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Abstract. We establish the purely fine contour-solid theory for finely holomorphic and finely
hypoharmonic functions containing refined, strengthened and extended theorems for these classes
of functions in finely open sets of the complex plane with preservable majorants (from the maximal
classes of such majorants for these function classes). The work is based on various new arguments
and on a new, unified approach common for finely hypoharmonic and finely holomorphic functions.
We give also strengthened and extended results on cluster properties of holomorphic and finely
holomorphic functions.

1. Introduction

Initial particular results in the contour-solid problems for usual holomorphic
functions were given by G.H. Hardy, J.E. Littlewood, S. Warschawski, J.L. Walsh,
W.E. Sewell and inspired the formulation of several open problems on the topic in
the Sewell’s monograph [Sew, p. 31–32] published in 1942.

In 1971 the author [T1] has completely solved these open problems (see also
[T2], [T3] where strengthened and more general results were established as well).
The obtained results found various applications in geometric and constructive
function theory, in theory of singular integral operators, in boundary problems
and in other topics. Further developments and related investigations were fulfilled
by a number of scientists.

In 1983 the author had established [T4]–[T6] extended and refined contour-
solid theorems for holomorphic (see also [T8], [T11]) and subharmonic (see also
[T7], [T9], [T10], [T12]) functions in open sets of the complex plane C with
arbitrary bilogarithmically concave majorants and their logarithms, respectively,
and these classes of majorants are maximal classes of majorants preservable in
the theorems for the above-mentioned function classes, respectively. In the papers
mentioned above one can find references to earlier and other publications on the
topics.
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For instance, we mention the following very particular case of one of local
contour-solid results for holomorphic functions from [T4]–[T6], [T8], [T11] using
notations from Section 4, see below. Let µ: (0,+∞)→ [0,+∞) be a function for
which the set Iµ := {x : µ(x) > 0} is connected and the restriction of the function
log µ(x) to Iµ is concave with respect to log x . For µ , let parameters µ0 , µ∞ ,
m0 and m∞ be defined as in Section 4.

Theorem. Let G ⊂ C be an open set, a ∈ ∂G be a fixed point; h be a
holomorphic function in G , continuous up to the boundary subset (∂G)\{a} with

|h(z)| ≤ µ(|z − a|) for all z ∈ (∂G) \ {a}.

Assume that |h| is majorized by some rational functions in neighbourhoods of the
point a and (if G is unbounded) of the point ∞ . If a (respectively ∞) is an
isolated boundary point of G , assume in addition that

µ0 < +∞, h(ζ) = o(|ζ − a|m0−1) (ζ → a, ζ ∈ G),

respectively

µ∞ > −∞, h(ζ) = o(|ζ|m∞+1) (ζ →∞, ζ ∈ G).

Then one and only one of the following two possibilities holds: either the inequality

|h(ζ)| ≤ µ(|ζ − a|) for all ζ ∈ G,

or the following exceptional case:

G = C \ {a}, µ(x) = βxm for all x > 0, h(ζ) = c(ζ − a)m for all ζ ∈ G,

m is an integer and β ≥ 0 , c ∈ C are constants with |c| > β .

In [TS1], [TS2] certain analogues of results from [T4], [T7], [T9], [T10], [T12]
were proved for finely hypoharmonic functions, and in [TS3] some analogues of
results from [T4]–[T6], [T8], [T11] were given for finely holomorphic functions in
finely open sets on C .

In the present work we establish refined, strengthened and extended contour-
solid theorems for finely holomorphic and finely hypoharmonic functions in finely
open sets of the complex plane with arbitrary bilogarithmically concave majorants
and their logarithms, respectively. We give also strengthened and extended results
on cluster properties of holomorphic and finely holomorphic functions.

While in contour-solid results of [TS1]–[TS3] some requirements relate to the
standard, Euclidean topology, in results of this paper all requirements relate to the
fine topology. So, we get purely fine contour-solid theory for finely holomorphic and
finely hypoharmonic functions. One more difference is that in the present paper
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restrictions on functions concerning boundedness requirements and majorization
are either avoided or essentially weakened. We have completely avoided the up-
per boundedness and finely inner majorization restrictions on functions (usual for
related problems and assumed on certain parts of sets in earlier publications) and
essentially relaxed the majorization requirements to their boundary limit values.

Concerning cluster properties of analytic functions, we mention classical re-
sults by F. Iversen and M. Tsuji (see [Tsu, p. 331–339]). On the basis of our
contour-solid results of [T4]–[T6], we have established the substantial extension
and generalization of the Iversen–Tsuji theorem for holomorphic functions (see
[T13], [T14] and Theorem 9 below), and this has consequences for further clus-
ter properties of meromorphic functions. We have also obtained fine analogues of
these theorems.

The results of this work contain new assertions even for usual subharmonic
and holomorphic functions in (standard) open sets.

The work is based on various new arguments and on a new, unified approach
common for finely hypoharmonic and finely holomorphic functions, despite essen-
tial differences between results valid for these classes of functions. One of the tools
is a new extended maximum principle for finely hypoharmonic functions free of any
(upper) boundedness restrictions on the functions and of any global majorization
requirements to them.

An essential part of this investigation was carried out at the Linköping Uni-
versity (see preprint [T15]) where I was on a kind invitation and under warm and
encouraging hospitality of Professor Lars-Inge Hedberg, to whom I am greatly
thankful.

Some results of this paper were announced in the author’s talks at the 7-th
International Colloquium on Finite or Infinite Dimensional Complex Analysis and
at the Second ISAAC Congress (both held in August 1999 in Fukuoka, Japan) and
are published without proofs in [T16] and [T17].

2. Some notions and notation

Let C be the compact Riemann sphere.

We refer to [B], [F1]—[F7] concerning the fine topology and related notions
such as thinness, the fine boundary and the fine closure of a set, fine limits of func-
tions, fine superior and fine inferior limits of functions, finely hypoharmonic, finely
hyperharmonic, finely subharmonic, finely harmonic, finely holomorphic functions,
the Green’s function for a fine domain and so on.

Let E ⊂ C . Denote by E the standard closure of E in C , and by E

the standard closure of a set E ⊂ C in C . The set of all points x ∈ C in

which E is not thin is called the base of the set E in C and is denoted by b(E) .

The set Ẽ := E ∪ b(E) is called the fine closure of the set E in C . Clearly,

Ẽ ⊂ E . Denote by ∂fE the fine boundary of E in C . Let ∂fE := C ∩ ∂fE ,
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(E)i := E \ b(E) , (E)r := E \ (E)i . Points x ∈ (E)r and x ∈ (E)i are called
regular and irregular points, respectively, of the set E .

For a set E ⊂ C let us denote C \ E =: FE , and for a set E ⊂ C , denote
also C \ E =: CE .

Let G ⊂ C be a finely open set.
Let z ∈ G . If the set FG is non-polar, then we denote by ωGz the generalized

harmonic measure relative to G and z (∈ G), see [F1, p. 1]. If FG is polar, then
we introduce the harmonic measure relative to G and z ∈ G by the equality

ωGz = 0.

Notice that if FG is non-polar, then ωGz 6= 0. In any case for ωGz we use also the
term the harmonic measure relative to G at the point z ∈ G .

If z belongs to a finely connected component T of G , Y is a subset of the set
FT and ωTz (Y ) = 0, then ωTζ (Y ) = 0 at every point ζ ∈ T (see [F1, pp. 150–151]).

A set Q ⊂ FG will be called nearly negligible relative to G if for every finely
connected component T of G the set Q ∩ ∂fT contains no compact subset K of
the harmonic measure ωTz (K) > 0 at some (and therefore at any) point z ∈ T .
This requirement is equivalent to the following alternative: either FG is polar
(and then Q is also polar), or for every finely connected component T of G both
∂fT is non-polar and Q is a set of inner harmonic measure zero relative to T and
any point z ∈ T .

If a set E ⊂ FG is such that for every finely connected component T of G
it contains no compact subset K ⊂ ∂fT of logarithmic capacity CapK > 0, then
E is nearly negligible relative to G .

In particular, any set E ⊂ FG of inner logarithmic capacity zero is nearly
negligible relative to G .

If T is a finely connected component of G and z ∈ T , then ωGz = ωTz .

Let D be a fine domain in C , i.e. a finely open, finely connected set. Then

D̃ = D . In particular, then D is finely separable from a point z ∈ C if and only
if it is separable from z in the standard topology. So in such a situation we may
speak of separability not specifying in what sense.

Let G be a finely open set in C , and z ∈ ∂fG . Given any functions u: G→
[−∞,+∞] and h: G → C , we introduce the following notation for fine superior
limits of functions:

fine lim sup ζ→z, ζ∈Gu(ζ) =: (u)̌ G,f (z) =: ǔG,f (z),(2.1)

fine lim sup ζ→z, ζ∈G|h(ζ)| =: h̄G,f (z).(2.2)

Remark 1. Let X ⊂ C and Y ⊂ C be non-empty sets. For a function
v: X → [−∞,+∞) let us consider two requirements:

(a) v is upper bounded on every part of X finely separable from Y ;
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(b) v is upper bounded on every part of X separable (in standard topology)
from Y .

The requirement (a) is more restrictive than (b). It is the reason why in
our results we use (when possible) restrictions of the type (b) rather than of the
type (a). Such results are valid with any of these types of restrictions, but with
(b) they are more general.

3. Maximum principle for finely hypoharmonic functions

In this work we prove and use the following maximum principle for finely
hypoharmonic functions that is free of any (upper) boundedness restrictions on
them, as well as of any global majorization requirements.

Lemma 1. Let D ⊂ C be a finely open set, E ⊂ FD be a set nearly

negligible relative to D, (∂fD) \E 6= ∅;u be a function finely hypoharmonic in D
with

ǔD,f (z) < +∞ for all z ∈ ∂fD,(3.1)

ǔD,f (z) ≤ 0 for all z ∈ (∂fD) \ E.(3.2)

Then u ≤ 0 in D .

In Rn for n ≥ 3 such a result is not true.

Remark 2. Under the additional requirement that E is a (polar) set of
irregular fine boundary points of D , a particular case of Lemma 1 was established
in [F2, p. 82] (c.f. results of [F3] where u in D is assumed to be upper bounded
or majorized by certain potential).

4. Contour-solid theorems for finely holomorphic functions

In [T4], [T5] (see also [T6], [T8], [T11]) we had introduced the following
notions. Let M be the class of all functions µ: (0,+∞) → [0,+∞) for each of
which the set Iµ := {x : µ(x) > 0} is connected and the restriction of the function
log µ(x) to Iµ is concave with respect to log x . Let M∗ be the class of all µ ∈M
for which Iµ is non-empty.

For µ ∈ M∗ let us denote by xµ− and xµ+ the left and the right ends of the
interval Iµ , respectively. Obviously, 0 ≤ xµ− ≤ xµ+ ≤ +∞ . When xµ− < xµ+ , the
concavity condition is equivalent to the combination of the following conditions:
the function log µ(x) is concave with respect to log x (and therefore continuous)
in the interval (xµ−, x

µ
+) and lower semicontinuous on Iµ . For µ ∈M the limits

(4.1) µ0 := lim
x→0

log µ(x)

log x
, µ∞ := lim

x→+∞
log µ(x)

log x



330 Promarz M. Tamrazov

exist, and we have

µ0 ≥ µ∞, µ0 > −∞, µ∞ < +∞.

In particular, if xµ− > 0 (analogously, if xµ+ < +∞) , then µ0 = +∞ (µ∞ =
−∞ , respectively). When µ0 < +∞ , define the integer m0 by the conditions
m0−1 < µ0 ≤ m0 , and when µ∞ > −∞ , define the integer m∞ by the conditions
m∞ ≤ µ∞ < m∞ + 1.

For every fixed α ∈ R , β ∈ (0,+∞) , the function µ(x) := βxα belongs
to M∗ , and for it we have µ0 = µ∞ = α . If, moreover, α is an integer, then
m0 = m∞ = α .

Now we introduce fine analogues of some notions from [T4], [T5], [T8], [T11].
Let G be a finely open set in C and a ∈ CG be a fixed point. For a function

h: G→ C let us denote:

(4.2) ha,G,f :=





fine lim sup ζ→a, ζ∈G
log |h(ζ)|∣∣log |ζ − a|

∣∣ when a ∈ ∂fG,

0 when a /∈ ∂fG,

(4.3) h∞,G,f :=





fine lim sup ζ→∞, ζ∈G
log |h(ζ)|

log |ζ| when ∞ ∈ ∂fG,

0 when ∞ /∈ ∂fG.

Given functions p: X → C and q: X → C on a set X ⊂ C and a finely limit
point w for X , we use the following notation. If there exist a finite number l ≥ 0
and a fine neighbourhood U of w for which |p(z)| ≤ l|q(z)| for all z ∈ X ∩U , we
write

p(z) = fineO
(
q(z)

)
(z → w, z ∈ X),

and if for every ε > 0 there exists a fine neighbourhood U of w for which |p(z)| ≤
ε|q(z)| for all z ∈ X ∩ U , then we write

p(z) = fine o
(
q(z)

)
(z → w, z ∈ X).

4.1. Local results. Let G ⊂ C be a finely open set, h: G→ C be a finely
holomorphic function, and µ ∈M . Consider the following conditions:

(A,∞) ∞ ∈ b(CG) and for every finely connected component T of G with
∞ ∈ b(T ) there holds h∞,T,f < +∞ ;

(B,∞) ∞ /∈ b(CG) , µ∞ > −∞ and

(4.1.1) h(ζ) = fine o(|ζ|m∞+1) (ζ →∞, ζ ∈ G);

(B0,∞) ∞ /∈ b(CG) , µ∞ ≥ 0 and (4.1.1) is true.
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If z ∈ C is a fixed point, then we consider also the following conditions:

(A, z) z ∈ b(CG) and for every finely connected component T of G with z ∈
b(T ) there holds hz,T,f < +∞ ;

(B, z) z /∈ b(CG) , µ0 < +∞ and

(4.1.2) h(ζ) = fine o(|ζ − z|m0−1) (ζ → z, ζ ∈ G);

(B1, z) z /∈ b(CG) , µ0 ≤ 1 and (4.1.2) is true.

Using this notation and (2.2), we get the following statement.

Theorem 1. Let a ∈ C be a fixed point; G ⊂ C \ {a} be a finely open set;
µ ∈M ; h: G→ C be a finely holomorphic function for which

(4.1.3) h̄G,f (z) ≤ µ(|z − a|) for all z ∈ (∂fG) \ {a}.

Denote z1 := a , z2 :=∞ and suppose that for each s = 1, 2 (independently from
each other) one of the conditions (A , zs ) or (B , zs ) is satisfied. Then one and only
one of the following two possibilities holds: either the inequality

(4.1.4) |h(ζ)| ≤ µ(|ζ − a|) for all ζ ∈ G,

or the following exceptional case:

G = C \ {a}, µ(x) = βxm for all x > 0, h(ζ) = c(ζ − a)m for all ζ ∈ G,

m is an integer and β ≥ 0 , c ∈ C are constants with |c| > β .

Remark 3. For every fixed s = 1, 2 the following statements are true.
(a) If there exists a finely connected component T of G with zs ∈ b(T ) , then

the conditions zs ∈ b(CT ) and zs ∈ b(CG) are equivalent.
(b) zs ∈ b(CG) if and only if for every finely connected component T of G

we have zs ∈ b(CT ) .
(c) If zs /∈ b(CG) , then there exists one and only one finely connected com-

ponent T of G with zs ∈ b(T ) , and for this T we have zs /∈ b(CT ) .
(d) The condition (B, zs) implies the inequality hzs,G,f < +∞ .
(e) If zs /∈ b(CG) , then the condition (B, zs) in Theorem 1 may not be

omitted, and fine o( · ) in it may not be replaced by fineO( · ) .

Theorem 1 is a particular case of the following extended statement.

Theorem 2. Let a ∈ C be a fixed point; G ⊂ C \ {a} be a finely open

set; Q be a set contained in ∂fG and containing the points a and ∞ ; µ ∈
M ; h: G → C be a finely holomorphic function. Suppose that for every finely
connected component T of G the following conditions are satisfied:

(a2) h̄T,f (z) < +∞ for all z ∈ (∂fT ) \ {a};
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(b2) h̄T,f (z) ≤ µ(|z − a|) for all z ∈ (∂fT ) \Q;

(c2) Q is nearly negligible relative to T ;

(d2) ha,T,f < +∞, h∞,T,f < +∞.
Then the function h(ζ) is bounded both on every part of G separable from a

and ∞ , and on every finely connected part of G finely separable from a and ∞ .
Denote z1 := a , z2 := ∞ and suppose that for each s = 1, 2 (independently

from each other) one of the conditions (A , zs ) or (B , zs ) is satisfied.
Under these assumptions one and only one of the following two possibilities

holds—either (4.1.4), or the following exceptional case: Q = C \G,Q is polar,

µ(x) = βxm for all x > 0, h(ζ) = c(ζ − a)m for all ζ ∈ G,
m is an integer and β ≥ 0 , c ∈ C are constants with |c| > β .

4.2. Global results.

Theorem 3. Let G ⊂ C be a finely open set; µ ∈M ; h: G̃ ∩C → C be a
function finely holomorphic in G and satisfying the condition

(4.2.1) |h(ζ)− h(z)| ≤ µ(|ζ − z|) for all z, ζ ∈ ∂fG, z 6= ζ.

Let one of the conditions (A,∞) or (B0,∞) be satisfied for the restriction of h
onto G (instead of h). Suppose also that for every finely connected component T

of G the restriction of h onto T̃ ∩C is finely continuous.
Under these assumptions we have

(4.2.2) |h(ζ)−h(z)| ≤ µ(|ζ− z|) for all z ∈ (∂fG)r, for all ζ ∈ G̃∩C, z 6= ζ.

Remark 4. Theorem 3 remains true if we require the inequality in (4.2.1) to
be valid only for z ∈ (∂fG)r (not for all z ∈ ∂fG).

Theorem 4. Let G , µ , h satisfy all assumptions of Theorem 3. Additionally
suppose that z0 ∈ (CG)i ∪G is a fixed point, µ0 < +∞ and

(4.2.3) |h(ζ)− h(z0)| = fine o(|ζ − z0|m0−1
) (ζ → z0, ζ ∈ G).

Then one and only one of the following two possibilities holds: either the inequality

(4.2.4) |h(ζ)− h(z0)| ≤ µ(|ζ − z0|) for all ζ ∈ G̃ \ {z0,∞},
or the following exceptional case:

(∂fG)r = ∅, µ(x) = βxm for all x > 0, h(ζ) = c(ζ − z0)m + b for all ζ ∈ C,

m ≥ 1 is an integer and β ≥ 0 , c ∈ C , b ∈ C are constants with |c| > β ; when
m = 1 or z0 ∈ (CG)i , then the set CG contains at most one point and

|h(ζ)− h(z0)| > µ(|ζ − z0|) for all ζ ∈ C.

From Theorems 3 and 4 the following global contour-solid result follows.
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Theorem 5. Let G , µ , h satisfy all assumptions of Theorem 3. Additionally
suppose that µ0 ≤ 1 . Then one and only one of the following two possibilities
holds: either the inequality

(4.2.5) |h(ζ)− h(z)| ≤ µ(|ζ − z|) for all z, ζ ∈ G̃ ∩C, z 6= ζ,

or the following exceptional case: CG contains at most one point,

µ(x) = βx for all x > 0, h(ζ) = c ζ + b for all ζ ∈ C

and β ≥ 0 , c ∈ C , b ∈ C are constants with |c| > β .

In the next theorem the requirement µ0 ≤ 1 is omitted, but instead a certain
fine continuity condition for the function h(ζ) is assumed at ∞ .

Theorem 6. Let G , µ , h satisfy all assumptions of Theorem 3. If ∞ ∈ G̃ ,
additionally suppose that h can be extended to ∞ in such a way that the extended
function h̃ satisfies the following hypothesis: the restriction h̃|

T̃
of h̃ to T̃ is finely

continuous (and finite) at ∞ for every finely connected component T of G with

∞ ∈ T̃ . Under these assumptions the inequality (4.2.5) is true.

4.3. Difference maximum principle for finely holomorphic functions.
We establish and use the following maximum principle for the difference of values
of a finely holomorphic function which is a purely fine analogue and refinement of
the corresponding results from [T5], [T11], [TS3].

Lemma 2. Let D ⊂ C be a finely open set; p: D̃ → C be a non-constant
function, finely holomorphic in D and satisfying the following assumption: the
restriction p|

T̃
of p to T̃ is finely continuous for every finely connected component

T of D . Then the set (∂fD)r is non-empty and for every δ > 0 we have

(4.3.1) sup
z∈(∂fD)r

sup
ζ∈D̃, |ζ−z|=δ

|p(ζ)− p(z)| = sup
ζ,z∈D̃, |ζ−z|=δ

|p(ζ)− p(z)|.

5. Contour-solid theorems for finely hypoharmonic functions

5.1. In [T7] (see also [T9], [T10], [T12]) we had introduced the following
notions. Let L be the class of all functions λ: (0,+∞) → [−∞,+∞) for each
of which the set Iλ := {x : λ(x) > −∞} is connected and the restriction of λ
to Iλ is concave with respect to log x . Let L∗ be the class of all λ ∈ L for
which Iλ is non-empty. For λ ∈ L∗ let us denote by x−λ and x+

λ , respectively,
the left and the right ends of the interval Iλ . Obviously, 0 ≤ x−λ ≤ x+

λ ≤ +∞ .
When λ( · ) runs through the classes L or L∗ , the function expλ( · ) runs through
the classes M or M∗ , respectively. When x−λ < x+

λ , the concavity condition is
equivalent to the combination of the following conditions: the function λ(x) is
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concave with respect to log x (and therefore continuous) in the interval (x−λ , x
+

λ)
and lower semicontinuous on Iλ . For λ ∈ L the limits

(5.1) λ0 := lim
x→0

λ(x)

log x
, λ∞ := lim

x→+∞
λ(x)

log x

exist, and we have

λ0 ≥ λ∞, λ0 > −∞, λ∞ < +∞.

For every fixed α ∈ R, θ ∈ R the function λ(x) := α log x+ θ belongs to L∗ ,
and for it we have λ0 = λ∞ = α .

Let G be a finely open set in C , and u be a function finely hypoharmonic
in G . Then for ζ ∈ G we denote

γG(u, ζ) := inf
v
{v(ζ) : v finely hyperharmonic in G, v ≥ u in G}.

Clearly, u( · ) ≤ γG(u, · ) . If γG(u, · ) < +∞ , then on the basis of Lemma 10.3
and Theorems 9.14 and 12.9 from [F1, pp. 103–104, 96, 158] one can show that
γG(u, ζ) is finely hypoharmonic in G , and for every finely connected component
T of G the following alternative holds: either γG(u, ζ) = u(ζ) = −∞ in T , or the
functions γG(u, ζ) and u(ζ) are finely subharmonic in T and γG(u, ζ) is finely
harmonic on the set {ζ ∈ T : γG(u, ζ) 6= −∞} .

Let a ∈ CG be a fixed point.
Now we are going to introduce the following fine analogues of some notions

from [T4], [T7], [T9], [T10], [T12].
Let us denote

(5.2) uaG,f :=





fine lim sup ζ→a, ζ∈G
u(ζ)∣∣log |ζ − a|

∣∣ when a ∈ ∂fG,

0 when a /∈ ∂fG,

(5.3) u∞G,f :=





fine lim sup ζ→∞, ζ∈G
u(ζ)

log |ζ| when ∞ ∈ ∂fG,

0 when ∞ /∈ ∂fG,

MG,a(u, r) := inf
p,q

{
p log r + q : p ∈ (−∞,+∞), q ∈ (−∞,+∞],

u(ζ) ≤ p log |ζ − a|+ q for all ζ ∈ G
}

(0 < r < +∞).

Obviously, the following alternative holds: either

MG,a(u, r) = +∞ for all r > 0,
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or

MG,a(u, r) < +∞ for all r > 0.

If the latter case holds true, the function MG,a(u, r) of r > 0 belongs to the
class L . Suppose that MG,a(u, · ) 6≡ −∞ , and denote by r− and r+ the left and
the right ends of the maximal interval where this function is > −∞ . Then the
function ζ 7→ MG,a(u, |ζ − a|) is superharmonic under r− < |ζ − a| < r+ , and
MG,a(u, |ζ − a|) = −∞ under |ζ − a| < r− and under |ζ − a| > r+ . Furthermore,
in this case u has in G a finely harmonic majorant and

(5.4) u(ζ) ≤ γG(u, ζ) ≤MG,a(u, |ζ − a|) for all ζ ∈ G.

These inequalities are valid also in the case when MG,a(u, |ζ − a|) ≡ −∞ .
Denote

%− := inf
ζ∈G
|ζ|, %+ := sup

ζ∈G
|ζ|.

Then

%− ≤ r− ≤ r+ ≤ %+.

Let λ ∈ L . Consider the following conditions:

(A′,∞) ∞ ∈ b(CG) and for every finely connected component T of G with
∞ ∈ b(T ) there holds u∞T,f < +∞ ;

(B′,∞) ∞ /∈ b(CG) and there exist a constant t ∈ R and a fine neighbourhood
V of ∞ for which

(5.5) u(ζ) ≤ λ(|ζ − a|) + t for all ζ ∈ G ∩ V ;

(A′, a) a ∈ b(CG) and for every finely connected component T of G with a ∈
b(T ) there holds uaT,f < +∞ ;

(B′, a) a /∈ b(CG) and there exist a constant t ∈ R and a fine neighbourhood
V of a for which

(5.6) u(ζ) ≤ λ(|ζ − a|) + t for all ζ ∈ G ∩ V.

5.2. Using this notation and (2.1), we get the following result.

Theorem 7. Let a ∈ C be a fixed point; G ⊂ C \ {a} be a finely open set;
λ ∈ L ; u: G→ [−∞,+∞) be a finely hypoharmonic function for which

ǔG,f (z) ≤ λ(|z − a|) for all z ∈ (∂fG) \ {a}.

Denote z1 := a , z2 :=∞ and suppose that for each s = 1, 2 (independently from
each other) one of the conditions (A′, zs) or (B′, zs) is satisfied. Then u has in G
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a finely harmonic majorant, and one and only one of the following two possibilities
holds true: either the estimates

(5.7) u(ζ) ≤ γG(u, ζ) ≤ λ(|ζ − a|) for all ζ ∈ G,

or the following exceptional case: G = C \ {a} and

(5.8) u(ζ) = γG(u, ζ) = MG,a(u, |ζ − a|) = ν log |ζ − a|+ t for all ζ ∈ G,

(5.9) λ(x) = ν log x+ l for all x > 0

with constants ν, t ∈ R , l ∈ [−∞, t) .
Moreover, if the exceptional case is not valid, then one of the following two

possibilities holds true: either

(5.10) MG,a(u, r) = −∞ for all r > 0,

or λ ∈ L∗, x−λ < x+

λ and

u(ζ) = γG(u, ζ) = −∞ for all ζ ∈ G : |ζ − a| /∈ (x−λ , x
+

λ),(5.11)

MG,a(u, r) ≤ λ(r) for all r : x−λ 6= r 6= x+

λ ,(5.12)

MG,a(u, r) = −∞ for all r /∈ [x−λ , x
+

λ ].(5.13)

Remark 5. For every fixed s = 1, 2 the following statements are true.
(a)–(c) The same as (a)–(c) in Remark 3.
(d) The condition (B′, zs) implies the inequality uzsG,f < +∞ .
(e) If zs /∈ b(CG) , then the condition (B′, zs) in Theorem 7 may not be

omitted.
(f) Now suppose that there exist more than one finely connected components

T of G with zs ∈ b(T ) . Then for every such T we have zs ∈ b(CT ) , and in
Theorem 7 in this case we may assume the condition uzsT,f < +∞ for all such T
instead of the alternative containing the conditions (A′, zs) and (B′, zs) .

Theorem 7 is contained in the following more general and sharper theorems.

Theorem 8.1. Let a ∈ C be a fixed point; G ⊂ C \ {a} be a finely open

set; Q be a set contained in ∂fG and containing the points a and ∞ ; λ ∈ L ;
u: G → [−∞,+∞) be a finely hypoharmonic function. Suppose that for every
finely connected component T of G the following conditions are satisfied:

ǔT,f (z) < +∞ for all z ∈ (∂fT ) \ {a};(a8)

ǔT,f (z) ≤ λ(|z − a|) for all z ∈ (∂fT ) \Q;(b8)

(c8) Q is nearly negligible relative to T ;

uaT,f < +∞, u∞T,f < +∞.(d8)

Then u(ζ) is upper bounded both on every part of G separable from a and ∞ ,
and on every finely connected part of G finely separable from a and ∞ .
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For G , a , u , λ under consideration and s = 1, 2 we introduce the quantities
σsf = σsf (G, a, u, λ) defined by the following conditions. If λ ∈ L∗ , then we denote

(5.14) σ1
f :=

{(
u( · )− λ(| · −a|)

)a
G,f

when x−λ = 0,

0 when x−λ > 0,

(5.15) σ2
f :=

{(
u( · )− λ(| · −a|))∞G,f when x+

λ = +∞,
0 when x+

λ < +∞.

If λ ≡ −∞ , then we assume

(5.16) σ1
f = σ2

f = 0.

For λ ∈ L∗ the following equalities are valid: if λ0 6= +∞ , then σ1
f = uaG,f + λ0 ,

and if λ∞ 6= −∞ , then σ2
f = u∞G,f − λ∞ .

Theorem 8.2. Let a ∈ C be a fixed point; G ⊂ C \ {a} be a finely

open set; Q be a set contained in ∂fG and containing the points a and ∞ ;
λ ∈ L ; u: G → [−∞,+∞) be a finely hypoharmonic function. Suppose that for
every finely connected component T of G the conditions (a8)–(c8) of Theorem 8.1
are satisfied. Denote z1 := a , z2 := ∞ and suppose that for each s = 1, 2
(independently from each other) one of the conditions (A, zs) or (B, zs) is valid.
Then u has in G a finely harmonic majorant, and one and only one of the following
two possibilities holds true: either the estimates (5.7) and

(5.17) −∞ ≤ σ1
f ≤ 0, −∞ ≤ σ2

f ≤ 0,

or the following exceptional case: Q = C \ G , Q is polar and (5.8), (5.9) hold
with constants ν, t ∈ R , l ∈ [−∞, t) .

Theorem 8.3. Let all assumptions of Theorem 8.2 be satisfied, but its
exceptional case and (5.10) be not valid. Then λ ∈ L∗ , x−λ < x+

λ and (5.11)–
(5.13) are true. Moreover, for every finely connected component T of G we have
either

(5.18) u(ζ) = γG(u, ζ) = −∞ for all ζ ∈ T,

or

(5.19) λ(|ζ − a|) > −∞ for all ζ ∈ T.

For any finely open set G ⊂ C with a non-polar complement CG , and w ∈ C ,
ζ ∈ G , w 6= ζ , there exists the Green’s function gG(w, ζ) , and it satisfies the
equality

gG(w, ζ)− gG(∞, ζ) =

∫
log

∣∣∣∣
w − z
w − ζ

∣∣∣∣ dωGζ (z).
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Let us make the following agreements concerning possible indefinite commu-
tative expressions:

(5.20) ∞ · 0 = 0, −∞+∞ = −∞.

Theorem 8.4. Let the assumptions and notation of Theorem 8.2 be valid.
Suppose that CG is non-polar. Then for every finely connected component T of
G we have

(5.21) γG(u, ζ) ≤ λ(|ζ − a|) +
2∑

s=1

σsfgG(zs, ζ) for all ζ ∈ T,

(5.22) MG,a

(
u( · )−

2∑

s=1

σsfgG(zs, · ), |ζ − a|
)
≤ λ(|ζ − a|) for all ζ ∈ T.

If there is a point zs not in b(CT ) and σsf = −∞ for it, then (5.18) is true.

Theorems 1–8.4 are purely fine refinements and extensions of results from
[T4]–[T12], [TS1]–[TS3]. In particular, in our present notation, results given in
[TS1]–[TS3] were established under additional requirements among which there
were the following: the restrictions onto a finely hypoharmonic function u to be
upper bounded on each part of G separable from the points ∞ and a , see [TS1],
[TS2]; the restriction onto a finely holomorphic function h to be bounded on each
part of G separable from the points ∞ and a , see Theorem 2 of [TS3] which is
the most general result of that work (the latter restriction concern also Theorem 1
of [TS3] which is a particular case of Theorem 2 of that paper, but the formulation
of Theorem 1 of [TS3] missed out the restriction mentioned above).

We use the term solid inequalities for naming the estimates for functions in G
and on G̃ given by theorems of the type under consideration. The question about
the equality sign in solid inequalities at a finely inner point of G is treated in [TS2],
[TS3] (see also [T7], [T9]–[T12] concerning the same questions for holomorphic and
hypoharmonic functions in standard open sets).

6. On assumptions of contour-solid theorems and examples

Up to what extent are the assumptions of the above theorems essential and
needed? To get an idea on the answer to this question, we may restrict ourselves
by the following statements concerning holomorphic functions in open sets (see
[T4]–[T6], [T8], [T11]).

Let µ: (0,+∞) → [0,+∞) be an arbitrary function. If for such a µ the
inequality (4.1.4) of Theorem 1 holds with every G , a and h under consideration,
then µ ∈ M (see [T11] and a reference given there). It is the case even if we
consider only disks G or points a ∈ ∂G .
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This shows that the assumption µ ∈ M is not only sufficient in Theorems 1
and 2, but it is also necessary for them to be valid. Hence M is the natural,
maximal class of majorants for the problems in question.

Denote G0 := {ζ : 0 < |ζ| < 1} , G′0 := {ζ ∈ G0, arg ζ 6= π} , G∞ := {ζ : 1 <
|ζ| < +∞} , G′∞ := {ζ ∈ G∞, arg ζ 6= π} . Let us consider the following examples
in which β > 0 is a constant.

Example 1. G := G′0 , µ(x) := βx .
Example 2. G := G′∞ , µ(x) := βx .
Example 3. G := G0 , µ(x) := βxm , m is an integer.
Example 4. G := G∞ , µ(x) := βxm , m is an integer.
For Example 1 (similarly, Example 2) with β := e , a := 0 and the function

h(ζ) := e1/ζ(h(ζ) := eζ , respectively) the assertion of Theorem 1 fails because of
the equality ha,G,f = +∞ (h∞,G,f = +∞ , respectively), while all other assump-
tions of this theorem are satisfied.

For Example 3 (similarly, Example 4) with β := 1, a := 0 and the func-
tion h(ζ) := ζm−1 (h(ζ) := ζm+1 , respectively) the assertion of Theorem 1 fails
because of the lack of the assumption (4.1.2) for z = 0 ((4.1.1) for z =∞ , respec-
tively), while all other assumptions of this theorem are fulfilled and instead of the
condition (4.1.2) ((4.1.1), respectively) a similar condition with the replacement
of fine o( · ) by O( · ) holds true.

Concerning Theorem 3 we state the following. The assumption (4.1.1) may
not be omitted from the condition (B,∞) . This is seen from the following example.

Example 5. Let ∂G consist of the points z = 0 and z = 2−k , when k
runs over all positive integers, and G = C \ ∂G . Let m > 0 be an integer and
µ(x) = xm/2 , h(ζ) = ζm .

In (4.2.2) we may not replace the string “for all z ∈ (∂fG)r ” by the string

“for all z ∈ G̃” or even by “for all z ∈ ∂fG”. This is seen from the following
example.

Example 6. Let ∂G consist of the points z = 0 and z = 2k , when k runs
over all integers, and G = C \ ∂G . Let m ≥ 2 be an integer and µ(x) = (2x)m ,
h(ζ) = ζm . Then µ∞ = m and all assumptions of Theorem 3, including (4.2.1),
are satisfied. But for any z ∈ G \ {0} the analogue of (4.2.2) fails.

Concerning Theorem 4, one may state the following. In its exceptional case
under m > 1, the cardinal number of the set C \ G can take any of the values
0, 1, . . . ,m (for instance, G = C\{z0+exp(2πik/m)}k∈K where K is an arbitrary
subset of the sequence 0, 1, . . . ,m) and even greater values.

If µ0 ≤ 1, the condition (4.2.3) is automatically satisfied.
Example 6 shows that in Theorem 6 the fine continuity assumption (including

the finiteness requirement) for h at z =∞ may not be omitted.
From the same example we see that in Theorem 5 the condition µ0 ≤ 1 may

not be omitted.
In this respect, in the case µ0 > 1, it is interesting to know what condi-

tions guarantee that (4.2.1) implies (4.2.2) at least for z , ζ close to each other.
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Concerning the answer to this question see [T11].

7. On cluster properties of holomorphic and
finely holomorphic functions

Using our preceding contour-solid theorems for (usual) holomorphic functions,
earlier we had established the following extension of the Iversen–Tsuji theorem.

Theorem 9. Let D ⊂ C be an open set, Q ⊂ ∂D be a set nearly negligible
relative to D , a ∈ Q be a fixed limit point for the set (∂D) \Q . Let φ: D → C
be a holomorphic function. Denote

φ̄D(z) := lim sup
ζ→z, ζ∈D

|φ(ζ)| (z ∈ ∂D),

φ̄D
(
a, (∂D) \Q)

)
:= lim sup

z→a, z∈(∂D)\Q
φ̄D(z).

Suppose that
φ̄D(z) < +∞ for all z ∈ (∂D) \ {a}

and for every connected component T of D with a ∈ ∂T there exist a neigh-
bourhood V of the point a and a rational function majorizing |φ| in T ∩ V .
Then

φ̄D(a) = φ̄D
(
a, (∂D) \Q

)
.

In [T13] and [T14] this result was given under the traditional assumption that
the function φ is bounded in a neighbourhood of the point a , and there it was
also remarked that such an assumption was assumed in the whole paper only for
simplicity of formulations. As a matter of fact, we had avoided this assumption
on the basis of our Theorems 3 and 3∗ from [T5] (see also [T8], [T11]).

Now we have established the following fine analogue of this result on the basis
of Theorem 2 of the present work, using the notation (2.2).

Theorem 10. Let D ⊂ C be a finely open set, Q ⊂ ∂fD be a set nearly
negligible relative to D , a ∈ Q be a fixed finely limit point for the set (∂fD) \Q .
Let φ: D → C be a finely holomorphic function. Denote

φ̄D,f
(
a, (∂fD) \Q)

)
:= inf

U

{
sup

z∈U∩(∂fD)\Q
φ̄D,f (z), U a fine neighbourhood of a

}
.

Suppose that
φ̄D,f (z) < +∞ for all z ∈ (∂fD) \ {a}

and for every finely connected component T of D with a ∈ ∂fT there exist a fine
neighbourhood V of the point a and a rational function majorizing |φ| in T ∩V .
Then

φ̄D,f (a) = φ̄D,f
(
a, (∂fD) \Q

)
.

Theorems 9 and 10 have various consequences for cluster sets of meromorphic
and finely meromorphic functions.
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8. More lemmas and proofs of lemmas

Let D be a finely open set in C and z ∈ ∂ fD . For any function v: D →
[−∞,+∞] denote

(8.1) fine lim inf ζ→z, ζ∈Dv(ζ) =: (v)̂ D,f (z) =: v̂D,f (z).

We establish the following statement.

Lemma 3. Let T be a fine domain in C with a non-polar complement and

Z a non-empty subset of the fine boundary ∂ fT such that the harmonic measure
ωTx (Z) is zero at some fixed point x ∈ T . Then there exists a finely superharmonic
function v: T → (0,+∞] for which v(x) = 1 and

(8.2) v̂T,f (z) = +∞ for all z ∈ Z.

Proof. Denote ∂ fT =: X and let χ: X → [−∞,+∞] be any numerical
function. Denote by χ∗(χ∗) the pointwise infimum (supremum) of all fine super-
functions (fine subfunctions) for χ relative to T , see [F1, pp. 173–177]. Then
χ∗ ≤ χ∗ in T (this follows from Theorem 14.6 of [F1], but this can be shown also
on the basis of Theorem 9.1 of [F1]).

Let now χ be the characteristic function of the set Z . Then χ∗ ≥ 0 because
the function identically equal to zero in T is a subfunction for χ relative to T ,
and hence χ∗ ≥ 0.

Since ωTx (Z) = 0, for any k ∈ N there exists a fine superfunction wk for χ
relative to T with

(8.3) wk(x) < 2−k.

From the definition of fine superfunctions there follows that wk(x) is finely hyper-
harmonic in T and in the notation (8.1) the following inequality holds:

(8.4) (wk )̂ T,f (z) ≥ 1 for all z ∈ Z.

We have also wk ≥ χ∗ ≥ 0 and from (8.4) we see that wk > 0. Then the
function

(8.5) w(ζ) :=
∑

k∈N

wk(ζ)

is finely hyperharmonic in T because it is a pointwise limit of an increasing se-
quence of finely hyperharmonic functions (see Corollary 2 from [F1, p. 84]). From
(8.3)–(8.5) we get w > 0, w(x) < 1 and (8.2). Therefore (see Theorem 12.9 from
[F1, p. 158]) w is finely superharmonic in T .

From the above assertions we see that the function v := w/w(x) possesses all
properties being stated in the lemma. Lemma 3 is proved.
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It has the following extension for higher dimensions.

Lemma 3n . Let T be a fine domain in Rn with a non-polar complement,
let Z ⊂ ∂fT be a non-empty set whose (generalized) harmonic measure ωTx (Z) is
zero at some fixed point x ∈ T . Then there exists a finely superharmonic function
v: T → (0,+∞] for which v(x) = 1 and

v̂T,f (z) := fine lim inf ζ→z, ζ∈T v(ζ) = +∞ for all z ∈ Z.

The proof is completely analogous.

Lemma 3 is used for proving Lemma 1.

Proof of Lemma 1. Irregular points of ∂ fD form a polar set
(
∂ fD

)
i

=: S ,
and because of (3.1) the function u has a finely hypoharmonic extension (see [F1,
p. 96]) to a regular finely open set D∪S =: Dr (see [F1, pp. 34, 149]). So without
loss of generality we may assume that u is defined and finely hypoharmonic in the
regular finely open set Dr and E ∩ Dr = ∅ . Then from (3.2) there follows that

under this new setting we have either ( ∂ fD
r) \ E 6= ∅ , or u(z0) ≤ 0 at some

point z0 ∈ Dr .
Now let us use the specific properties of the 2-dimensional fine potential

theory.

If Dr = C , then because of [F2, Theorem 2.2] the function u is hypoharmonic

in C , therefore it is constant, and the above inequality u(z0) ≤ 0 holds at some
point z0 and implies the inequality u ≤ 0 in Dr .

Let now Dr 6= C . Then the sets C \Dr =: F r and D̃r are bases (see [F1,

pp. 34, 149]). We have also ∂ fD
r = D̃r ∩ F̃ r ; this set is a base and therefore it

is non-polar (see [F1, p. 149]). Moreover, Dr , D̃r , F r , C \ D̃r and ∂ fD
r are

Borel sets (see [B, Chapter VII.3], [F1, p. 27]).
Fix any finely connected component T of the set Dr and any point x ∈ T .

Clearly the set E is nearly negligible relative to T as well. Denote ∂ fT =: Y .
If the set E ∩ Y is finely closed and non-empty, then ωTx (E ∩ Y ) = 0 and we

consider the finely superharmonic function v: T → (0,+∞] from Lemma 3 with
v(x) = 1 and

v̂T,f (z) = +∞ for all z ∈ E ∩ Y.
If E ∩ Y is empty, then we assume v ≡ 0.

Fix any ε > 0. In any of these cases the function wε := u − εv is finely
hypoharmonic in T , and in the notation of (2.1) and (8.1) applied to T and the
functions wε , u , v , one can show that

(wε)̌ T,f (z) ≤ u Ť,f (z)− εv̂T,f (z) ≤ 0 for all z ∈ Y.

Now we use the known result mentioned in Remark 2 (in [F2, p. 82] it is given under
the additional restriction that a finely open set under consideration is bounded;
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but in fact this extra restriction is unnecessary). On the basis of this deep result
we get wε ≤ 0, u(x) ≤ εv(x) . Letting ε→ 0 in the last inequality, we prove that
u(x) ≤ 0.

Since x is an arbitrary point of T , we have also u(ζ) ≤ 0 for all ζ ∈ T .
If the set E ∩ Y is not finely closed, we fix any ε > 0 and consider the

hypoharmonic function uε(ζ) := u(ζ)− ε in T and the set Tε := {ζ ∈ T : u(ζ) ≥
ε} finely closed in T . Suppose that Tε 6= ∅ . Denote ∂ fTε =: Yε . We have
Yε ⊂ T ∪ Y . If z1 ∈ T ∩ Yε , then both z1 ∈ Tε and u(z1) ≤ ε (the latter because
otherwise the finely continuous function u is strictly greater than ε in a fine
neighbourhood of z1 , and then z1 is a finely inner point of Tε , which contradicts
our assumption). Hence u(z1) = ε . Denote Y ∩ Yε =: Eε . Let now z2 ∈ Eε .
Then z2 ∈ E . Consequently, Eε ⊂ E . The set Eε is finely closed. Therefore
ωTx (Eε) = 0. Obviously,

(uε)̌ T,f (z) < +∞ for all z ∈ Y

and

(uε)̌ T,f (z) ≤ 0 for all z ∈ Y \ Eε.

Therefore from the assertion proved above we get uε ≤ 0 in T , u ≤ ε in T .
Letting ε→ 0, we get u ≤ 0 in T .

Since T is an arbitrary finely connected component of Dr , u ≤ 0 in D . So
Lemma 1 is proved.

Proof of Lemma 2. The set
(
∂ fD

)
i

is polar, and p is finely holomorphic in

the set D ∪
(
∂ fD

)
i

because of [F6, p. 62]. Therefore without loss of generality

we assume that
(
∂ fD

)
i

= ∅ .

Let us suppose that (∂fD)r = ∅ . Then D̃ = C and p is finite and finely holo-

morphic in C . Hence p is holomorphic in C (see [F6, p. 63]) which contradicts
the condition p 6≡ const. Thus (∂fD)r 6= ∅ .

Fix any δ > 0. Let us denote by A(δ) and B(δ) the left-hand and the right-
hand sides, respectively, of the equality (4.3.1). Obviously A(δ) ≤ B(δ) . Let us

suppose that A(δ) < B(δ) . Then there exist points ζ1, ζ2 ∈ D̃ for which

|p(ζ1)− p(ζ2)| > A(δ), |ζ1 − ζ2| = δ.

If at least one of the points ζ1 , ζ2 belongs to ∂fD , then it belongs to (∂fD)r as
well according to the above assumption. Hence the last inequality contradicts the
definition of A(δ) . It means that ζ1, ζ2 ∈ D .

Let us denote by D1 and D2 finely connected components of D containing
the points ζ1 and ζ2 , respectively. For every n = 1, 2 let us denote Dn := {ζ ∈
C : ζ + ζn ∈ Dn} . The function φ(ζ) := |p(ζ + ζ1) − p(ζ + ζ2)| is well-defined,
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finite and finely continuous on the set F := D̃1 ∩ D̃2 . Clearly φ(0) > A(δ) . Set
1
2

(
A(δ) + φ(0)

)
=: t . It follows that φ(0) > t > A(δ) ≥ 0.

If F contains the point ∞ , then φ(∞) = 0 and there is a fine neighbourhood
V of ∞ such that

(8.6) φ(ζ) < 1
2 t for all ζ ∈ F ∩ V.

The finely open set D0 := D1 ∩D2 contains the point ζ = 0, D0 ⊂ F and φ(ζ)

is finely subharmonic in D0 and finely continuous in D̃0 (⊂ F̃ ).
Let D∗ be that finely connected component of the finely open set {ζ ∈ D0 :

φ(ζ) > t} which contains the point ζ = 0. We have D̃∗ ⊂ F̃ and

φ(ζ) ≥ t for all ζ ∈ D̃∗.

Notice also that D̃∗ = D∗ , and hence D̃∗ is a closed connected set.
If D∗ is unbounded, then D̃∗ contains the point ∞ , and φ(∞) = 0. In

this case D̃∗ intersects V and because of (8.6) the inequality φ(ζ) ≤ 1
2 t (< t)

must be valid on the non-empty set D∗∩V which contradicts the above oppposite
estimate. Hence, the fine domain D∗ is bounded.

Let z ∈ ∂fD∗ . If for the fixed z at least one of two points z + ζ1 or z + ζ2
belongs to (∂fD)r , then φ(z) ≤ A(δ) < t . Otherwise z ∈ D0 ∩ ∂fD∗ , and then
φ(z) = t . Because of Lemma 1, it follows that φ(ζ) ≤ t in D∗ . But this is in
contradiction with the above inequality φ(0) > t . This proves the equality (4.3.1).
Lemma 2 is proved.

Let B ⊂ C be a bounded finely open set, t ∈ (0, 1), w, z ∈ C , lt(w, z) :=
log max{t, |w − z|} and

(8.7) HB

(
lt(w, · ), ζ

)
:=

∫
lt(w, x) dωBζ (x).

Since B is bounded, the Green’s function satisfies the equalities

gB(∞, ζ) = 0 for all ζ ∈ B,

gB(w, ζ) =

∫
log

∣∣∣∣
w − z
w − ζ

∣∣∣∣ dωBζ (z) for all ζ ∈ B.(8.8)

We use the following lemma (cf. [T7], [T9], [T10], [T12], [TS1]–[TS3]).

Lemma 4. For every ζ, w ∈ C the limit

(8.9) lim
t→0

HB

(
lt(w, · ), ζ

)
=: hB(w, ζ)

exists, is (finely) subharmonic with respect to w ∈ C , finely subharmonic with
respect to w ∈ B and satisfies the equation

(8.10) hB(w, ζ)− gB(w, ζ) = log |w − ζ| for all ζ ∈ B, for all w ∈ C.
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Proof. For every fixed ζ ∈ C the function lt(w, ζ) is subharmonic with
respect to w ∈ C , monotonically decreases and tends to log |w − ζ| when t ↓ 0.
Because of (8.7), the limit (8.9) exists, is hypoharmonic with respect to w ∈ C
and satisfies the equality

hB(w, ζ) =

∫
log |w − z| dωBζ (z) for all ζ ∈ B, for all w ∈ C : w 6= ζ.

From here and (8.8) we get (8.10). Therefore the function hB(w, ζ) is subharmonic
with respect to w ∈ C and finely subharmonic with respect to w ∈ B . Lemma 4
is proved.

9. Proof of Theorems 8.1–8.4

Let us use the notation and assumptions of Section 5.1.

From the definition of λ ∈ L we see that there are σ, ν ∈ R such that

(9.1) λ(x) ≤ ν log x+ σ for all x > 0.

Fix any σ, ν ∈ R for which (9.1) holds. Then from (5.1) we see that

(9.2) λ0 ≥ ν ≥ λ∞.

Denote a =: z1 , ∞ =: z2 . Taking into account (5.2), (5.3), (5.5), (5.6) and
(9.1), we see that any of the conditions (A′, zs) and (B′, zs) implies the inequality
uzsT,f < +∞ for any finely connected component T of G . So, the assumptions of
Theorem 8.2 imply the assumptions of Theorem 8.1.

On the other hand, if for every s = 1, 2 there holds zs /∈ b(CG) , then the
assumptions of Theorem 8.1 imply the assumptions of Theorem 8.2 and are equiv-
alent to them.

For every s = 1, 2 there is at most one finely connected component T of G
with zs /∈ b(CT ) , and we denote this component by Ts . If zs ∈ b(CG) , then we
assume

(9.3) Ts = ∅.

The condition (9.3) is equivalent to the condition zs ∈ b(CG) .

The fine domains T1 and T2 may coincide, but they may differ as well.

Remark 6. With this notation the assumptions of Theorem 8.1 for given G
and u imply that the set G \ (T1 ∪ T2) =: G∗ (as well as any finely connected
component of G∗ ) and the restriction of u to this set satisfy also the assumptions
of both Theorem 8.1 and Theorem 8.2.
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9.1. Let the assumptions of Theorem 8.1 be valid. From (5.2), (5.3) and the
condition (d8) of Theorem 8.1 we conclude that for any finely connected component
T of G and for each s = 1, 2 (independently from each other) one of the following
two possibilities is valid:

(P1) zs ∈ b(T ) and uzsT,f < +∞ ;
(P2) zs /∈ b(T ) .
Fix any finely connected component T of G . In case (P1) there exist a fine

neighbourhood Vs of zs and a constant As > |ν| for which

u(ζ) ≤ As
∣∣log |ζ − a|

∣∣ for all ζ ∈ Vs ∩ T.

Then in any neighbourhood of zs there exists a circle Ks ⊂ Vs of the radius
rs ∈ (0,+∞) centered at a for which

u(ζ) ≤ As| log rs| for all ζ ∈ Ks ∩ T.

The same is true also in case (P2) because then the fine domain T is separable
from zs in the standard topology, and Ks under consideration can be chosen with
the condition Ks ∩ T = ∅ .

Let Us be the closed neighbourhood of zs with the boundary Ks . We may
assume that r1 < 1 < r2 . So we have

(9.1.1) u(ζ) ≤ As
∣∣log |ζ − a|

∣∣ for all ζ ∈ Us ∩ T, for all s = 1, 2.

Fix any constant σ0 > σ such that

σ0 > max
s=1,2

As| log rs|.

From here and (9.1) there follows that the function

v(ζ) := u(ζ)− ν log |ζ − a|

(assumed as u) satisfies in T \ (U1 ∪ U2) (assumed as D ) all assumptions of
Lemma 1 with Q as E . Using this lemma, we consecutively deduce

v(ζ) ≤ σ0 for all ζ ∈ T \ (U1 ∪ U2),

u(ζ) ≤ ν log |ζ − a|+ σ0 for all ζ ∈ T \ (U1 ∪ U2).(9.1.2)

Because of (9.1.1) the circle Ks ⊂ Vs may be chosen in an arbitrary neigh-
bourhood of zs , s = 1, 2, and from (9.1.2) we see that u is upper bounded on
every part of T separable (in the standard topology) from {z1, z2} . It easily
follows that u is also upper bounded on each finely connected part of T finely
separable from {z1, z2} , because the part mentioned is separable from {z1, z2} .
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Remark 7. We have thus proved that Theorem 8.1 is true under the addi-
tional requirement that G is finely connected.

If the statement of Theorem 8.1 is valid for fixed G and u , then there is
q ∈ R such that

(9.1.3) u(ζ) ≤ q for all ζ ∈ G ∩ {ζ : |ζ − a| = 1}.

Thus we have proved that the statement of Theorem 8.1 is true with respect to
every finely connected component of G , including T1 and T2 . Hence it remains
to confirm the statement of Theorem 8.1 with respect to G∗ altogether.

9.2. Additionally assume that for each s = 1, 2 (independently from each
other) one of the conditions (A′, zs) or (B′, zs) is valid (which coincides with
assumptions of Theorem 8.2).

We shall prove that

(9.2.1) u(ζ) ≤ ν log |ζ − a|+ σ for all ζ ∈ G.

9.3. In this section we suppose for a while that for the fixed G and u the
statement of Theorem 8.1 is true (according to Section 9.1, it is the case at least
for finely connected G).

As we concluded in Section 9.1, in this case there is q ∈ R such that (9.1.3)
holds. We may take

(9.3.1). q > |σ|.

Denote

(9.3.2) G ∩ {ζ : |ζ − a| < 1} =: Ga, G ∩ {ζ : |ζ − a| > 1} =: Ga.

First prove that under the condition (9.3.1) there holds

(9.3.3) u(ζ) ≤ ν log |ζ − a|+ q for all ζ ∈ Ga.

We have

(9.3.4) ǔGa,f (z)− ν log |z − a| − q ≤ 0 for all z ∈ (∂fGa) \Q.

Let s = 1, zs = a , and T be any finely connected component of Ga . Then
one of the conditions (P1) or (P2) of Section 9.1 holds true. Therefore u is upper
bounded on every part of T separable from a , and under the condition (P1) there
exists a neighbourhood V of a and a constant A > |ν| for which

u(ζ) ≤ A
∣∣log |ζ − a|

∣∣ for all ζ ∈ V ∩ T.
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First assume that a /∈ b(T ) . Then u is upper bounded in T and we consider the
function

(9.3.5) v(ζ) := u(ζ)− ν log |ζ − a| − q (ζ ∈ T )

which is also upper bounded in T . Because of (9.3.4) we may apply Lemma 1 to
the function v in T with the set Q as E . As a result we get v ≤ 0 in T and

(9.3.6) u(ζ) ≤ ν log |ζ − a|+ q for all ζ ∈ T.

Now assume that a ∈ b(T ) . If a /∈ b(CT ) , then a /∈ b(CG) and the condition
(B′, a) is valid. Therefore (5.6) is valid and may be combined with (9.1). Since u
is upper bounded on every part of T separable from a , it follows that the function
(9.3.5) in this case is also upper bounded in T because of the above assertions and
(5.6), (9.1). Therefore this function satisfies all assumptions of Lemma 1 with Q
as E , and in this T we again get the inequalities v ≤ 0 and (9.3.6).

Let now a ∈ b(CT ) . Then

gT (a, ζ) = 0 for all ζ ∈ T

and we shall show that (9.3.6) again is valid.
Consider the function

v(ζ) := u(ζ) +A log |ζ − a| − q (ζ ∈ T )

which is upper bounded both in V ∩T and in T \V , and hence it is upper bounded
in T .

Using (9.1), (9.1.3) and the condition (b8) of Theorem 8.1, we deduce

(9.3.7) v̌T,f (z) ≤ c log |z − a| for all z ∈ (∂fT ) \Q

with the constant c = ν +A .
Let t ∈ (0, 1). From the definition of lt and (9.3.7) we get

(9.3.8) v̌T,f (z) ≤ clt(a, z) for all z ∈ (∂fT ) \Q.

In T the function v is upper bounded and finely hypoharmonic, the function
HT

(
lt(a, · ), ζ

)
is lower bounded and finely harmonic with respect to ζ for every

t ∈ (0, 1). Therefore in T the function v−cHT

(
lt(a, · ), ζ

)
satisfies all assumptions

of Lemma 1 with Q as E . Using this lemma, we get

v(ζ) ≤ cHT

(
lt(a, · ), ζ

)
for all ζ ∈ T, for all t ∈ (0, 1).

Letting t ↓ 0, from Lemma 4 we derive

v(ζ) ≤ chT (a, ζ) = c
(
log |ζ − a|+ gT (a, ζ)

)
for all ζ ∈ T.
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Since gT (a, ζ) = 0, we get

v(ζ) ≤ (ν +A) log |ζ − a| for all ζ ∈ T,

and therefore we again obtain (9.3.6).
Thus we have proved that (9.3.6) is valid in every finely connected component

of Ga , and therefore (9.3.3) is true.
In the same manner one can prove the analogue of the estimate (9.3.3) for the

set Ga defined in (9.3.2). It may be done also by considering the images of the sets
Ga , Q and G under the mapping ζ1 = 1/(ζ − a) and using the above arguments
to the point a1 := 0, the functions u1(ζ1) := u(ζ) , λ1(x) := λ(−x) and the
numbers ν1 := −ν , σ1 := σ , q1 := q (which is eligible because the assumptions
of Theorem 8.2 are invariant under such substitutions). As a result, we get the
analogue of (9.3.3) from which the inverse substitutions lead to the estimate

(9.3.9) u(ζ) ≤ ν log |ζ − a|+ q for all ζ ∈ Ga.

From (9.1.3), (9.3.3) and (9.3.9) there follows

u(ζ) ≤ ν log |ζ − a|+ q for all ζ ∈ G.

The function
v(ζ) := u(ζ)− ν log |ζ − a| − σ

in G satisfies the inequality

v̌G,f (z) ≤ 0 for all z ∈ (∂fG) \Q

and is upper bounded.
First suppose that (∂fG)\Q 6= ∅ . Then we may apply Lemma 1 to G (asD ),

v (as u), Q (as E ). It gives v ≤ 0 in G and (9.2.1).
Now suppose that (9.2.1) fails. Then it must be (∂fG) \Q = ∅ , ∂fG ⊂ Q =

∂fG , and since the set Q in this case is finely closed and nearly negligible relative to
G , it must be polar. Therefore the upper bounded, finely hypoharmonic function v

is extendable (see [F1, p. 96]) onto C to a finely hypoharmonic function v∗ which
is also upper bounded. Therefore (see [F2, Theorem 2.2]) v∗ is hypoharmonic

in C . Hence v∗ and v are constants. Since (9.2.1) fails, we have v ≡ const ∈
(0,+∞) and

(9.3.10) u(ζ)− ν log |ζ − a| − σ ≡ const =: δ ∈ (0,+∞) for all ζ ∈ G.

Thus u is bounded on each bounded part of G separable from the point a . We
have also G ∪ ∂fG = C , G is a fine domain and the points a and ∞ belong
to b(G) and do not belong to b(CG) . Let us use the following information and
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arguments: the points a and ∞ belong to b(G) ; u is bounded (from both sides!)
on every bounded part of G separable from the point a ; the conditions (B′, zs)
are satisfied for s = 1, 2, which implies the inequalities (5.5), (5.6); hence λ is
bounded (from both sides!) on every closed subinterval of the interval (0,+∞) ,
the function ζ 7→ λ(|ζ − a|) is bounded on every bounded part of C separable
from the point a , and the function

w(ζ) := u(ζ)− λ(|ζ − a|) (ζ ∈ G)

is upper bounded in fine neighbourhoods of the points a and ∞ . From here we
deduce that λ ∈ L∗ , Iλ = (0,+∞) , and the function ζ 7→ λ(|ζ − a|) is superhar-
monic in C \ {a} . Therefore the function w is finite and finely subharmonic in G
and bounded on every bounded part of G separable from the point a . Hence it
has the finely subharmonic extension onto C which is bounded on each bounded
part of C separable from a . Moreover, it is also upper bounded in fine neighbour-
hoods of the points a and ∞ . It means that w ≡ const in G . From here and
(9.3.10) we obtain

(9.3.11) λ(x) ≡ ν log x+ p for all x ∈ (0,+∞)

with some constant p ∈ R . On the basis of (9.1) and (9.3.11) we see that σ ≥ p .
Comparing (9.3.10) and (9.3.11), we get

(9.3.12) u(ζ)− λ(|ζ − a|) ≡ σ + δ − p ≥ δ > 0 for all ζ ∈ G,
and we have the exceptional case of the statement of Theorem 8.2.

Thus, we have proved that if the estimate (9.2.1) fails, then ∂fG is polar,
∂fG ⊂ Q and we have (9.3.12) and the exceptional case of Theorem 8.2.

Remark 8. Consequently, if in Theorem 8.2 the exceptional case is not valid,
then (9.2.1) is true for any σ, ν ∈ R satisfying the condition (9.1).

Recall that the last assertions are established under the extra requirement
that for fixed G and u the statement of Theorem 8.1 is true. In particular, this
requirement is justified in the case when G is finely connected (see Section 9.1).

9.4. Now we drop the extra assumption of Section 9.3 and make use of the
last assertion of that section. Then according to Remarks 6–8 for every finely
connected component T of the set G∗ (if it is non-empty) and the restriction of u
to this component the assumptions of Theorems 8.1 and 8.2 are satisfied and the
statement of Theorem 8.1 is true, therefore the estimate (9.2.1) is valid (because
for T in question the exceptional case of Theorem 8.2 is impossible). Since the
right-hand side in this estimate (9.2.1) is common for all components of G∗ , we
get

(9.4.1) u(ζ) ≤ ν log |ζ − a|+ σ for all ζ ∈ G∗.
Now from (9.4.1) and the last assertion of Section 9.1 we see that Theorem 8.1 is
true in the general case.

Hence on the basis of the result of Section 9.3 the estimate (9.2.1) also is true
in the general case mentioned in Section 9.2.
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9.5. Now suppose that (9.2.1) is true for any σ, ν ∈ R satisfying the condition
(9.1) (and consequently, the exceptional case of Theorem 8.2 does not hold). We
shall show that under this assumption the estimates (5.7) are valid, and if (5.10)
fails, then λ ∈ L∗ , x−λ < x+

λ and (5.11)–(5.13) hold true.
Fix r ∈ (0,+∞) . If λ(x) = −∞ in a neighbourhood of r , then one may

choose numbers σ, ν ∈ R with the inequality (9.1) in such a way that the quantity
ν log r + σ becomes less than any pregiven number M > −∞ . Therefore we get
MG,a(u, r) = −∞ . Hence (5.13) is true. Moreover, if λ ≡ −∞ , then (5.10) is
valid.

Fix ζ0 ∈ G , and let G(ζ0) be that finely connected component of G which
contains ζ0 .

Let now λ ∈ L∗ . If |ζ0 − a| does not belong to the closed interval [x−λ , x
+

λ ] ,
then from (5.13) and (5.4) we deduce

(9.5.1) u(ζ0) = γG(u, ζ0) = MG,a(u, |ζ0 − a|) = λ(|ζ0 − a|) = −∞.
From (9.5.1) we see that the equality

(9.5.2) u(ζ) = −∞
is valid for every ζ ∈ G for which |ζ − a| /∈ [x−λ , x

+

λ ] .
If |ζ0 − a| ≤ x−λ or |ζ0 − a| ≥ x+

λ , then in some non-empty, finely open
subdomain of G(ζ0) the equality (9.5.2) is valid, and therefore

(9.5.3) u(ζ) ≡ γG(u, ζ) ≡ −∞ for all ζ ∈ G(ζ0).

So (9.5.2) holds true for all ζ ∈ G for which either |ζ − a| ≤ x−λ , or |ζ − a| ≥ x+

λ .
From here and (9.5.3) we deduce (5.11).

In particular, if x−λ = x+

λ , then from (5.11) and (5.13) we obtain

u ≡ −∞, γG(u, · ) ≡ −∞, MG,a(u, r) = −∞ for all r > 0.

Hence, if (5.10) fails, then λ ∈ L∗ and x−λ < x+

λ .
If x−λ < |ζ0−a| < x+

λ , then one may choose σ, ν ∈ R in such a way that (9.1)
and the equality λ(|ζ0 − a|) = ν log |ζ0 − a| + σ are valid. From here and (9.2.1)
we get

u(ζ0) ≤ ν log |ζ0 − a|+ σ = λ(|ζ0 − a|).
Therefore, taking into consideration the definition of MG,a(u, r) , we get

MG,a(u, |ζ0 − a|) ≤ λ(|ζ0 − a|).
It follows

(9.5.4) MG,a(u, r) ≤ λ(r) for all r ∈ (x−λ , x
+

λ).

From (9.5.4) and (5.13) we get (5.12). From (5.4), (5.12) and (5.11) we deduce
(5.7). The inequalities (5.17) follow from (5.7), (5.14)–(5.16). This completes the
proof of Theorem 8.2.
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Let us consider the situation of Theorem 8.3. Since (5.10) is excluded, it must
be λ ∈ L∗ , x−λ < x+

λ . Let T be a finely connected component of G . Suppose
that there is a point ζ0 ∈ T with λ(ζ0) = −∞ . Then |ζ0 − a| /∈ (x−λ , x

+

λ) . Using
(9.5.3) with T as G(ζ0) , we get (5.18). Hence if (5.18) fails, then (5.19) is true.
Theorem 8.3 is proved.

Thus, we have proved Theorems 8.1–8.3.

Theorem 7 is contained in Theorems 8.1–8.3.

9.6. Proof of Theorem 8.4. Since the set CG is non-polar, the exceptional
case of Theorem 8.2 is impossible and we have (5.7).

Fix any numbers τ1 , τ2 such that for each s = 1, 2 (independently from each
other) we have either τs = σsf = 0, or σsf < τs ≤ 0. Let ν, σ ∈ R be such that
(9.1) is valid. In view of (5.7), then (9.2.1) holds true as well.

For r > 0 and any function v: G→ [−∞,+∞) let us denote

sup
ζ∈G, |ζ−a|=r

v(ζ) := mG,a(v, r).

Introduce in G the function

Vτ1,τ2(ζ) := u(ζ)− (ν log |ζ − a|+ σ)− τ1gG(a, ζ)− τ2gG(∞, ζ).

The function Vτ1,τ2(ζ) is finely hypoharmonic in G and upper bounded in every
fine subdomain of G finely separable from a and ∞ . Moreover, at every finite
point z ∈ b(∂fG) \ {a} there holds

fine lim supζ→z, ζ∈GVτ1,τ2(ζ) ≤ 0.

There exist finite constants c1 , c2 such that under |ζ−a| ≥ 1 we have gG(a, ζ) ≤
c1 , gG(∞, ζ) ≤ c2 + log |ζ − a| .

Let first τ2 = 0. Then

mG,a(Vτ1,τ2 , r) ≤ −τ1c1 for all r ≥ 1.

Let now σ2
f < τ2 < 0. If u∞G,f = −∞ , then there is a fine neighbourhood X of ∞

with the property

u(ζ) < (ν + τ2) log |ζ − a| for all ζ ∈ X \ {∞}.

If u∞G,f 6= −∞ , then we have also λ∞ 6= −∞ , and then there is a fine neighbour-
hood X of ∞ with the property

u(ζ) < (u∞G,f + τ2 − σ2
f ) log |ζ − a| for all ζ ∈ X \ {∞},
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and then in view of (9.2) we have

u(ζ)− (ν + τ2) log |ζ − a| < (u∞G,f − ν − σ2
f ) log |ζ − a|

= (λ∞ − ν) log |ζ − a| ≤ 0 for all ζ ∈ X \ {∞}.

In both of these cases we have

Vτ1,τ2(ζ) ≤ u(ζ)− (ν log |ζ − a|+ σ)− τ1c1 − τ2(log |ζ − a|+ c2)

≤ const < +∞ for all ζ ∈ X \ {∞}.

Hence, in any case the function Vτ1,τ2 is upper bounded in some fine neighbour-
hood of ∞ .

There exist finite constants c3 , c4 such that under 0 < |ζ − a| ≤ 1 we have
gG(∞, ζ) ≤ c3 , gG(a, ζ) ≤ c4 − log |ζ − a| .

First assume that τ1 = 0. Then

mG,a(Vτ1,τ2 , r) ≤ −τ2c3 for all r ∈ (0, 1].

Let now σ1
f < τ1 < 0. If uaG,f = −∞ , then there is a fine neighbourhood Y of

the point a with the property

u(ζ) < (ν − τ1) log |ζ − a| for all ζ ∈ Y \ {a}.

If uaG,f 6= −∞ , then also λ0 6= +∞ and there is a fine neighbourhood Y of the
point a with the property

u(ζ) < (−uaG,f − τ1 + σ1
f ) log |ζ − a|,

and then in view of (9.2) we have

u(ζ)− (ν − τ1) log |ζ − a| < (−uaG,f − ν + σ1
f ) log |ζ − a|

= (λ0 − ν) log |ζ − a| ≤ 0 for all ζ ∈ Y \ {a}.

In both of these cases we have

Vτ1,τ2(ζ) ≤ u(ζ)− (ν log |ζ − a|+ σ)− τ1(− log |ζ − a|+ c4)− τ2c3
≤ const < +∞ for all ζ ∈ Y \ {a}.

Thus, the function Vτ1,τ2 is upper bounded in some fine neighbourhood of the
point a as well. It follows that

(Vτ1,τ2 )̌ G,f (z) < +∞ for all z ∈ ∂ fG.
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The set E :=
(
∂ fG

)
i

is polar, and because of (9.2.1) we have

(Vτ1,τ2 )̌ G,f (z) ≤ 0 for all z ∈
(
∂ fG

)
\ E.

Hence we may apply Lemma 1 to the function Vτ1,τ2 (considered as u) in G
(considered as D ). As a result we get

Vτ1,τ2(ζ) ≤ 0 for all ζ ∈ G,

which means

u(ζ) ≤ ν log |ζ − a|+ σ + τ1gG(a, ζ) + τ2gG(∞, ζ) for all ζ ∈ G.

Letting τs → σsf for s = 1, 2, we derive

(9.6.1) u(ζ) ≤ ν log |ζ − a|+ σ + σ1
fgG(a, ζ) + σ2

fgG(∞, ζ) for all ζ ∈ G,

where under every ζ ∈ G the following agreements are adopted. If gG(a, ζ) =
0, then σ1

fgG(a, ζ) = 0 (even under σ1
f = −∞), and if gG(∞, ζ) = 0, then

σ2
fgG(∞, ζ) = 0 (even under σ2

f = −∞).
Fix any ζ0 ∈ G . If the condition

(9.6.2) σ1
fgG(a, ζ0) + σ2

fgG(∞, ζ0) = −∞

holds (which is equivalent to the assumptions σsf = −∞ , zs /∈ b
(
CG(ζ0)

)
for at

least one s = 1, 2), then we have

u(ζ) = γG(u, ζ) = −∞ for all ζ ∈ G(ζ0).

Otherwise for each s = 1, 2 with σsf = −∞ we have zs ∈ b
(
CG(ζ0)

)
and

gG(zs, ζ) = 0 in G(ζ0) . In this case the inequality (9.6.1) and fine harmonicity
of all summands in its right-hand side imply the following inequalities for every
ζ ∈ G(ζ0) :

γG(u, ζ) ≤ ν log |ζ − a|+ σ +
2∑

s=1

σsfgG(zs, ζ),(9.6.3)

u(ζ)−
2∑

s=1

σsfgG(zs, ζ) ≤ ν log |ζ − a|+ σ.(9.6.4)

The estimate (9.6.3) for ζ ∈ G(ζ0) is valid also in the case when the equality
(9.6.2) holds, and this follows from the consequences of this equality. In this case
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the same is true for the estimate (9.6.4) as well (under the agreement (5.20)).
From here we get

(9.6.5) MG,a

(
u( · )−

2∑

s=1

σsfgG(zs, · ), |ζ−a|
)
≤ ν log |ζ−a|+σ for all ζ ∈ G(ζ0).

Let T be a finely connected component of G and ζ0 ∈ T . If (5.18) is valid,
then (5.21) and (5.22) are evidently true.

Let now (5.18) fail. Then because of Theorem 8.3 the following is true: λ ∈
L∗, x−λ < x+

λ , (5.19) holds, and for every ζ ∈ T we have x−λ < |ζ − a| < x+

λ . Then
σ, ν ∈ R may be chosen in such a way that (9.1) and the equality

λ(|ζ0 − a|) = ν log |ζ0 − a|+ σ

are valid. Therefore on the basis of (9.6.3), (9.6.5) we obtain

γG(u, ζ0) ≤ λ(|ζ0 − a|) +

2∑

s=1

σsfgG(zs, ζ0),

MG,a

(
u( · )−

2∑

s=1

σsfgG(zs, · ), |ζ0 − a|
)
≤ λ(|ζ0 − a|).

These estimates are valid for every ζ0 ∈ T , and hence we get (5.21) and (5.22)
also in the case when (5.18) is supposed to fail. Thus estimates (5.21) and (5.22)
are true in any case.

Now let us suppose that there is s for which both zs /∈ b(CT ) and σsf = −∞ .
Then from (5.21) we see that (5.18) is true. Theorem 8.4 is proved.

10. Proof of Theorem 2

Let h , µ be functions from Theorem 2 satisfying the properties (a2)–(d2) for
every finely connected component T of G with zs ∈ b(T ) .

Denote

(10.1) log |h(ζ)| =: u(ζ) (ζ ∈ G), log µ(x) =: λ(x) (0 < x < +∞).

Clearly, u is finely hypoharmonic in G,λ ∈ L . Then in the notations (2.1), (2.2),
(4.1)–(4.3), (5.1)–(5.3) we have:

µ0 = λ0, µ∞ = λ∞

and for every s = 1, 2 and any finely connected component T of G there hold

log h̄T,f = ǔT,f ; hzs,T,f = uzsT,f .
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Therefore the conditions (a8)–(d8) of Theorem 8.1 are true as well, and we may
apply Theorem 8.1 to u . Thus we derive that u is upper bounded on every
bounded part of G separable from a . In particular, there exists a constant q ∈ R
such that the inequality (9.1.3) is true.

Obviously for every s = 1, 2 the condition (A, zs) (see Section 4.1) implies
the condition (A′, zs) (see Section 5).

We shall show that the condition (B, zs) from Section 4.1 implies the condi-
tion (B′, zs) from Section 5 (s = 1, 2). Evidently it is the case if h ≡ 0 in a fine
neighbourhood of zs . So it remains to investigate the opposite situation.

Consider the case when s = 1, zs = a ∈ b(G) and the condition (B, a) is
valid. Let T be that (unique, see Remark 3(c)) finely connected component of G
for which zs ∈ b(T ) . Then from (4.1), (4.2), (d8), (4.1.2) and the definition of m0

we get
ha,T,f = ha,G,f ≤ 1−m0 < +∞.

We have a /∈ b(CG) . Introduce the function

Ψ(ζ) := h(ζ)(ζ − a)1−m0 (ζ ∈ G).

This function is finely holomorphic in G . From (4.1.2) we see that it is bounded
in a fine neighbourhood of a and there exists

fine limζ→a, ζ∈GΨ(ζ) = 0.

Now we make use of known properties of a finely holomorphic function concern-
ing its structure and elimination of singularities (see [F7], [F6]). In this way we
establish that the function Ψ extended to the point a by the value Ψ(a) = 0 is
finely holomorphic in G ∪ {a} , and since Ψ 6≡ 0 in any fine neighbourhood of a ,
it has a zero of a finite order at a . From here we see that there exist an integer
k ≥ m0 and a function Φ finely holomorphic in G ∪ {a} such that Φ(a) 6= 0 and

(10.2) h(ζ) = Φ(ζ)(ζ − a)k for all ζ ∈ G.

Using (4.2) and (10.2), we get ha,G,f = −k . Thus ha,G,f is an integer and

Φa,G,f = 0.

Let us use the notation (9.3.2). Then there is (the unique) finely connected
component D of the set Ga for which a ∈ (∂fD)i . We have also a ∈ b(D)\b(CD)
and

uaD,f = uaG,f = ha,G,f < +∞.
Clearly the analogue of (4.1.2) is valid for D as well.

Denote max{q, log |Φ(a)|} =: q∗ and consider the function

λ∗(x) := k log x+ q∗ (0 < x < +∞).
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Then the function hypoharmonic in D ,

u∗(ζ) := u(ζ)− λ∗(|ζ − a|) = log |Φ(ζ)| − q∗,

is upper bounded in a fine neighbourhood of the point a .
Let 0 < x ≤ 1, t := log x , p(t) := λ(log t) . Then p′(t) ≤ λ0 and

λ(1)− λ(x) = p(0)− p(t) =

0∫

t

p′(τ)dτ ≤ −λ0t = −λ0 log x (0 < x < 1).

Therefore

λ(x) ≥ λ(1) + λ0 log x ≥ λ(1) +m0 log x ≥ λ(1) + k log x

= λ(1)− q∗ + λ∗(x) (0 < x < 1).

It yields

(10.3) λ∗(x)− λ(x) ≤ q∗ − λ(1) for all x ∈ (0, 1).

Using the upper boundedness of u∗ in a fine neighbourhood of the point a and
the estimate (10.3), we establish the upper boundedness of the function

u(ζ)− λ(|ζ − a|) = u∗(ζ) + λ∗(|ζ − a|)− λ(|ζ − a|)

in a fine neighbourhood of the point a .
So we have proved that the condition (B, a) for G, h, µ implies the condition

(B′, a) for G, u, λ .
In a similar way one can show that the condition (B,∞) for G, h, µ implies

the condition (B′,∞) for G, u, λ (it can be done by means of the transformations
and substitutions used in Section 9.3 for proving the estimate (9.3.9)). Hence, the
assumptions of Theorem 2 imply the validity of all assumptions of Theorem 8.2 in
the notation (10.1). Therefore all statements of Theorem 8.2 can be reformulated
with respect to notions and notation of Theorem 2.

Suppose that the exceptional case of Theorem 8.2 holds. Then Q is polar,
G = C \Q , a ∈ b(G) \ b(CG) and

u(ζ) = ν log |ζ − a|+ t for all ζ ∈ G

with some constants ν, t ∈ R . Hence uaG,f = −ν , ha,G,f = −ν . But earlier we
had shown that in such a situation ha,G,f is an integer. So ν is an integer, and
we have the exceptional case of Theorem 2. Theorem 2 is proved.

Remark 9. We have also established that under the assumptions of Theo-
rem 2 all statements of Theorems 8.3, 8.4 in the notation (10.1) are true as well
(under the following additional requirements: when the exceptional case and (5.10)
are not valid in Theorem 8.3 and when CG is non-polar in Theorem 8.4).
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11. Proof of Theorems 3, 4 and 6

11.1. Proof of Theorem 3. Fix an arbitrary point w ∈ (∂fG)r .
Let us check that we may apply Theorem 1 with w as a , and the function

φ(ζ) := h(ζ)− h(w) (ζ ∈ G)

instead of h(ζ) . Indeed, from (4.2.1) we get (4.1.3) with w as a , and φ as h .
Since for every finely connected component T of G the function h|

T̃∩C
is finely

continuous and w ∈ (∂fG)r ⊂ b(CG) , therefore h satisfies the condition (A,w) ,
and the same is true for φ .

One of the conditions (A,∞) or (B0,∞) is assumed to hold for h , and it
implies the same condition for φ .

Hence, Theorem 1 is applicable in the situation mentioned above. Since w ∈
(∂fG)r , we have G 6= C\{w} and the exceptional case of Theorem 1 is impossible
in the situation under consideration. Thus we get (4.1.4) for φ instead of h , and
the estimate of (4.2.2) with w as z . Because of the choice of w , it gives us (4.2.2).
Theorem 3 is proved.

11.2. Proof of Theorem 4. Consider the function

φ(ζ) := h(ζ)− h(z0) (ζ ∈ G).

Since φ is finely continuous (and finite) at z0 , one can show (on the basis of the
argument used in the proof of Theorem 2) that φ is finely holomorphic in a fine
neighbourhood of the point z0 and

(11.2.1) φ(ζ) = fineO(|ζ − z0|k) (ζ → z0, ζ ∈ G \ {z0})

with some integer k ≥ 1.
Let us check that Theorem 1 is applicable to G \ {z0} , z0 , φ|G\{z0} instead

of G , a , h , respectively. Indeed, from (4.2.1) we get (4.1.3) with z0 as a , and φ
as h .

From the assumptions of Theorem 4 including (4.2.3) we see that for the situ-
ation under consideration, the condition (B, z0) is valid for φ in G\{z0} , and one
of the conditions (A,∞), (B0,∞) for φ in G\{z0} holds as well. Hence Theorem 1
is applicable in the mentioned situation, and as a result of such an application we
get either the inequality (4.2.4), or the exceptional case of Theorem 1.

If the exceptional case in the application of Theorem 1 holds true, then

µ(x) = βxm for all x > 0,

φ(ζ) = c(ζ − z0)m for all ζ ∈ G,
h(ζ) = c(ζ − z0)m + h(z0) for all ζ ∈ G

with constants c ∈ C , β ≥ 0, m , where m is an integer and |c| > β . From here
and (11.2.1) we see that m ≥ k ≥ 1.
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If ∂fG contains z0 , it contains no other point because otherwise (4.2.1) would
fail for this couple of points, a contradiction.

If m = 1, then µ and h are linear, and ∂fG contains at most one point,
because otherwise we got the same contradiction with (4.2.1) as above.

The last statement of Theorem 4 is obviouos. Theorem 4 is proved.

11.3. Proof of Theorem 6. We shall apply Lemma 2 with D := G and
p := h . Fix arbitrary δ > 0, ε > 0, and denote by A(δ) and B(δ) the right-hand
and the left-hand sides of (4.3.1), respectively. Because of Lemma 2, then there

exist points a ∈ (∂fG)r and w ∈ G̃ such that |a− w| = δ and

|h(a)− h(w)| > A(δ)− ε = B(δ)− ε.

One may check that in this case all requirements of Theorem 3 are fulfilled, and
using it we get

sup
ζ∈G̃, |ζ−a|=δ

|h(ζ)− h(a)| ≤ µ(δ).

Consequently, B(δ)−ε ≤ µ(δ) . Letting ε→ 0, we obtain B(δ) ≤ µ(δ) . Theorem 6
is proved.
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