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Abstract. We show that for each 1 ≤ α < d and K < ∞ there is a subset X of Rd such
that dim(f(X)) ≥ α = dim(X) for every K -quasiconformal map, but such that dim(g(X)) can
be made as small as we wish for some quasiconformal g , i.e., the conformal dimension of X is
zero. These sets are then used to construct new examples of minimal sets for conformal dimension
and sets where the conformal dimension is not attained.

1. Introduction

Given a compact metric space X we define its conformal dimension as

Cdim(X) = inf
f

dim
(
f(X)

)
,

where the infimum is over all quasisymmetric maps of X into some metric space
and “dim” denotes Hausdorff dimension. This was introduced by Pansu in [10]. See
also [4] and [15]. A set is called minimal for conformal dimension if Cdim(X) =
dim(X) , i.e., no quasisymmetric image can have smaller dimension. Such examples
obviously exist in integer dimensions for topological reasons, e.g., a line segment is
one-dimensional and any image is connected, hence has dimension ≥ 1. Examples
with non-integer dimension are much less obvious, but were shown to exist in [10]
and [15] (see also Section 5, Remark 1). In this paper, we strengthen this result by
showing that “locally minimal” sets for conformal dimension exist in the following
sense.

Theorem 1. Suppose that 1 ≤ α < d and K <∞ . Then there is a compact,
totally disconnected set X ⊂ Rd of Hausdorff dimension α such that

1. dim
(
f(X)

)
≥ α for every K -quasisymmetric map of X to a metric space,

2. for any ε > 0 there is a quasiconformal map g of Rd to itself such that
dim

(
g(X)

)
< ε . In particular, Cdim(X) = 0 .
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Recall that a map f between metric spaces is quasisymmetric if there is a
homeomorphism η of [0,∞) to itself such that

(1) |x− y| ≤ t|x− z| ⇒ |f(x)− f(y)| ≤ η(t)|f(x)− f(z)|.

In the case of maps of Rd onto itself, d ≥ 2, this class of mappings is the same
as the class of quasiconformal maps.

In this paper, we will say that f is K -quasisymmetric if (1) holds for some
η with η(1)η(1/K) ≤ 1. (Note that for any quasisymmetric map this is true for
some K .) If f is K -quasisymmetric, then for any four points a, b, c, d such that
|c− d| ≥ K|a− c| ≥ K|a− b| we have

(2) |f(a)− f(b)| ≤ η(1)|f(a)− f(c)| ≤ η(1)η

(
1

K

)
|f(c)− f(d)| ≤ |f(c)− f(d)|.

The existence of locally minimal sets implies the existence of minimal sets
since we may take X =

⋃
nXn where each Xn is chosen using Theorem 1 with

α1 = α2 = · · · = α and K1 < K2 < · · · ↗ ∞ (to make X compact we may
assume that diam(Xn) → 0 and that {Xn} accumulates at some point of X1 ).
Thus we have

Corollary 2. For every α ∈ [1, d) , there is a totally disconnected set X ⊂ Rd

such that Cdim(X) = dim(X) , i.e., X is minimal for conformal dimension.

All of the previously known examples of sets of minimal conformal dimension
either contain nontrivial paths [10], [15] or are nonremovable sets for quasiconfor-
mal maps (and hence have dimension ≥ d− 1) [1]. The proof given in [15] makes
use of the notion of generalized modulus introduced by Pansu in [10], [11] and
developed in [14]. However, a simpler argument can be given which avoids the use
of Pansu’s generalized modulus, see Theorem 15.9 of [6]1 . Our proof of Theorem 1
is closely modelled on this second argument.

Another application of Theorem 1 is to take X =
⋃
nXn where αn ↘ α and

Kn ↗ ∞ . In this case, it is easy to see that Cdim(X) = α , but dim
(
f(X)

)
> α

for any quasisymmetric f . Thus we have

Corollary 3. For every α ∈ [1, d) there is a set X ⊂ Rd so that Cdim(X) =
α , but this dimension is not attained for any quasisymmetric image of X .

This answers a question from [3] where this result was proved for α = 1. That
paper was motivated by a question of J. Heinonen ([6, Section 15]) as to whether
or not the conformal dimension is always attained by some quasisymmetric image.

1 The second author wishes to acknowledge Mario Bonk for a valuable discussion during

which this latter proof was developed.
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2. Some background

Before proving Theorem 1, we recall the definition and basic properties of
Hausdorff dimension. For α ≥ 0, the α -dimensional Hausdorff content of a metric
space X is defined as

H ∞
α (X) = inf

{∑

j

rαj : X ⊂ ⋃
j

B(xj , rj)

}

and the Hausdorff dimension is

(3) dim(X) = inf{α : H ∞
α (X) = 0}.

In general, one gives an upper bound for dim(X) by finding an explicit cover of X
with small Hausdorff sum. One can give a lower bound using the mass distribution
principle: if X supports a positive measure µ such that µ

(
B(x, r)

)
≤ Crα for

every ball B(x, r) , then dim(X) ≥ α (since 0 < µ(X) ≤ ∑
j µ
(
B(xj , rj)

)
≤

C
∑
j r

α
j for any cover of X ).

For our purposes, it is useful to note that one need not cover X by balls in
order to compute its dimension. We will say a collection of sets C is a nice covering
collection if there are constants C1, C2 < ∞ such that any ball B(x, r) can be
covered by at most C1 elements of C each of which has diameter at most C2r . If
we define

H̃ ∞
α (X) = inf

{∑

j

diam(Ej)
α : X ⊂ ⋃

j

Ej , Ej ∈ C

}
,

then it is easy to check that H ∞
α (X) ≤ H̃ ∞

α (X) ≤ C1C
α
2 H ∞

α (X) . Thus the
definition of the Hausdorff dimension (3) is unchanged if we replace H ∞

α with

H̃ ∞
α for some nice covering collection C . The most commonly used collection of

this type is the collection of dyadic cubes in Rd .
We will also use the following easy observation. If C is a nice covering col-

lection for X and f : X → Y is quasisymmetric then f(C ) = {f(E) : E ∈ C } is
a nice covering collection for Y . Indeed, if B is a ball in Y then by definition
F = f−1(B) is contained in a ball of radius diam(F ) and hence can be covered by
C1 sets in C of diameter at most C2diam(F ) . The images of these C1 sets under
the map f cover B and have diameter at most η(2C2)diam(B) by quasisymmetry
(see Theorem 2.5 of [13]), as desired.

In this paper we will consider sets constructed as follows. We will fix a fi-
nite number of collections Fj , j = 1, . . . ,m , where Fj consists of Nj (closed)
subcubes of [0, 1]d , each with side length εj and with disjoint interiors and sides
parallel to the coordinate axes. We will also fix a partition of the natural numbers
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N = {0, 1, 2, . . .} into m sets E1, . . . , Em . Given this data we define a nested
sequence of compact sets X0 ⊃ X1 ⊃ · · · inductively, setting X0 = [0, 1]d and
letting Xn+1 be the set obtained by replacing each component cube in Xn by a
scaled copy of the family Fj for which Ej 3 n . Note that Xn is a finite union of

cubes all of which have side length rn =
∏n−1
k=0 ε(k) , where ε(k) = εj if and only

if k ∈ Ej . Finally, we let X =
⋂
nXn .

If Cn denotes the collection of component cubes of Xn , then it is easy to see
that C =

⋃
n Cn is a nice covering collection of X as follows. Given a ball B(x, r)

in X choose the smallest n such that rn ≤ r . Then B(x, r) is covered by the
union of those cubes in Cn which meet it. The number of these cubes is uniformly
bounded since they have disjoint interiors, are all contained in B

(
x, (1 +

√
d )r
)

,
and all have diameter at most εr , where ε = minj εj .

It is now easy to compute the Hausdorff dimension of X as

(4) dim(X) = lim inf
n→∞

∑n−1
k=0 logN(k)

log(1/rn)
= lim inf

n→∞

∑n−1
k=0 logN(k)

−∑n−1
k=0 log ε(k)

,

where N(k) = Nj if and only if k ∈ Ej . To show that dim(X) is at most the
right-hand side of (4), one simply takes all nth generation cubes as a cover of X .
To prove the opposite direction one applies the mass distribution principle to the
measure µ which gives all nth generation cubes equal mass. The details are left
to the reader.

If we let p(n, j) = (1/n)#(Ej ∩ [0, n]) , where #(S) denotes the cardinality
of the set S , then (4) can be rewritten as

(5) dim(X) = lim inf
n→∞

∑m
j=1 p(n, j) logNj

−∑m
j=1 p(n, j) log εj

.

3. Construction of the space X of Theorem 1

Let α ∈ [1, d) and let K ∈ [1,∞) be fixed. Choose an even integer N so
that N ≥ 8K and let ε = 1/N . Let ej denote the unit vector in Rd in the xj
direction. The construction is based on three families of subcubes of [0, 1]d . Let
F1 be the collection of Nd subcubes of side length ε with disjoint interiors. Thus
ε1 = ε and N1 = Nd . Let F2 ⊂ F1 be the collection of N cubes which hit the
x1 axis, so ε2 = ε and N2 = N .

The third collection of cubes, F3 , will consist of N3 = N cubes with side
length ε3 = 1/( 1

2N +2) = 2ε/(1+4ε) arranged in two parallel rows. The first row
consists of cubes of the form ε3Q0 + jε3e1 for j = 0, 3, 4, . . . , 1

2N + 1. Note that
the indices j = 1, 2 are skipped, leaving a gap of size 2ε3 in the row. The second
row consists of cubes of the form ε3Q0 + jε3e1 + 3ε3e2 for j = 1, 2, . . . , 1

2N . In
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Figure 1. The collection F3 with N = 12, ε3 = 1
8

this row, the first and last cubes are omitted. See Figure 1 for the picture of F3

in two dimensions.
We define the set X following the procedure outlined in the previous section.

Assume that we have divided the natural numbers N = {0, 1, 2, 3, . . .} into three
disjoint sets N = E1 ∪ E2 ∪ E3 . Let X0 = [0, 1]d . In general, if Xn is a finite
union of cubes, construct Xn+1 ⊂ Xn by replacing each cube in Xn by a scaled
copy of Fi if n ∈ Ei . Then define X =

⋂
nXn . For future reference, we will

denote the collection of cubes making up Xn as Cn and let C =
⋃
n Cn .

Associated to X , we define an auxiliary set Y =
⋂
n Yn which is defined

similarly except that we use F1 if n ∈ E1 and we use F2 if n ∈ E2 ∪ E3 (so
F3 is never used). Clearly Y = [0, 1] × Z is a product set containing horizontal
line segments and we will eventually choose the sets E1, E2, E3 so that dim(X) =
dim(Y ) . The collection of cubes making up Yn will be denoted Dn and we let
D =

⋃
n Dn .

Next we want to define a mapping T : D → C with the properties that

(1) T ([0, 1]d) = [0, 1]d ;
(2) T : Dn → Cn is onto;
(3) if Q′ ∈ Dn+1 , Q ∈ Dn and Q′ ⊂ Q then T (Q′) ⊂ T (Q) .

This is easy to do by induction. Condition (1) starts the induction and if T has
been defined down to level n then we define it at level n+1 using the identity map
if n ∈ E1 ∪ E2 (since in this case the same picture occurs in the construction of
both X and Y ) and if n ∈ E3 then we choose any surjective map from F2 to F3

(there is one since F3 has the same number of elements as F2 ). See Figure 2.
The map T also induces a map from closed sets of Y to closed sets of X as

follows. For K ⊂ Y closed, let

T (K) =
⋂
n

⋃
Q∈Cn
Q∩K 6=∅

T (Q).

Later we will be particularly interested in the sets T (L) where L = [0, 1]×{z}
is a line segment in Y . We will use the fact that for each generational cube Q ∈ C ,
the set T (L) ∩ ∂Q consists of exactly two points.

Next we want to define the sets E1, E2, E3 so that dim(X) = dim(Y ) = α .
First we deal with dim(Y ) = α . Let F = N \ E1 = E2 ∪ E3 . If we choose E1 so
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T

Figure 2. Defining the bijection T from D to C

that

lim
n→∞

#(E1 ∩ [0, n])

n
= lim
n→∞

p(n, 1) =
α− 1

d− 1
,

then by (5),

dim(Y ) = lim
n→∞

p(n, 1) logN1 +
(
1− p(n, 1)

)
logN2

−p(n, 1) log ε1 −
(
1− p(n, 1)

)
log ε2

= lim
n→∞

−dp(n, 1) log ε−
(
1− p(n, 1)

)
log ε

− log ε
= lim
n→∞

1 + (d− 1)p(n, 1) = α.

One way to do this explicitly is to put 0 ∈ E1 and in general put n + 1 ∈ E1 if
and only if

αn ≡
p(n, 1) logN1 +

(
1− p(n, 1)

)
logN2

−p(n, 1) log ε1 −
(
1− p(n, 1)

)
log ε2

< α,

and otherwise put n + 1 in F , the complement of E1 . In this case it is easy to
see that |αn −αn+1| = O(1/n) and αn+1 is either closer to α than αn is, or it is
on the other side of α . Thus

|αn − α| = O

(
1

n

)
.

If we define a measure µ on Y by giving all of the cubes in Dn the same mass,
then the measure of any Q ∈ Dn is at most

(6) µ(Q) = l(Q)αn ≤ l(Q)α−C/n ≤ Cµl(Q)α,

for some absolute constant Cµ (since l(Q) = εn ).
Next we want to split the set F ⊂ N into disjoint sets E2 ∪ E3 . Do this in

any way so that

(7) lim inf
n→∞

1

n
#(E3 ∩ [0, n]) = 0,

and

(8) lim sup
n→∞

1

n
#(E3 ∩ [0, n]) > 0.
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For example, we can take E3 = {n ∈ F : (2m)! ≤ n < (2m+ 1)! for some m} .
We will show (7) implies dim(X) = α , while (8) implies Cdim(X) = 0.

Since N3 = N2 and ε3 ≥ ε2 , it is clear from (5) that dim(X) ≥ dim(Y ) = α .
On the other hand, by taking a sequence {nk} such that limk→∞ p(nk, 3) = 0, we
see that (5) implies

dim(X) ≤ lim
k→∞

p(nk, 1) logN1 + p(nk, 2) logN2

−p(nk, 1) log ε1 − p(nk, 2) log ε2
= dim(Y ).

Thus dim(X) = dim(Y ) = α .

4. Proof of Theorem 1

To show that the conformal dimension of X is zero, we simply note that the
squares in F3 come in three connected components U1, U2, U3 which have disjoint
ε3/2 neighborhoods V1, V2, V3 respectively (see Figure 3).

Figure 3. Disjoint ε3/2 neighborhoods for the components U1, U2, U3

We may shrink the squares in each component by any factor δ > 0 by a
map which is the identity outside V1 ∪ V2 ∪ V3 , is linear and conformal in each
of U1, U2, U3 and which is quasiconformal with constant depending only on δ .
The set which we obtain by replacing F3 by the new pattern and repeating the
construction of Section 2 is the image of X under a global quasiconformal map g
of Rd . This new pattern has N3 squares of size δε3 and so its dimension by (5)
is

dim
(
g(X)

)
≤ lim inf

n→∞
p(n, 1) logN1 + p(n, 2) logN2 + p(n, 3) logN3

−p(n, 1) log ε1 − p(n, 2) log ε2 − p(n, 3)(log δ + log ε3)
.

Since lim supn→∞ p(n, 3) > 0 and we can make δ as small as we wish while keeping
everything else fixed, we see that dim

(
g(X)

)
may be as small as we wish.

Next, we must show that dim
(
f(X)

)
≥ α if f is K -quasisymmetric (in the

sense defined before). By rescaling we may assume that

(9) dist
(
f(X ∩ {x1 = 0}), f(X ∩ {x1 = 1})

)
= 1.



368 C.J. Bishop and J.T. Tyson

Now suppose % is a non-negative Borel function on Y such that

∫ 1

0

%(x, z) dx ≥ 1

for any z ∈ Z ; we call such a % admissible. Then

1 ≤
∫ 1

0

%(x, z)α dx

for all z ∈ Z by Hölder’s inequality (since α ≥ 1), which implies

(10) 1 ≤
∫

Y

%(x, z)α dµ(z, x).

However, if dim
(
f(X)

)
< α then we can find a cover {Wk} of f(X) using the

nice covering collection f(C ) such that
∑
k diam(Wk)α is as small as we wish,

say < C−1
µ , where Cµ is as in inequality (6). The cover {Wk} corresponds to

a covering of X by cubes in C , which in turn corresponds to a cover of Y by
cubes in D via the correspondence T . Let {Qk} ⊂ D denote this cover of Y and
assume (as we may) that the cubes {Qk} have disjoint interiors.

Define a function % on Y as %(y) = diam(Wk)/l(Qk) if y ∈ Qk (where l(Q)
denotes the side length of Q). Then % is well defined except on a set of µ measure
zero and by (6),

∫

Y

%α dµ =
∑

k

diam(Wk)α

l(Qk)α
µ(Qk) ≤ Cµ

∑

k

diam(Wk)α < 1.

If we can show % is admissible, then this contradicts (10) and we are done.
Fix a line L = [0, 1]×{z} ⊂ Y and for each Q ∈ D let xQ and yQ be the two

points of ∂T (Q) ∩ T (L) (and assume the first coordinate of xQ is smaller than
the first coordinate of yQ ). Let D(L) be the collection of cubes in our cover of Y
which hit L and, for Q ∈ Dn , let D(L,Q) be the collection of cubes Q′ ∈ Dn+1

which hit L and which are contained in Q . Let d(Q) = |f(xQ) − f(yQ)| . Then
d(Q) ≤ diam

(
f(T )

)
and we claim that for Q ∈ Dn

(11)
∑

Q′∈D(L,Q)

d(Q′) ≥ d(Q).

If we can prove this, then a simple induction shows that

∫ 1

0

%(x, z) dx =
∑

k
Qk∈D(L)

diam(Wk) ≥ d(X0) = |f(xX0)− f(yX0)| ≥ 1
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by (9) (recall that X0 = [0, 1]d ) and we will be done.
To prove (11) it suffices to consider what happens for each of the three replace-

ment patterns. For F1 and F2 , there is a chain of adjacent subcubes Q1, . . . , QN
such that xQ = xQ1 , yQN = yQ and xQj+1 = yQj for j = 1, . . . , N − 1, and so
(11) holds by the triangle inequality:

d(Q) = |f(xQ)− f(yQ)| ≤
N∑

j=1

|f(xQj )− f(yQj )| =
N∑

j=1

d(Qj).

For F3 assume that the 1
2N cubes in the first row are numbered from 1

to 1
2N ordered by the x1 coordinate and the second row is similarly labeled

1
2N + 1, . . . , N . The same argument as above shows that

d(Q) ≤ d(Q1) + |f(yQ1)− f(xQ2)|+
N/2∑

j=2

d(Qj),

and so we are done provided that

|f(yQ1)− f(xQ2)| ≤
N∑

j=1+N/2

d(Qj).

Again by the triangle inequality, this will hold if

|f(yQ1)− f(xQ2)| ≤ |f(xQ1+N/2
)− f(yQN )|.

However, this is just (2) with

a = yQ1 , b = xQ2 , c = xQ1+N/2
, d = yQN ,

since |a− b| = 2ε3 , 2ε3 ≤ |a− c| ≤ 4ε3 and |c− d| = 1
2Nε3 .

Thus if f is K -quasisymmetric and N ≥ 8K the desired inequality holds
which shows that % is admissible. This completes the proof of Theorem 1.

5. Additional remarks

Remark 1. The proof also shows that Y is minimal, i.e., dim
(
f(Y )

)
≥

dim(Y ) for any quasisymmetric map f . In fact, one can show E = [0, 1] × Z is
minimal for any Borel set Z ⊂ Rd−1 . If dim(E) = 1 there is nothing to do since
E contains a line segment. If dim(E) = α > 1 and 1 < β < α then by Frostman’s
lemma (e.g., Theorem 8.8 of [9]), E supports a product measure µ such that
µ
(
B(x, r)

)
≤ Cβrβ . Applying the above proof using coverings by dyadic cubes to
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define % shows that no quasisymmetric image of E can have zero β -content, thus
proving that E is minimal. This improves a result from [15], where [0, 1] × Z is
shown to be minimal assuming Z is Ahlfors regular.

More generally, what sets F ⊂ R have the property that F × Z ⊂ Rd is
minimal for any non-empty compact Z ⊂ Rd−1 ? There are Cantor sets with this
property because there are Cantor sets F in [0, 1] such that any quasisymmetric
image in a metric space has positive 1-dimensional content, and the proof given
for F = [0, 1] above generalizes to such sets. For example, if F ⊂ [0, 1] is a
closed set which is uniformly perfect and has positive Lebesgue measure, and if
[0, 1] \ F =

⋃
j Ij is a disjoint union of open intervals satisfying

∑
j |Ij |α < ∞

for all α > 0, then any quasisymmetric image of F has positive 1-dimensional
content. In the case of quasisymmetric maps of R to itself, this is Theorem 1.2
of [12]. It is easy to adapt the proof to any quasisymmetric map into a metric
space; one only needs to know that such a map is Hölder continuous. For the
convenience of the reader, we briefly sketch this argument at the end of the paper.

A set F in R is called quasisymmetrically thick if any quasisymmetric map
from R to itself (including the identity) sends F to a set of positive Lebesgue
measure. As noted in the previous paragraph, Staples and Ward have given some
sufficient conditions for a set to be thick in [12]. Do all quasisymmetrically thick
sets have the property that all quasisymmetric images (into any metric space)
also have positive Hausdorff 1-content?2 If F is quasisymmetrically thick then is
F × Z always minimal for conformal dimension? If F is not quasisymmetrically
thick, then is there a quasisymmetric image of F with dimension < 1?

Remark 2. For sets in Rd , we might consider QCdim(X) = inf dim
(
g(X)

)

where the infimum is over all quasiconformal maps g of Rd to itself. This quan-
tity can be strictly larger than the conformal dimension. For example, Antoine’s
necklace in R3 (e.g., see [7], [8]) has QCdim(X) = 1 but Cdim(X) = 0. Thus a
set in Euclidean space might be minimal for quasiconformal selfmaps of the space,
but not be minimal for quasisymmetric maps which do not extend to the whole
space.

Remark 3. Do local maximums occur? Probably not since global maximums
are known not to occur [2]; for any compact X ⊂ Rd of positive dimension and
any ε > 0, there is a quasiconformal map f of Rd to itself such that dim

(
f(X)

)
>

d−ε . Is it true that for any X of positive dimension and any K > 1, there is a K -
quasiconformal map such that dim

(
f(X)

)
> dim(X)? This is only interesting for

2 In Proposition 14.37 of [6], the following result is proved: if F ⊂ R is a quasisymmetrically

thick set, then every quasisymmetric mapping of R onto an Ahlfors regular metric space sends F

onto a set of positive 1-content. While this result is clearly related to our question, it does not

answer it for two reasons: first, the map is assumed to be defined on all of R rather than just on

F and second, the image of R is assumed to be an Ahlfors regular space.
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quasiconformal maps in Rd , since if one considers all quasisymmetric maps into
metric spaces, then one can obviously increase the dimension by the “snowflake
functor”, i.e., replacing the metric |x− y| by |x− y|ε for any ε < 1.

Remark 4. Given a set E ⊂ R2 we can define DE to be the set of values
of dim

(
f(E)

)
as f ranges over all quasiconformal maps of the plane. This must

be a single point or an interval since any quasiconformal map can be connected to
the identity by a path of maps along which the dimension changes continuously.
From [2] and [5], we know that the only possibilities are of the form {0} , {2} ,
(0, 2), [α, 2) and (α, 2) for 0 < α < 2. The first three are well known to occur,
as is [1, 2). This paper shows that (α, 2) and [α, 2) can also occur for every
1 ≤ α < 2. The second author conjectured in [15] that the intervals [α, 2), (α, 2)
never occur for 0 < α < 1 and this remains open.

We conclude with a discussion of the fact about quasisymmetrically thick sets
mentioned in Remark 1.

Proposition 4. Let F = [0, 1] \⋃j Ij be a closed, uniformly perfect set of
positive Lebesgue measure, where {Ij} is a collection of disjoint open intervals.
Assume that γp :=

∑
j |Ij |p is finite for all p > 0 . Then the Hausdorff 1 -content

of f(F ) is positive for all quasisymmetric maps f of F into any metric space.

Recall that a set F ⊂ [0, 1] is said to be uniformly perfect if there exists a
constant c > 0 so that for all x ∈ F and all 0 < r < 1, there exists a point y ∈ F
with r/c ≤ |x − y| ≤ r . The relevance of this condition in the proposition comes
from the fact that quasisymmetric maps on uniformly perfect sets are Hölder
continuous (see, for example, Theorem 11.3 of [6]). It is possible that uniform
perfectness of a set F as in Proposition 4 may be a consequence of the other
hypotheses.

An example of a set F ⊂ [0, 1] satisfying the conditions of Proposition 4
can be constructed as follows: let I1 = ( 1

3 ,
2
3 ) and, in general, let Im , m ≥ 2,

be an interval of length 3−m centered within the largest interval contained in
[0, 1]\⋃mj=1 Ij (if the maximum length is achieved by several intervals, choose any
one at random).

Theorem 1.2 of [12] says that if F is chosen as in Proposition 4 and f is
any quasisymmetric map of R to itself, then the Lebesgue measure of f(F ) is
positive. The proof of Proposition 4 is essentially already contained in the proof
of Theorem 1.2 of [12]. The differences between the two results are:

(i) f now takes values in an arbitrary metric space;
(ii) f is defined only on the set F (and not on all of R);

(iii) our conclusion is H ∞
1

(
f(F )

)
> 0 rather than |f(F )| > 0.

In what follows, we repeat Staples and Ward’s argument from [12], indicating the
changes which must be made to deal with these differences.

As mentioned above, if f : F → Y is a quasisymmetric embedding, then f
is 1/s -Hölder continuous for some s > 1. We may assume that the number of
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intervals Ij is infinite. If these intervals are ordered so that |I1| ≥ |I2| ≥ · · · , then
the sequence {|Ij | : j = 1, 2, . . .} satisfies |Ij | ≤ (γp/j)

1/p for all j ∈ N and all
p > 0.

Choose a large integer N and let I = [a, b] be the largest subinterval contained

in [0, 1] \ ⋃N−1
j=1 Ij . Then |I| ≥ |F |/N . We may conjugate f |F∩I by conformal

scalings g: [0, 1]→ I and h: Y → λ−1Y to a mapping f̃ from F̃ = g−1(F ∩ I) to
the dilated metric space λ−1Y , where λ = |f(a)− f(b)| . Then f̃ is again Hölder
continuous with exponent 1/s . We claim that if N is chosen sufficiently large,
then

(12) H ∞
1

(
f̃(F̃ )

)
≥ c > 0;

which clearly implies that H ∞
1

(
f(F )

)
≥ c(λ) > 0.

To prove (12), we note that the collection f̃(C ) , where C is the collection of
sets of the form U∩F , U an open subinterval of [0, 1] , is a nice covering collection

of f̃(F̃ ) . Let U1, U2, . . . , UM be a finite collection of (disjoint) intervals in [0, 1]

covering F̃ . For each k , let ak = inf F̃ ∩Uk and bk = sup F̃ ∩Uk . Then, for each
k , the (possibly degenerate) interval (bk, ak−1) is contained in precisely one of the
intervals g−1(Ij ∩ I) , j = N,N + 1, . . . .

If we denote the metric in λ−1Y by | · |λ−1Y , then

(13)

1 = λ−1|f(a)− f(b)| = |f̃(0)− f̃(1)|λ−1Y

≤
M∑

k=1

diamλ−1Y

(
f̃(Uk)

)
+
M−1∑

k=1

|f̃(ak+1)− f̃(bk)|λ−1Y .

Set p = 1/(2s) . Then

(14)

M−1∑

k=1

|f̃(ak+1)− f̃(bk)|λ−1Y ≤ C
M−1∑

k=1

|ak+1 − bk|1/s ≤ C
∞∑

j=N
Ij∩I 6=∅

|g−1(Ij)|1/s

= C
∞∑

j=N

( |Ij |
|I|

)1/s

≤ C
∞∑

j=N

[
N

|F |

(
γp
j

)1/p]1/s

= C(|F |, s)N1/s
∞∑

j=N

1

j2
= C(|F |, s)N (1/s)−1.

Since s > 1, we may choose N so large that the expression in (14) is at most 1
2 .

Then (13) implies that
∑M
k=1 diamλ−1Y

(
f̃(Uk)

)
≥ 1

2 . Since this holds for all such

coverings U1, U2, . . . , we conclude that the Hausdorff 1-content of f̃(F̃ ) (measured
with respect to the nice covering collection f̃(C )) is at least 1

2 . This implies (12)
and hence concludes the proof of the proposition.
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