≤ 0; and

(ii) if any of a1 , a2 or a1a2 is elliptic, then it is primitive.

Proof. All cases of two transformations with non-disjoint axes are well known.
The group G = 〈a1, a2〉 is discrete only in the case above, and in various cases of
two hyperbolic generators with crossing axes. In these latter cases, either H2/G
has signature (1, 1), or has signature (0, 3), but a1 and a2 are not geometric
generators.

Now assume that the axes of a1 and a2 are disjoint. Let L3 be the common
orthogonal to A1 and A2 . One easily finds lines, M1 and M2 , so that, denoting
reflection in Mi by ri , a1 = r2r3 and a2 = r3r1 .

Let M1 , M2 , M3 , be any three distinct directed lines. Let r̃i ∈ S±L(2,R)
be the matrix representing reflection in Mi , with the given orientation. Let ã1 =
r̃2r̃3 , ã2 = r̃3r̃1 and ã3 = r̃1r̃2 .

Observe that T is unchanged if we replace any r̃i by −r̃i .
There are five cases to consider; we do not need to consider the sixth case,

where all three lines meet at a point, for we assume that Ā1∩Ā2 = ∅ . In each case,
we draw three lines, and direct them somehow; the sign of T does not depend on
which direction we choose. Then we use Propositions 4.1–4.3, to compute the sign
of T .

Case 1. If the three lines are pairwise disjoint, and one of the lines separates
the other two inside H2 , then a1 and a2 are not geometric generators, and T > 0.

Case 2. If the lines have no points of intersection inside H2 , and the three
lines bound a common region, then a1 and a2 are geometric generators, and
T < 0.



278 Bernard Maskit

Case 3. If exactly two of the lines meet inside H2 , then there is exactly one
of the five regions cut out by these three lines that can be a triangle. The angle
at the one elliptic vertex is acute if and only if T < 0; that angle is a right angle
if and only if T = 0.

Case 4. If say M1 meets both M2 and M3 , but M2 ∩M3 = ∅ , then these
three lines separate H2 into six regions, of which at most one can be a triangle
with all angles ≤ π . There is such a triangle if and only if T ≤ 0.

Case 5. If M1 , M2 and M3 form a compact triangle, then T ≤ 0 if and only
if none of the angles are obtuse.

5. Fully normalized pants groups

We assume that we are given three numbers λ1 , λ2 and λ3 , where either
λi ≥ 0, or λi = iπ/α , α ∈ Z , α ≥ 2. We need to write down matrices, ã1 and
ã2 , corresponding to geometric generators for a pants group, where | tr(ã1)| =
2 coshλ1 , | tr(ã2)| = 2 coshλ2 and | tr(ã3)| = | tr(ã1ã2)−1| = 2 coshλ3 . We can
assume without loss of generality that the λi are given so that the ai are in
non-increasing order; we can also assume that tr(ã1) ≥ 0 and tr(ã2) ≥ 0.

Since the normalizations are different, we will take up separately the different
cases according to the types of a1 , a2 and a3 = (a1a2)−1 .

5.1. Standard normalizations. If a1 is hyperbolic, then A1 is the imag-
inary axis, pointing towards ∞ . If a2 and a3 are both elliptic of order 2, then
A2 is the point i . Otherwise, A1 and A2 are disjoint, in which case A2 lies in
the right half-plane and M3 , the common orthogonal between A1 and A2 , lies on
the unit circle.

If a1 is parabolic, then A1 is the point at infinity, and M3 lies on the imag-
inary axis. If a2 is also parabolic, then A2 is necessarily at 0; if a2 is elliptic,
then A2 is at the point i .

If a1 is elliptic, then we change our point of view; regard H2 as being the
unit disc; place A1 at the origin, and place A2 on the positive real axis.

5.2. Three hyperbolics. In this case, λi > 0, i = 1, 2, 3. We need to
find matrices ã1 and ã2 , with tr(ã1) = 2 cosh(λ1) ; tr(ã2) = 2 cosh(λ2) ; and
tr(ã1ã2) = −2 cosh(λ3) .

We need a1 and a2 to be appropriately oriented; hence we write our matrices
so that the repelling fixed point of a2 is greater than 1, while the attracting fixed
point is less than 1.

We define µ by:

(1) cothµ =
coshλ1 coshλ2 + coshλ3

sinhλ1 sinhλ2
, µ > 0.
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We write:

ã1 =

(
eλ1 0
0 e−λ1

)
; ã2 =

1

sinhµ

(
sinh(µ− λ2) sinhλ2

− sinhλ2 sinh(µ+ λ2)

)
.

Then a1 is as desired, and a2 has its attracting fixed point at e−µ , its repelling
fixed point at eµ , and tr(ã2) = 2 coshλ2 . Equation (1) yields that tr(ã1ã2) =
−2 cosh(λ3) .

We will also need a different matrix representation for a3 = a−1
2 a−1

1 . We recall
that M3 , the common orthogonal between A1 and A2 meets A1 at i . Then, since
a pair of pants is hyperelliptic, M2 , the common orthogonal of A1 and A3 , meets
A1 halfway between i and a1(i) . Hence M2 , lies on the circle |z| = eλ1 .

We define ν by the following.

(2) coth ν =
coshλ1 coshλ3 + coshλ2

sinhλ1 sinhλ3
, ν > 0.

Using the above remark, together with the definition of ν , it is easy to see
that we can write

ã3 = −ã−1
2 ã−1

1 =
1

sinh ν

(
sinh(ν − λ3) eλ1 sinhλ3

−e−λ1 sinhλ3 sinh(ν + λ3)

)
.

Remark 5.1. One easily sees that µ is related to δ , the distance between
A1 and A2 , by cothµ = cosh δ , or, equivalently, sinhµ sinh δ = 1. The RHS of
equation (1) is the well-known formula for the hyperbolic cosine of the length of
one side of a hexagon with all right angles, given the lengths of three non-adjacent
sides. Similar remarks hold for equation (2).

5.3. Closing a handle. The case that S0 is a torus with one hole needs
to be treated separately. In this case, S0 has one coordinate geodesic, necessarily
non-dividing, and one boundary geodesic. We change our usual order, and label
the boundary geodesic of the one pair of pants P as b1 , and label the other two
boundary elements, corresponding to the coordinate geodesic, as b2 and b3 .

We proceed exactly as above, and construct ã1 , ã2 and ã3 , with λ2 = λ3 . We
need to find a matrix for the handle-closer d , which maps the action half-plane
of a2 onto the boundary half-plane of a3 , while twisting by 2τ in the positive
direction along A2 .

We can write d = rr2eτ , where eτ is the hyperbolic motion (or the identity)
with the same fixed points as a2 and with trace equal to 2 cosh τ , where a2 and
eτ have the same attracting fixed point if τ > 0, and have opposite attracting
fixed points if τ < 0; r2 is the reflection in A2 ; and r is the reflection in the line
halfway between A2 and A3 .
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Using ã2 as a model, we already know how to find ẽτ :

ẽτ =
1

sinhµ

(
sinh(µ− τ) sinh τ
− sinh τ sinh(µ+ τ)

)
.

The line halfway between A2 and A3 is the circle centered at the origin of
radius exp( 1

2λ1) . Hence we can write

r̃ =

(
0 exp( 1

2λ1)
exp(− 1

2λ1) 0

)
.

To find a matrix for r2 , observe that if

ã =

(
α β
γ δ

)
∈ SL(2,R),

where a is hyperbolic and βγ 6= 0, then we can write the matrix for the reflection
rA in A as

(3) r̃A =
1√

(α+ δ)2 − 4

(
α− δ 2β

2γ δ − α

)
.

In our case, we obtain

r̃2 =
1

sinhµ

(
− coshµ 1
−1 coshµ

)
.

Hence we can write

(4) d̃ = r̃r̃2ẽτ .

5.4. Two hyperbolics, one parabolic or elliptic. As above, there is one
special case, where S0 has signature (1, 1); we take up that case below. Here we
only assume that a1 and a2 are hyperbolic, and that a3 is parabolic or primitive
elliptic. As above, our normalization yields that a1(z) = e2λ1z , and a2 has its
fixed points at e±µ , µ > 0. Since a1 and a2 need to be appropriately oriented,
we place the repelling fixed point of a2 at e+µ . Then, if a3 is parabolic, it has its
fixed point at eλ1 . If a3 is primitive elliptic of order α , then it has its fixed point
in the first quadrant on the circle |z| = eλ1 . We write

ã1 =

(
eλ1 0
0 e−λ1

)
; ã2 =

1

sinhµ

(
sinh(µ− λ2) sinhλ2

− sinhλ2 sinh(µ+ λ2)

)
,

where µ is defined by

(5) cothµ =
coshλ1 coshλ2 + coshλ3

sinhλ1 sinhλ2
, µ > 0.

Remark 5.2. The formula here for µ is the same as that in equation (1);
the geometric meaning is the same in both cases.
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5.5. The torus with one puncture or orbifold point. In this case we
change our standard normalization, and require a1 to be parabolic or primitive
elliptic. Then λ2 = λ3 > 0. We normalize so that A1 lies on the positive
imaginary axis (A1 is the point at infinity if a1 is parabolic), and so that the unit
circle is the common orthogonal between A2 and A3 , where the fixed points of
a3 are positive, with the repelling fixed point larger than the attracting one, and
the fixed points of a2 are negative. Then r0 , the reflection in the imaginary axis,
conjugates a2 into a−1

3 . We can write the fixed points of a2 as −e±µ and the
fixed points of a3 as e±µ . We write

ã2 =
1

sinhµ

(
sinh(µ+ λ2) sinhλ2

− sinhλ2 sinh(µ− λ2)

)
,

ã3 =
1

sinhµ

(
sinh(µ− λ2) sinhλ2

− sinhλ2 sinh(µ+ λ2)

)
.

Since we require tr(ã2ã3) = −2 coshλ1 , easy computations show that

(6) sinh2(µ) =
2 sinh2 λ2

coshλ1 + 1
.

Remark 5.3. The formula for µ given in equation (6) is different from that
given in equations (1) and (5) because the underlying geometry is different. We
still have cothµ = cosh δ , but here δ is the distance from A2 to the imaginary
axis, which is the common orthogonal of A3 with the common orthogonal of A1

and A2 .

As in Section 5.3 we also need a matrix representing the handle-closer d ,
which conjugates a2 onto a−1

3 while introducing a twist of 2τ along A2 . We
write d = r0fτr2 , where r2 is the reflection in A2 , fτ is the twist by 2τ along the
imaginary axis, and r0 is the reflection in the imaginary axis. The corresponding
matrices are given by

r̃0 =

(
1 0
0 −1

)
, r̃2 =

1

sinhµ

(
coshµ 1
−1 − coshµ

)
, f̃τ =

(
eτ 0
0 e−τ

)
.

5.6. Exactly one hyperbolic and at least one parabolic. Here λ1 > 0,
λ2 = 0, and either λ3 = 0 or λ3 = iπ/α . We revert to our standard normalization,
so that a1(z) = e2λ1z , and a2 has its fixed point at +1. Then a3 has its fixed
point in the right half-plane on the circle |z| = eλ1 .

We write the matrices

ã1 =

(
eλ1 0
0 e−λ1

)
, ã2 =

(
1 + β −β
β 1− β

)
.
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Using Theorem 4.1, easy computations show that

β = −coshλ1 + coshλ3

sinhλ1
.

5.7. The elementary pants groups. In the special case that λ1 > 0 and
λ2 = λ3 = 0, we write

ã1 =

(
eλ1 0
0 e−λ1

)
, ã2 =

(
0 −1
1 0

)
.

The group generated by these is of course elementary.

5.8. Exactly one hyperbolic and no parabolics. Here λ1 > 0, λ2 =
iπ/α2 , and λ3 = iπ/α3 . We have a1(z) = e2λ1z , and a2 has its fixed point on
the unit circle in the (open) right half-plane. Then as above, a3 has its fixed point
in the right half-plane on the circle |z| = eλ1 . Denote the fixed point of a2 by
eµ = eiθ , 0 < θ < 1

2π .
As in [12, p. 6], we can write

ã1 =

(
eλ1 0
0 e−λ1

)
, ã2 =

1

sinhµ

(
sinh(µ− λ2) sinhλ2

− sinhλ2 sinh(µ+ λ2)

)
.

As above, we obtain

(7) cothµ =
coshλ1 coshλ2 + coshλ3

sinhλ1 sinhλ2
.

Remark 5.4. Here, cothµ = −i sinh δ , where δ is the distance from A1

to A2 . This gives a known formula for one side of a quadrilateral with two adjacent
right angles, in terms of the other two angles, and the distance between the two
right angles (see [5]).

5.9. The classical triangle groups. For the sake of completeness, since
this form seems not to be known in the literature—although a related form can
be found in [9], we write down matrices for geometric generators for the general
Fuchsian (α1, α2, α3)-triangle group.

The case of three parabolics is well known and needs no further discussion.
If λ1 = λ2 = 0, and λ3 = iπ/α3 , then we normalize so that a1(z) = z + 1,

and a2 has its fixed point at 0; we write

ã1 =

(
1 1
0 1

)
, ã2 =

(
1 0

−2− 2 coshλ3 1

)
.
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If λ1 = 0, λ2 = iπ/α2 and λ3 = iπ/α3 , then we normalize so that a1 has its
fixed point at ∞ , with a1(0) > 0, and so that a2 has its fixed point at i . Then,
since a1 and a2 are appropriately oriented, a2(∞) < 0. We write

ã1 =

(
1 (2 coshλ2 + 2 coshλ3)/(−i sinhλ2)
0 1

)
, ã2 =

(
coshλ2 −i sinhλ2

i sinhλ2 coshλ2

)
.

Finally, if λj = iπ/αj , j = 1, 2, 3, then we change our view of H2 , which we
now regard as being the unit disc, and we normalize so that a1(z) = e2πi/α1z =
e2λ1z , and a2 has its fixed point at e−µ , µ > 0. We write

ã1 =

(
eλ1 0
0 e−λ1

)
; ã2 =

1

sinhµ

(
sinh(µ+ λ2) − sinhλ2

sinhλ2 sinh(µ− λ2)

)
,

where µ is given by

(8) cothµ = −coshλ1 coshλ2 + coshλ3

sinhλ1 sinhλ2
.

Remark 5.5. Here, as in equation (1), cothµ = cosh δ , where δ is the
distance from A1 to A2 . This equation for δ is one of the two hyperbolic laws of
cosines (see [2]).

Note that we can solve equation (8) for µ > 0 if and only if the right-hand
side is > 1, which occurs if and only if

π

α1
+

π

α2
+

π

α3
< π.

6. From F-N systems to homotopy bases

We now assume we are given an F-N system on the hyperbolic orbifold S0 ,
where the coordinate geodesics L1, . . . , Lp , the pairs of pants, P1, . . . , Pq , and
the boundary elements, b1, . . . , bn+m , are ordered as in 2.1.1, and the coordinate
geodesics are directed as in 2.4. We also assume we are given a point

Φ = (s1, . . . , sp+m, t1, . . . , tp) ∈ (R+)p+m ×Rp,

in the corresponding space of F-N coordinates.
In this section, we give a canonical procedure for writing down a set of genera-

tors for the corresponding Fuchsian group, where these are described as hyperbolic
isometries; we find explicit matrices for these generators in the next section.

We write the generators in the following order. The first 2p−q+1 generators
are hyperbolic; their axes project, in order, to the p coordinate geodesics, followed
by the p − q + 1 handle closers. The axes of the remaining n + m generators
project, in order, to the boundary elements of S0 . We note that the total number
of generators, d = 2q + 1 = 4g − 3 + 2n+ 2m , is in general far from minimal.
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6.1. Normalization. Our normalization is somewhat unusual in that we
require more than can normally be achieved by conjugation by an orientation-
preserving isometry. We achieve this by including the possibility of replacing a1

by a−1
1 and/or replacing a2 by a−1

2 .
We will use the following standard normalization throughout. Let a1, . . . , ad

be a set of generators for a Fuchsian group. For our purposes, we can assume
that a1 and a2 are both hyperbolic with disjoint axes. We require that A1 lie on
the imaginary axis, pointing towards ∞ ; A2 lies in the right half-plane, with the
attracting fixed point smaller than the repelling one; and the common orthogonal
between A1 and A2 lies on the unit circle.

6.2. Cutting and extending holes. Let S = H2/G be an orbifold with a

hole. Let H be an open half-plane in H2 lying over the hole, and let K̂ be the
complement of the union of the translates of H . Then S′ = K̂/G is the orbifold
obtained from S by cutting off the infinite end of the hole.

There is an obvious process that reverses the above; we say that S is obtained
from S′ by completing the hole.

6.3. Basic building blocks. The cases where q = 1 have already been dealt
with; we assume q > 1. Each Pi has three distinct boundary elements, which are
labeled as bi,1, bi,2, bi,3 . Except for the cases where we have not yet distinguished
between bi,2 and bi,3 , the order of these boundary elements is determined by
the order of the coordinate geodesics and boundary elements of the F-N system.
Further, the size of each hyperbolic boundary element is specified by Φ.

Let Pi be one of the pairs of pants of our F-N system, and let P ′i be Pi with its
incomplete holes completed—these are the holes corresponding to the coordinate
geodesics. For each i = 1, . . . , q , there is a unique fully normalized pants group
Hi representing P ′i . That is, H2/Hi = P ′i ; Hi has three distinguished generators
ai,1, ai,2, ai,3 , where ai,1ai,2ai,3 = 1, and Ai,k projects onto bi,k , k = 1, 2, 3. Even
in the cases where we have not yet distinguished between bi,2 and bi,3 , the fully
normalized pants group Hi , with its three distinguished generators, is uniquely
determined.

6.4. Base points. We will need a canonical base point on each Ai,k . For
i = 1, . . . , q , the point i is the canonical base point on Ai,1 ; for i = 1, . . . , q , and
for k = 2, 3, the base point on Ai,k is the point of intersection of Ai,k with the
common orthogonal between Ai,1 and Ai,k .

6.5. The primary chain. For j = 1, . . . , q − 1, we define the suborbifold
Qj as the interior of the closure of the union of the Pi , i ≤ j . In general, Qj is
incomplete, let Q′j be the orbifold obtained by completing the incomplete holes
of Qj .

Each Q′j has a naturally defined F-N system, where the coordinate geodesics
are L1, . . . , Lj−1 , and the pairs of pants are P1, . . . , Pj . The order of the boundary
elements of Q′j will be described below.
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Let H1 = J1 be the fully normalized pants group representing P1 ; then the
imaginary axis, which is the axis of a1,1 , projects to L1 ; the positive direction of
A1,1 projects to the positive direction of L1 .

Let H2 be the fully normalized pants group representing P2 . Let c2 be the
hyperbolic isometry which maps the right half-plane onto the left half-plane, while
introducing a twist of 2τ1 in the positive direction on L1 ; that is, c2(0) = ∞ ,
c2(∞) = 0, and c2(i) = e2τ1i .

Let Ĥ 2 = c2H2c
−1
2 . Then the action half-plane of a1,1 = â1,1 is equal to

the boundary half-plane of â2,1 = c2a2,1c
−1
2 . It follows that one can use the AFP

combination theorem (First combination theorem in [12]) to amalgamate Ĥ 2 to

H1 . Set J2 = 〈H1,Ĥ 2〉 . The subgroups Ĥ 1 = H1 and Ĥ 2 are the distinguished
subgroups of J2 . The following now follow from the AFP combination theorem.

(i) J2 is Fuchsian.

(ii) J2 is generated by a1,1, a1,2, a1,3, â2,2, â2,3 ; in addition to the defining rela-
tions of H1 and H2 , these satisfy the one additional relation: a1,1 = â2,2â2,3 .

(iii) H2/J2 has signature (0, 4); the corresponding boundary subgroups are gen-
erated by the above four generators.

It is clear that one can canonically identify H2/J2 with Q′2 . This imposes a
new order on the boundary elements of H2/J2 , as follows. If b and b′ are bound-
ary elements of Q2 , where b precedes b′ as coordinate geodesics or as boundary
elements of S0 , then b precedes b′ as a boundary element of Q2 . If b and b′ both
correspond to the same coordinate geodesic on S0 , and b corresponds to a bound-
ary geodesic on P1 , while b′ corresponds to a boundary geodesic on P2 , then, as
boundary elements of Q2 , b precedes b′ . Finally, if b and b′ both correspond to
boundary elements of either P1 or P2 , then b precedes b′ if b corresponds to Ai,2
and b′ corresponds to Ai,3 .

In the case that Pi has two boundary elements corresponding to the same
handle geodesic, L , we now direct L so that the positive direction of Ai,2 projects
onto the positive direction of L . We note that we have now given an order to the
boundary elements of Q2 , and directed them.

We introduce a new ordered set of generators for J2 as a2
1, . . . , a

2
5 , where

a2
1 = a1,1 = â−1

2,1 , and a2
2, . . . , a

2
5 , are the generators a1,2, a1,3, â2,2 , â2,3 , where

these have been rearranged so as to be in proper order; i.e., A2
j projects onto

b2j−1 . We remark that those A2
j that are hyperbolic are all directed so that the

attracting fixed point of a2
j is smaller than the repelling fixed point.

Each A2
j has a canonical base point on it. In the case that a2

j = a1,i , the

base point is the canonical base point for a1,i ; in the case that a2
j = c2a2,ic

−1
2 ,

then the canonical base point is the c2 image of the canonical base point for a2,i .

We now iterate the above process. Assume that we have found Jk , with
distinguished subgroups, Ĥ 1, . . . ,Ĥ k , representing Q′k , where k < q . Assume
that we have ordered the boundary elements of Qk , and that we have found the
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distinguished generators, ak1 , . . . , a
k
2k+1 , for Jk , where each distinguished generator

lies in some distinguished subgroup, so that, for i = 1, . . . , k , Aki projects onto
the coordinate geodesic Li , and, for i = k + 1, . . . , 2k + 1, Aki projects onto the
boundary element bkk−i of Qk . We assume that we have assigned a canonical base

point on each of the geodesics Aki , i = k+1, . . . , 2k+1, and we also assume that all
the hyperbolic boundary generators of Jk are directed so that the attracting fixed
point is smaller than the repelling fixed point. Then there is some j so that Akk+j

projects onto Lk+1 . We need to renormalize Hk+1 so that the renormalized Ak+1,1

agrees with Akk+j , but with the opposite orientation, and with an appropriate
twist.

We define the conjugator ck+1 to be the unique orientation-preserving hy-
perbolic isometry mapping the left half-plane onto the action half-plane of Akk+j ,
while mapping the base point i onto the point whose distance from the base point
on Akk+j , measured in the positive direction along Akk+j , is exactly 2τk . As above,

the AFP combination theorem assures us that Jk+1 = 〈Jk, ck+1Hk+1c
−1
k+1〉 satisfies

the following.

(i) Jk+1 is Fuchsian.

(ii) Jk+1 = 〈ak1 . . . , ak2k+1, ck+1ak+1,1c
−1
k+1, ck+1ak+1,2c

−1
k+1, ck+1ak+1,3c

−1
k+1〉 ; these

satisfy the defining relation(s) of Jk , the defining relation(s) of Hk+1 , together
with the additional defining relation: akk+j = (ck+1ak+1,1c

−1
k+1)−1 .

(iii) H2/Jk+1 has signature (0, 2k + 1).

The distinguished subgroups of Jk+1 are the distinguished subgroups of Jk ,

together with Ĥ k+1 = ck+1Hk+1c
−1
k+1 .

As above, we rewrite the generators of Jk+1 as ak+1
1 , . . . , ak+1

2k+3 , where the
first k generators correspond in order to the k coordinate geodesics of Qk+1 ,
and the remaining generators correspond to the boundary elements of Qk+1 in
the following order. Each boundary generator ai of Jk+1 corresponds to either
a coordinate geodesics Lj on S0 , or it corresponds to a boundary element bj
of S0 ; pulling back the order of the coordinate geodesics and boundary elements
from S0 imposes a partial order on the boundary generators of Jk+1 . The only
ambiguities occur when the generators ai and ai′ both correspond to the same
coordinate geodesic. If ai , respectively, ai′ , lies in the distinguished subgroup
Ĥ j , respectively, Ĥ j′ , where j < j′ , then ai precedes ai′ ; if ai and ai′ both lie

in the same distinguished subgroup, Ĥ j , then âj,2 precedes âj,3 .

The hyperbolic boundary generators of Jk all have distinguished base points;
we assign the ck image of the distinguished base point on ak+1,2 and ak+1,3 as
the distinguished base point on the new boundary generators of Jk+1 . We also
observe that the hyperbolic boundary generators of Jk+1 are all directed so that
their attracting fixed points are smaller than their repelling fixed points.

When k = q − 1, we reach the group Jq , representing Q′q . Note that, as
part of the above process, we have ordered and directed those boundary geodesics



Matrices for Fenchel–Nielsen coordinates 287

of Qq that correspond to handle geodesics on S0 , where the same pair of pants
appears on both sides of the handle geodesic.

6.6. Closing the handles. We rename the group Jq , and now call it K0 .
We also rename its ordered set of generators and call them, in order, a0

1, . . . , a
0
2q+1 .

The first q−1 of these generators correspond to the attaching coordinate geodesics
of S0 ; the next 2(p−q+1) generators correspond to the boundary elements of Qq
that are handle geodesics on S0 ; the remaining generators correspond to boundary
elements of both Qq and S0 .

We define the first handle-closer d1 as the orientation-preserving hyperbolic
isometry mapping the action half-plane of a0

q onto the boundary half-plane of
a0
q+1 , while mapping the point at distance −2τq from the base point on A0

q to the
base point on A0

q+1 . Note that d1 conjugates a0
q onto (a0

q+1)−1 .

Set K1 = 〈K0, d1〉 . The following follow from the second combination theo-
rem (HNN extension):

(i) K1 is Fuchsian.

(ii) K1 is generated by a0
1 . . . , a

0
2q+1, d1 ; these satisfy the defining relations of

K1 , together with the additional relation: a0
q+1 = d1(a0

q)
−1d−1

1 .

(iii) H2/K1 is an orbifold of signature (1, q) .

The distinguished subgroups of K1 are the distinguished subgroups of K0 .
The generators of K1 are the generators of K0 , in the same order, but with a0

q+1

deleted, and d1 added to the list. In the list of generators for K1 , d1 appears
after all the generators corresponding to coordinate geodesics on S0 , and before
the first generator corresponding to a boundary element of S0 .

There is no difficulty (other than notation) in iterating the above process. In
the next iteration, we eliminate the generator a0

q+3 , and the new generator d2

appears immediately after d1 .

After g iterations, we reach the discrete group G = Kg , where H2/G = S0 .
Further, G has q distinguished subgroups, representing in order the q pairs of
pants, P1, . . . , Pq ; and G has 2q + 1 distinguished generators, a1, . . . , a2q+1 . For
i = 1, . . . , p , the axis Ai projects onto the coordinate geodesic Li ; the generators
ap+1, . . . , a2p−q+1 are handle closers; and the axes of the remaining generators
project, in order, onto the boundary elements of S0 .

6.7. Summary. We started with an F-N system on S0 , together with the
point Φ in the corresponding coordinate space, and constructed from these a set of
generators for the Fuchsian group representing the deformation of S0 determined
by Φ. It is easy to observe that if Φ, respectively, Φ′ , are points in this F-N
coordinate space, and a1, . . . , ad , respectively, a′1, . . . , a

′
d , are the corresponding

sets of generators, then there is a quasiconformal deformation of the hyperbolic
plane conjugating each ai onto the corresponding a′i .

We note that, among other things, we have shown the following.
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Proposition 6.1. Let L1, . . . , Lp be an F-N system on the hyperbolic orb-
ifold S0 . Then there is a canonical procedure for choosing a basis for the (orbifold)
fundamental group of S0 , so that, for i = 1, . . . , p , Li is the shortest geodesic in
the free homotopy class of the i -th generator.

Remark 6.1. The above definition of the conjugators has the unfortunate
consequence that the untwisted handle-closers do not in general preserve the com-
mon orthogonal between the axes of the two generators they conjugate. There is
a relatively easy way to solve this problem, but this entails the loss of the explicit
formulae for the entries in the matrices; see Section 14.

7. Explicit matrices

7.1. Reduction to primitive conjugators. Let Hi and Hj+1 be the fully
normalized pants groups representing the pairs of pants, Pi and Pj+1 , respectively.
We assume that i < j+1, and that there is a k , 1 ≤ k ≤ 3, so that aj+1,1 and ai,k
represent the same attaching geodesic, Lj on S0 , but with reverse orientations.
Then | tr(ãj+1,1)| = | tr(ãi,k)| . The elementary conjugator ei,k maps the left
half-plane (the boundary half-plane of a′ = aj+1,1 ) onto the action half-plane of
a = ai,k , while introducing a twist of 2τj ; that is, ei,k maps the base point on
Aj+1,1 to the point on Ai,k at distance 2τj from the base point on Ai,k ; since
i < j + 1, this is the positive direction on the projection of these axes. The
untwisted elementary conjugator, e0 = e0

i,k , which is independent of the index j ,
also maps the left half-plane onto the action half-plane of a , but maps the base
point on Aj+1,1 (this is the point i) to the base point on Ai,k .

Once we have found matrices for the elementary conjugators, then we can
inductively find matrices for all the conjugators. If Pi and Pj+1 are adjacent
pairs of pants in the F-N system on S0 , with i < j + 1, and, as above, bj+1,1

attached to bi,k , then, once we have found the matrix for the conjugator ci , and
we have found the matrix for the elementary conjugator, ei,k , the matrix for the
conjugator cj+1 is given by

(9) c̃j+1 = c̃iẽi,k.

For each j = q, . . . , p , the handle closer dj conjugates one distinguished
boundary generator of K0 onto the inverse of another distinguished boundary
generator. These two boundary generators either lie in the same distinguished
subgroup, or they lie in different distinguished subgroups.

If the two boundary generators lie in the same distinguished subgroup, Ĥ i ,
then there is a conjugator ci , and there is a fully normalized pants group Hi , so
that Ĥ i = ciHic

−1
i . In this case, we can choose the matrix for the handle closer

as

(10) d̃j = c̃id̃c̃
−1
i ,
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where d̃ is given in equation (4).
If these two boundary generators lie in distinct distinguished subgroups, say

Ĥ i and Ĥ i′ , where i < i′ , where the first boundary generator corresponds to
âi,k , and the second corresponds to âi′,k′ then we write dj as a product of four

transformations: first we twist along the axis Âi,k ; then we map the boundary
half-plane of ai,k onto the right half-plane; then we interchange left and right
half-planes; and last, we map the right half-plane onto the boundary half-plane
of âi′,k′ .

The first transformation preserves both sides of Âi,k and maps the point on

Âi,k , whose distance from the base point is −2τj , to the base point on Âi,k . We
can write the matrix for this transformation as

(11) (c̃iẽ
0
i,k)f̃τj (c̃iẽ

0
i,k)−1,

where fτ is the universal twist map, fτ (z) = e−2τz .
The second transformation maps the boundary half-plane of âi,k onto the

right half-plane, and maps the base point on Âi,k to the base point on the imagi-
nary axis. We can write the matrix for this transformation as

(12) (c̃iẽ
0
i,k)−1.

The interchange transformation g interchanges left and right half-planes and
preserves the base point on the imaginary axis; that is, g(z) = −1/z .

The final transformation maps the left half-plane onto the boundary half-plane
of âi′,k′ ; the matrix for this transformation can be written as

(13) c̃i′ ẽ
0
i′,k′ .

Combining equations (11)–(13), we obtain

(14) d̃j = c̃i′ ẽ
0
i′,k′ g̃f̃τj (c̃iẽ

0
i,k)−1.

Hence, in this case as well, we can write the matrix for the handle closer, once
we know the sizes of the attaching geodesics, and we have the matrices for the
twisted and untwisted elementary conjugators.

7.2. The universal twist map and interchange. We represent the uni-
versal twist map, fτ , which twists by −2τ in the positive direction along the
imaginary axis, and the interchange transformation g , as follows:

f̃τ =

(
e−τ 0
0 eτ

)
; g̃ =

(
0 −1
1 0

)
.
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7.3. The elementary conjugator for ai,1 . We first take up the case
that the attaching coordinate geodesic Lj corresponds to both a′ = aj+1,1 and
a = ai,1 . This case occurs only for i = j = 1. We note that the left half-plane is
the boundary half-plane for both a′ and a .

The interchange transformation g interchanges the right and left half-planes
in H2 , and fixes the point i , which is the base point on both A and A′ . Hence,
we can choose g̃ as the matrix for the untwisted elementary conjugator ẽ0

2,1 .
Then the matrix for e2,1 , is given by

ẽ2,1 = ẽ0
2,1f̃τ1 =

(
0 −eτ1

e−τ1 0

)
.

7.4. The elementary conjugator for ai,2 . We next take up the case that
k = 2. Since the base point of A = Ai,2 is the point of intersection of A with the
common orthogonal of A and Ai,1 , we can choose e0

i,2 to be the composition of
the reflection r0 in Ai,1 , followed by the reflection r12 in the line halfway between
Ai,1 and Ai,2 .

We have already found the matrix for r0 as

r̃0 =

(
1 0
0 −1

)
.

Since we can locate the fixed points of a at e±µi , easy computations show that
we can choose

r̃12 =
1√

2 sinhµi

(
exp( 1

2µi) − exp(− 1
2µi)

exp(− 1
2µi) − exp( 1

2µi)

)
,

where µi is defined by equation (1) or (5) or (7), depending on the type of ai,3 .
We can also write the above as

(15) r̃12 =
1√
2

(√
cothµi + 1 −√cothµi − 1√
cothµi − 1 −√cothi µ+ 1

)
.

Remark 7.1. Up to this point, the entries in all our matrices were ratio-
nal functions of hyperbolic sines and cosines of lengths of closed geodesics, or of
geodesic arcs. We see from equation (15) that, for Fuchsian groups representing
sufficiently complicated surfaces or orbifolds, one must introduce square roots of
these hyperbolic sines and cosines.

We can now write

(16) ẽ0
i,2 = r̃12r̃0 =

1√
2 sinhµi

(
exp( 1

2µi) exp(− 1
2µi)

exp(− 1
2µi) exp( 1

2µi)

)
,
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and

(17) ẽi,2 = ẽ0
i,2f̃τj =

1√
2 sinhµi

(
exp( 1

2µi − τj) exp(− 1
2µi + τj)

exp(− 1
2µi − τj) exp( 1

2µi + τj)

)
.

7.5. The primitive conjugator for a3 . For k = 3, the base point on Ai,3
is at the point where A1,3 meets the common orthogonal with Ai,1 . However, the
base point on Ai,1 is the point where it meets the common orthogonal with Ai,2 .
We write e0

i,3 = r13r0f−λi , where r0 is as above, r13 is the reflection in the line
halfway between Ai,1 , and Ai,3 , and λi is the size of ai,1 ; that is, | tr(ai,1)| =
2 coshλi .

We have already observed that the common orthogonal between Ai,1 and Ai,3
lies on the circle of radius eλi . Also, the fixed points of a = ai,3 are at eλi±νi ,
where νi is defined by equation (2). Hence, we can choose

r̃13 =
1√

2 sinh νi

(
exp
(

1
2 (νi + λi)

)
exp
(

1
2 (−νi + λi)

)

exp
(

1
2 (−νi − λi)

)
exp
(

1
2 (νi − λi)

)
)
.

We now write

(18) ẽ0
i,3 = r̃13r̃0f̃−λi =

1√
2 sinh νi

(
exp( 1

2νi + λi) exp(− 1
2νi)

exp(− 1
2νi) exp( 1

2νi − λi)

)
,

and

(19) ẽi,3 = ẽ0
i,3f̃τj =

1√
2 sinh νi

(
exp( 1

2νi + λi − τj) exp(− 1
2νi + τj)

exp(− 1
2νi − τj) exp( 1

2νi − λi + τj)

)
.

8. The algorithm

Assume we are given an explicit F-N system on a hyperbolic orbifold; this
geometric information is given as the signature (g, n,m;α1, . . . , αn) of S0 , and
the pairing table, which has q rows, one for each pair of pants Pi , and three
columns, one for each boundary element of Pi . The entry in the i -th row and
k -th column identifies the boundary element bi,k as corresponding to either a
coordinate geodesic Lj , or a boundary element bj of S0 .

We also assume we are given the point Φ in the appropriate coordinate space.

Step 1. For each i = 1, . . . , q , and for k = 1, 2, 3, we read off from the pairing
table whether bi,k corresponds to a coordinate geodesic or to a boundary element.
If bi,k corresponds to Lj , then we read off the size of ai,k from the j -th entry
in Φ. Each bi,1 corresponds to an attaching geodesic; we write the size of this
geodesic as λi . If bi,k corresponds to a boundary element, then we read off the
type of this boundary element from the signature of S0 ; if the type is hyperbolic,
then we read off the size of ai,k from Φ; if the type is parabolic or elliptic, we
read off the order from the signature.

We use the constructions of Section 5 to write down the matrices ãi,k . We
remark that, in practice, we will not need all of these.
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Step 2. The first conjugator c1 is the identity. We have already constructed
the matrix for the second conjugator; it is the elementary conjugator ẽ2,1 .

Continuing inductively, assume that we have found matrices for the conju-
gators, c1, . . . , cj−1 , j ≤ q . The attaching geodesic Lj appears in the pairing
table once as bj+1,1 , and once as some bi,k , i < j + 1, k > 1. We have already
constructed c̃i ; equation (9) then gives the formula for c̃j .

Step 3. Write the matrices for the first q − 1 generators. These are the
generators corresponding to the attaching geodesics. We write:

ã1 = ã1,1, ã2 = c̃3ã
−1
3,1c̃
−1
3 , . . . , ãq−1 = c̃qã

−1
q,1c̃
−1
q .

Step 4. Find matrices for the generators corresponding to the handle geode-
sics; these are the generators aq, . . . , ap .

Each Lj , q ≤ j ≤ p , appears twice in the pairing table; either there is some
i so that Lj appears as both bi,2 and bi,3 , or there are two distinct rows, i < i′ ,
so that Lj appears as bi,k and as bi′,k′ .

In the first case, we write the matrix for the handle generator as ãj =
c̃iãi,2c̃

−1
i .

In the second case, we write the matrix for the handle generator as ãj =
c̃iãi,k c̃

−1
i .

Step 5. Find matrices for the handle closing generators, ap+1, . . . , a2p−q+1 .
We need to consider separately the same two possibilities as in the previous step.

If there is some j , q ≤ j ≤ p , so that Lj appears as both bi,2 and bi,3 in

the pairing table, then we write ãp+j = d̃j , where the formula for d̃j is given by
equation (10).

For q ≤ j ≤ p , if the two entries of Lj in the pairing table appear as bi,k and

bi′,k′ , where i < i′ , then we write ãp+j = d̃j , where the formula for d̃j is given by
equation (14). Note that, in order to use this equation, we need the quantities λi
and λi′ , defined in Step 1, and matrices for the untwisted elementary conjugators,
e0
i,k and e0

i′,k′ ; these matrices are obtained by appropriate use of equations (16)
and (18).

Step 6. Write down the matrices corresponding to the boundary elements
of S0 . Each bj , j = 1, . . . ,m+ n , appears exactly once in the pairing table. If bj
corresponds to bi,k , then the matrix for the corresponding generator is given by
ã2p+q+j = c̃iãi,k c̃

−1
i .

9. From matrices to F-N coordinates

In this section, we start with a finite set of matrices, ã1, . . . , ãd ∈ SL(2,R) ,
which we regard as Möbius transformations. We assume that these are a fully
normalized set of distinguished generators defined by a coordinate point Φ for
some F-N system on some orbifold S . We give a procedure for determining the
signature of S ; the pairing table of the F-N system; and the coordinate point Φ
that these generators represent.
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Remark 9.1. We could start with an arbitrary finite set of matrices,
ã1, . . . , ãd , and write down necessary and sufficient conditions for the correspond-
ing Möbius transformations to be a (not necessarily normalized) distinguished set
of generators corresponding to some coordinate point in some F-N system. The
conditions are easy to derive from the rules in 2.1.1, together with the rules for di-
recting the coordinate and boundary geodesics. This would yield a set of sufficient
conditions for the corresponding transformations to generate a discrete group.

9.1. Recovering the signature and the pairing table. We know that the
transformations a1, . . . , ad , are in non-increasing order, so the last n of them are
not hyperbolic. Also, d = 2q + 1, so q is also determined. We write S = H2/G ,
where G = 〈a1, . . . , ad〉 .

We find the endpoints of the axes of the hyperbolic generators, and compute
which pairs of these axes cross each other, and which pairs are disjoint. If the axes
of the hyperbolic generators are not all disjoint, then there is a largest index p so
that A1, . . . , Ap are all disjoint. In this case, since g = p− q+ 1, g is determined.
We now have that the projections of A1, . . . , Aq−1 are the attaching geodesics, and
the projections of Aq, . . . , Ap are the handle geodesics. Then ap+1, . . . , a2p−q+1

are the handle closers, and the remaining generators correspond to boundary ele-
ments of S . We can use the traces of these last m+ n generators to find m , and
to find the orders of the elliptic and parabolic generators. Hence, in this case, we
know the signature (g,m, n;α1, . . . , αn) .

If the axes of the hyperbolic generators are all disjoint, then g = 0, p =
n + m− 3, and q = n + m− 2. Hence p = q − 1 and m = q − n + 2. So in this
case as well, we know the signature of G .

We also need the (unordered) set of basic generators. These are the generators
other than the handle-closers, together with the handle generators conjugated by
the corresponding handle-closing generators; that is, the basic generators are:

a1, . . . , ap, a2p−q, . . . , ad, ap+1aqa
−1
p+1, . . . , a2p−q+1a2p−qa

−1
2p−q+1.

The axes of the hyperbolic basic generators divide the hyperbolic plane into
regions. Each of these regions either contains three axes of distinguished generators
in its closure, in which case the three corresponding basic generators generate one
of the distinguished pants subgroups, or the region contains exactly one axis of a
distinguished generator in its closure, in which case the corresponding generator
is boundary hyperbolic. For j = 1, . . . , q , the attaching geodesic Lj appears in
the pairing table as both bj+1,1 and as some bi,k , i < j + 1. Since we know
that aj = âj+1,1 , j = 1, . . . , q , we can order the above regions as corresponding
to P1, . . . , Pq . If the other two axes on the boundary of the region corresponding
to Pj are translates of Ai and Ai′ , where i < i′ , then Li , respectively, Li′ , is
the entry in the second, respectively, third, column of the j -th row of the pairing
table. If i = i′ , then Li is the entry in both the second and third column of this
row. This completes the reconstruction of the pairing table.
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9.2. Recovering the F-N coordinates. The F-N coordinates

Φ = (s1, . . . , sp+m, t1, . . . , tp)

can now be read off as follows.
The numbers s1, . . . , sp are almost immediate. For i = 1, . . . , p , we have

si = sinhσi , where coshσi = 2| tr(ãi)| . Similarly, for i = p + 1, . . . , p + m ,
si = 2 sinhσi , where coshσi = 2| tr(ã2p−q+1+i)| .

Each of the twists about an attaching geodesic is of the following form. We
have three basic generators, a , a′ and a′′ , with disjoint axes, where A separates
A′ from A′′ . The twist 2τ is the distance between the point of intersection on
A of the common orthogonal, N ′ , of A with A′ , and the point of intersection on
A of the common orthogonal, N ′′ , of A with A′′ . We can now compute 2|τ | ,
for N ′ is the axis of the Fenchel–Jørgensen commutator, r′ = aa′ − a′a , and N ′′

is the axis of r′′ = aa′′ − a′′a . These are both half-turns; their product, when
represented by a matrix in SL(2,R) , has trace equal to ±2 cosh τ . The sign of τ
is also determined; although we do not have an explicit formula for it, for τ > 0
if and only if a and r′′r′ have the same attracting fixed point.

Once we know the twists about the attaching geodesics, we can reconstruct
the conjugators, for each conjugator is a product of primitive conjugators, and
each primitive conjugator is determined by the pairing table, the lengths of the
coordinate geodesics, and the twists about the attaching geodesics.

Once we have the conjugators and the pairing table, we can reconstruct the
elementary conjugators. It is then an exercise to reconstruct the untwisted ele-
mentary conjugators from the twisted ones.

For the twist about a handle geodesic, we note (see equations (10) and (14))
that the handle-closer is of the form cfτ (c′)−1 , where c and c′ are products of
primitive conjugators. Since we are given matrices for the handle closing gen-
erators, and we can reconstruct these products of primitive conjugators, we can
compute fτ ; hence sinh τ is determined.

10. Recapitulation—statements of results

In this section, we combine the results of the preceding sections, and formally
state the theorems we have proven.

10.1. The algorithm. Given a hyperbolic orbifold S0 , with finitely gen-
erated fundamental group, given L1, . . . , Lp , an F-N system on S0 , and given a
point Φ = s1, . . . , sp+m, t1, . . . , tp ∈ (R+)p+m ×Rm , we have given in Section 8
an algorithm yielding explicit formulae for a set of matrices ã1, . . . , ãd , so that
G = 〈a1, . . . , ad〉 is the Fuchsian group uniformizing the deformation of S0 deter-
mined by the coordinate point Φ. As part of our procedures, we have written the
entries in these matrices as smooth algebraic functions of Φ.
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10.2. The Fenchel–Nielsen theorem. Combining our algorithm with the
results in Section 9, we have a new proof of a somewhat stronger version of the
original Fenchel–Nielsen theorem.

Let G0 be a finitely generated Fuchsian group. Let DF (G0) be the identity
component of the space of discrete faithful representions of G0 into PSL(2,R) ,
modulo conjugation. It is well known, assuming that G0 is of cofinite volume,
that DF (G0) is real-analytically equivalent to the Teichmüller space of H2/G0

(see Abikoff [1]); if G0 is not of cofinite volume, then DF (G0) is real-analytically
equivalent to the corresponding reduced Teichmüller space (see Earle [4]).

Theorem 10.1. Let G0 be a finitely generated non-elementary Fuchsian
group, with an F-N system defined on S0 = H2/G0 . Then the algorithm for
constructing matrix generators for deformations of G0 defines a canonical algebraic
diffeomorphism of DF (G0) onto (R+)m+p ×Rp .

10.3. Algebraic orbifolds. We easily obtain the following corollaries.

Theorem 10.2. Let S be a hyperbolic orbifold with finitely generated fun-
damental group, with an F-N system defined on it; S is algebraic if and only if its
F-N coordinates in this system are algebraic.

Theorem 10.3. Let S be a hyperbolic orbifold with finitely generated fun-
damental group. If the F-N coordinates of S are algebraic in one F-N system,
then they are algebraic in any F-N system.

10.4. The action of the Teichmüller modular group. For our final
observation, we use the well-known fact that if α is an element of the Teichmüller
modular group, and if L1, . . . , Lp is an F-N system on S0 = H2/G0 , then α
either preserves this F-N system, in which case it maps some F-N coordinate for
S0 in this system onto another coordinate point for the same system, or α maps
the given F-N system onto a different F-N system on S0 . We have proven the
following.

Theorem 10.4. Let G0 be a finitely generated Fuchsian group, and let an
F-N system on S0 = H2/G0 be given. Let Mod denote the action of the (reduced)
Teichmüller modular group on (R+)m+p×Rp , where this action is given using the
canonical identification of Theorem 10.1. Then Mod acts as a group of algebraic
diffeomorphisms.

11. Special case of genus 3

There are five topologically distinct F-N systems on a closed surface of genus
3, and there are many possible ways to order the geodesics in each of them. We
choose one particular case, in which there is one dividing geodesic, necessarily
L1 , and five non-dividing geodesics. Then L2 and L3 are necessarily attaching
geodesics, while L4 , L5 and L6 are handle geodesics.

The pairing table for our particular F-N system is given below.
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P1 L1 L2 L4

P2 L1 L5 L5

P3 L2 L3 L6

P4 L3 L4 L6

We also assume that we are given the point in parameter space

Φ = s1, . . . , s6, t1, . . . , t6.

Then the quantities σi and τi are given by si = sinhσi , σi > 0, and ti = sinh τi .
We need to write down 9 matrices, ã1, . . . , ã9 , so that, for i = 1, . . . , 6, Ai projects
onto Li , and for i = 7, 8, 9, ai is the handle closer for Li−3 .

Step 1. The generating matrices for the four fully normalized pants groups,
H1, . . . , H4 , are as follows.

ã1,1 =

(
eσ1 0
0 e−σ1

)
;

ã1,2 =
1

sinhµ1

(
sinh(µ1 − σ2) sinhσ2

− sinhσ2 sinh(µ1 + σ2)

)
,

where µ1 is defined by

cothµ1 =
coshσ1 coshσ2 + coshσ4

sinhσ1 sinhσ2
, µ1 > 0;

ã1,3 = −ã−1
1,2ã

−1
1,1 =

1

sinh ν1

(
sinh(ν1 − σ4) eσ1 sinhσ4

−e−σ1 sinhσ4 sinh(ν1 + σ4)

)
,

where ν1 is defined by

coth ν1 =
coshσ1 coshσ4 + coshσ2

sinhσ1 sinhσ4
, ν1 > 0.

For H2 , since both b2,2 and b2,3 correspond to the same geodesic, L5 , we
have ν2 = µ2 .

ã2,1 =

(
eσ1 0
0 e−σ1

)
;

ã2,2 =
1

sinhµ2

(
sinh(µ2 − σ5) sinhσ5

− sinhσ5 sinh(µ2 + σ5)

)
;

ã2,3 =
1

sinhµ2

(
sinh(µ2 − σ5) eσ1 sinhσ5

−e−σ1 sinhσ5 sinh(µ2 + σ5)

)
,
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where µ2 is defined by

cothµ2 = cothσ5
coshσ1 + 1

sinhσ1
, µ2 > 0.

The matrices for the generators of H3 are as follows.

ã3,1 =

(
eσ2 0
0 e−σ2

)
;

ã3,2 =
1

sinhµ3

(
sinh(µ3 − σ3) sinhσ3

− sinhσ3 sinh(µ3 + σ3)

)
,

where µ3 is defined by

cothµ3 =
coshσ2 coshσ3 + coshσ6

sinhσ2 sinhσ3
, µ3 > 0;

ã3,3 = −ã−1
3,2ã

−1
3,1 =

1

sinh ν3

(
sinh(ν3 − σ6) eσ2 sinhσ6

−e−σ2 sinhσ6 sinh(ν3 + σ6)

)
,

where ν3 is defined by

coth ν3 =
coshσ2 coshσ6 + coshσ3

sinhσ2 sinhσ6
, ν3 > 0.

Finally, the matrices for the generators of H4 are as follows.

ã4,1 =

(
eσ3 0
0 e−σ3

)
;

ã4,2 =
1

sinhµ4

(
sinh(µ4 − σ4) sinhσ4

− sinhσ4 sinh(µ4 + σ4)

)
,

where µ4 is defined by

cothµ4 =
coshσ3 coshσ4 + coshσ6

sinhσ3 sinhσ4
, µ4 > 0;

ã4,3 = −ã−1
4,2ã

−1
4,1 =

1

sinh ν4

(
sinh(ν4 − σ6) eσ3 sinhσ6

−e−σ3 sinhσ6 sinh(ν4 + σ6)

)
,

where ν4 is defined by

coth ν4 =
coshσ3 coshσ6 + coshσ4

sinhσ3 sinhσ6
, ν4 > 0.
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Step 2. The second conjugator, c2 , is the primitive conjugator e1,1 ; we obtain

c̃2 = ẽ1,1 =

(
0 −eτ1

e−τ1 0

)
.

The third conjugator c3 is the primitive conjugator e1,2 ; we obtain

c̃3 = ã1,2 = r̃12r̃0f̃τ2 =
1√

2 sinhµ1

(
exp( 1

2µ1 − τ2) exp(− 1
2µ1 + τ2)

exp(− 1
2µ1 − τ2) exp( 1

2µ1 + τ2)

)
.

The fourth conjugator, c4 , which conjugates H4 onto Ĥ 4 , is a product of
the primitive conjugator c3 = e1,2 , and the primitive conjugator e3,3 , which maps
the left half-plane onto the action half-plane of a3,3 . We first write the matrix
for e3,3 :

ẽ3,3 = r̃13r̃0f̃τ3 =
1√

2 sinh ν3

(
exp( 1

2ν3 − τ3) exp(− 1
2ν3 + σ2 + τ3)

exp( 1
2ν3 − σ2 − τ3) exp( 1

2ν2 + τ3)

)
.

Then we can write c̃4 = c̃3ẽ3,3 .

Step 3. We write down the matrices corresponding to the attaching geodesics.

ã1 = ã1,1, ã2 = ã1,2, ã3 = c̃3ã3,2c̃
−1
3 .

Step 4. We write down the matrices corresponding to the handle geodesics.

ã4 = ã1,3, ã5 = c̃2ã2,2c̃
−1
2 , ã6 = c̃3ã3,3c̃

−1
3 .

Step 5. In order to write down the matrices for the handle closing geodesics,
we need some untwisted elementary conjugators. For the first handle-closer, we
need the untwisted elementary conjugators, e0

1,3 and e0
4,2 . Matrices for these are

as follows.

ẽ0
1,3 =

1√
2 sinh ν1

(
exp( 1

2ν1) exp(− 1
2ν1 + σ1)

exp(− 1
2ν1 − σ1) exp( 1

2ν1)

)
, and

ẽ0
4,2 =

1√
2 sinhµ4

(
exp( 1

2µ4) exp(− 1
2µ4)

exp(− 1
2µ4) exp( 1

2µ4)

)
.

The matrix for the first handle-closer is then

ã7 = c̃4ẽ
0
4,2f̃τ4(ẽ0

1,3)−1.
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For the second handle-closer, we need the untwisted elementary conjugators,
e0

2,2 and e0
2,3 ; we write

ẽ0
2,2 =

1√
2 sinhµ2

(
exp( 1

2µ2) exp(− 1
2µ2)

exp(− 1
2µ2) exp( 1

2µ2)

)
, and

ẽ0
2,3 =

1√
2 sinhµ2

(
exp( 1

2µ2) exp( 1
2µ2 + σ1)

exp(− 1
2µ2 − σ1) exp( 1

2µ2)

)
.

Then we can write
ã8 = c̃2ẽ

0
2,3f̃τ5(ẽ0

2,2)−1c̃−1
2 .

For the third handle-closer, we need matrices for the untwisted elementary
conjugators e0

3,3 and e0
4,3 ; these are as follows.

ẽ0
3,3 =

1√
2 sinh ν3

(
exp( 1

2ν3) exp(− 1
2ν3 + σ2)

exp(− 1
2ν3 − σ2) exp( 1

2ν3)

)
, and

ẽ0
4,3 =

1√
2 sinh ν4

(
exp( 1

2ν4) exp(− 1
2ν4 + σ3)

exp(− 1
2ν4 − σ3) exp( 1

2ν4)

)
.

Now we can write our final generator as

ã9 = c̃4ẽ
0
4,3f̃τ6(ẽ0

3,3)−1c̃−1
3 .

12. The first variation

For our first variation, we distinguish between left and right half-planes. If
Hi is a fully normalized pants group, with generators ai,1 , ai,2 and ai,3 , then
the corresponding fully normalized right pants group HR

i = Hi , with generators
aRi,k = ai,k . The corresponding fully normalized left pants group HL

i has generators

aLi,1 = a−1
i,1 , aLi,2 = ra−1

i,2 r
−1 , and aLi,3 = ra−1

i,3 r
−1 , where r denotes reflection in

the imaginary axis. It is essentially immediate that H2/HL
i = H2/HR

i , but with
reversed orientation. Since every pair of pants is symmetric; they are in fact
indistinguishable.

By using both left and right pants groups, we can eliminate the elementary
conjugators ei,1 and e0

i,1 . That is, the fully normalized pants group corresponding

to P1 is HR
1 ; the fully normalized pants group corresponding to P2 is HL

2 ; the
fully normalized pants group corresponding to P3 is HR

3 ; the fully normalized
pants group corresponding to P4 depends on the entries in the pairing table. If
the geodesic appearing as b4,1 also appear in either the first or third row, then the
corresponding fully normalized pants group is HR

4 ; if this geodesic also appears
in the second row, then the corresponding fully normalized pants group is HL

4 .
Continuing inductively, the fully normalized pants group corresponding to Pj is
HR
j (HL

j ) if the fully normalized pants group corresponding to Pi(j) is HR
i (HL

i ),
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where i(j) is the row in the pairing table containing the same coordinate geodesic
as the entry in the (j, 1) place.

For those indices i for which the fully normalized pants group is HR
j , the

(right) conjugators are defined by e0R
i,k = e0

i,k and cRi = ci .

For those indices i for which the fully normalized pants group is HL
i , the cor-

responding untwisted elementary left conjugators are defined by e0L
i,2 = re0

i,2r
−1 ,

and e0
i,3 = re0

i,3r
−1 . As before, the conjugator c1 = cR1 = 1. However, for i = 2,

the second fully normalized pants group is necessarily HL
2 , and the corresponding

conjugator is defined by cL2 = f−1
τ1 .

We define the left universal twist by fLτ = (fτ )−1 . Then the twisted left
elementary conjugators are given by eLi,k = e0L

i,kf
L
τ . Finally, the conjugator, cLi is

defined inductively by cLi = cLj(i)e
L
j(i),k .

Now that we have defined the fully normalized pants groups corresponding to
every Pi , and the corresponding twisted and untwisted conjugators, we can easily
write down matrices for the generators and the conjugators, using the matrix,

r̃ =

(
−1 0
0 1

)
,

except that we will have to change the sign of some matrices so as to have positive
traces. Once we have made these modifications, the algorithm proceeds as above,
with the following modifications.

For Step 1, we need right and left fully normalized pants groups.
For Step 2, one has to modify equation (9) to appropriately reflect right and

left conjugators.
Similarly, in Step 5, one has to replace (14) by appropriately replacing the

conjugators by left and right conjugators, and one has to adjust the reversing
transformation g . We define gXY to be the identity if X 6= Y , and to be the
reversing transformation g(z) = −1/z if X = Y . Then the new equation for the
handle closer is:

(20) d̃j = c̃Xj′ ẽ
0X
j′,k′g

XY f̃Yτ (c̃Yj ẽ
0Y
j,k)−1,

where X and Y both take on the values L and R , and are determined by the
fact that, for every j , exactly one of cLj and cRj is defined.

13. Special case of genus 2

In this section, we illustrate the first variation of our algorithm in the case of
a closed surface of genus 2, where all three coordinate geodesics of the F-N system
are non-dividing.

In this case, the signature is (2, 0), and the pairing table is as follows:
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P1 L1 L2 L3

P2 L1 L2 L3

We assume we are given Φ = (s1, s2, s3, t1, t2, t3) .

Step 1. The two pairs of pants, P1 and P2 , are necessarily isometric; we
write down the generators for the fully normalized pants groups, H1 = HR

1 and
H2 = HL

2 , as follows.

ãR1,1 =

(
eσ1 0
0 e−σ1

)
;

ãR1,2 =
1

sinhµ

(
sinh(µ− σ2) sinhσ2

− sinhσ2 sinh(µ+ σ2)

)
,

where µ is defined by

cothµ =
coshσ1 coshσ2 + coshσ3

sinhσ1 sinhσ2
, µ > 0;

ãR1,3 =
1

sinh ν

(
sinh(ν − σ3) eσ1 sinhσ3

−e−σ1 sinhσ3 sinh(ν + σ3)

)
,

where ν is defined by

coth ν =
coshσ1 coshσ3 + coshσ2

sinhσ1 sinhσ3
, ν1 > 0;

ãL1,1 =

(
e−σ1 0

0 eσ1

)
;

ãL1,2 =
1

sinhµ

(
sinh(µ− σ2) sinhσ2

− sinhσ2 sinh(µ+ σ2)

)
;

ãL1,3 =
1

sinh ν

(
sinh(ν − σ3) eσ1 sinhσ3

−e−σ1 sinhσ3 sinh(ν + σ3)

)
.

Step 2. The first conjugator c1 = 1; the second conjugator, cL2 = f−1
τ1 . Then

c̃L2 =

(
eτ1 0
0 e−τ1

)
.

Step 3. We write down the matrix corresponding to the attaching geodesic;
we obtain

ã1 = ãR1,1 =

(
eσ1 0
0 e−σ1

)
.
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Step 4. We write down the matrices corresponding to the handle geodesics.

ã2 = ãR1,2 =
1

sinhµ

(
sinh(µ− σ2) sinhσ2

− sinhσ2 sinh(µ+ σ2)

)
,

ã3 = ãR1,3 =
1

sinh ν

(
sinh(ν − σ3) eσ1 sinhσ3

−e−σ1 sinhσ3 sinh(ν + σ3)

)
.

Step 5. In order to write down the matrices for the handle closing geodesics,
we need to note that λ1 = λ2 = σ1 , and we need matrices for the untwisted
elementary conjugators, e0R

1,2 , e0L
2,2 , e0R

1,3 and e0L
2,3 . We find from equations (16)

and (18):

ẽ0R
1,2 =

1√
2 sinhµ

(
exp( 1

2µ) exp(− 1
2µ)

exp(− 1
2µ) exp( 1

2µ)

)
,

ẽ0L
2,2 =

1√
2 sinhµ

(
exp( 1

2µ) − exp(− 1
2µ)

− exp(− 1
2µ) exp( 1

2µ)

)
.

For the first handle closer, equation (20) becomes

(21) d̃1 = c̃L2 ẽ
0L
2,2f̃

R
τ2(c̃R1 ẽ

0R
1,2)−1.

Since cR1 = 1, we obtain

ã4 = d̃1 =
1

sinhµ

(
eτ1 cosh(µ− τ2) −eτ1 cosh τ2
−e−τ1 cosh τ2 e−τ1 cosh(µ+ τ2)

)
.

For the second handle-closer, we need the untwisted elementary conjugators,
e0R

1,3 and e0L
2,3 ; we write

ẽ0R
1,3 =

(
exp
(

1
2 (ν + σ1)

)
exp
(

1
2 (−ν + σ1)

)

exp
(

1
2 (−ν − σ1)

)
exp
(

1
2 (ν − σ1)

)
)
, and

ẽ0L
2,3 =

(
exp
(

1
2 (ν + σ1)

)
− exp

(
1
2 (−ν + σ1)

)

− exp
(

1
2 (−ν − σ1)

)
exp
(

1
2 (ν − σ1)

)
)
.

We obtain

ã5 = c̃L2 ẽ
0L
2,3f̃

R
τ3(ẽ0R

1,3)−1 =
1

sinh ν

(
eτ1 cosh(ν − τ3) −e(τ1+σ1) cosh τ3
−e(−τ1−σ1) cosh τ3 e−τ1 cosh(ν + τ3)

)
.
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14. The second variation

In the second variation, which can start with either the original algorithm or
with the first variation, we change the definitions of the conjugators, and of the
handle closing generators.

The first two conjugators, c1 = 1 and c2 , remain unchanged. Assume that we
have constructed Jk representing Q′k , k < q . Then there is some j so that Akk+j

projects onto Lk+1 . We redefine the untwisted conjugator c0k+1 , so that it maps

the left half-plane onto the action half-plane of akk+j , while preserving the common

orthogonal between the imaginary axis and Akk+j . The twisted conjugator ck+j is
then the composition of a twist by 2τk in the positive direction along the imaginary
axis, followed by the untwisted conjugator.

We follow the above procedure, until we reach the point where K0 is defined.
We assume that we have K0 , and we now redefine the base points and matrices
for the handle closers. It suffices to describe this new procedure for the first
handle-closer; the others are treated analogously.

The handle closer d1 conjugates a = a2p+1 onto the inverse of a′ = a2p+2 .
From the preceding step, we already have the matrices ã and ã′ . Using formula
(3), we can write down the matrices for the reflections rA and rA′ , in the axes
A and A′ , respectively. Then h = rA′rA is a hyperbolic element of PSL(2,R)
whose axis is the common orthogonal between A and A′ , where the translation
length of h is exactly twice the distance between these axes. It follows that the
square root of h (i.e., the unique hyperbolic isometry whose square is h) maps A
onto A′ , while preserving the common orthogonal between A and A′ . We define
the new untwisted handle-closer, d0

1 , to be this square root. Then the twisted
handle-closer d1 is given as: First twist along A by 2τp−q+1 , then apply d0

1 .
Since we can compute the fixed points of a and a′ , we can find a matrix for h ,
and then construct a matrix for the square root of h . Likewise, once we have the
fixed points of a , and the trace, 2 cosh(τp−q+1) , we can construct the matrix for

the corresponding transformation. We then choose d̃1 to have positive trace.

We remark that, while the entries in d̃1 can be easily computed in each case,
and are well defined algebraic functions of the entries in ã and ã′ , there are no
easy formulae for these entries.
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