
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 26, 2001, 375–390

POLYNOMIAL COMPLEXITY OF THE

GILMAN–MASKIT DISCRETENESS ALGORITHM

Yicheng Jiang

Rutgers University, Mathematics Department

Newark, NJ 07102, U.S.A.; ycjiang@andromeda.rutgers.edu

Abstract. The main result of this paper is a polynomial bound for the computational
complexity of an algorithm to determine whether or not a non-elementary two-generator subgroup
of PSL(2,R) is discrete, that is, an algorithm to determine whether such a subgroup is Fuchsian.
The proof that there exists such a bound uses techniques from both hyperbolic geometry and
symbolic computation.

1. Introduction

The main result of this paper is a polynomial bound for the computational
complexity of the Gilman–Maskit discreteness algorithm. The Gilman–Maskit
algorithm presented in [5] and [2] determines whether or not a non-elementary
two-generator subgroup of PSL(2,R) is discrete, that is, it is an algorithm to
determine whether such a subgroup is Fuchsian.

In [3] several different forms of the algorithm are distinguished and these are
analyzed from the viewpoint of computational complexity. A polynomial bound is
found on the complexity of all forms except for a Turing machine implementation.
The goal of this paper is to produce a polynomial bound for the complexity of the
Turing machine implementation.

The main results of this paper are an improved bound for the number of pairs
of generators that any form of the algorithm must consider (Theorems 3.2 and 4.2)
along with a polynomial bound on the maximal length of words in the two initial
generators that any form of the algorithm must consider (Theorems 5.1 and 5.2)
and the polynomial complexity follows from these results.

For any given pair of generators, the Gilman–Maskit algorithm either deter-
mines that the group is discrete or non-discrete and then stops or it determines
a next pair of generators to consider. The next pair is a word in the two initial
generators. A step in the algorithm which involves replacing the pair of generators
by another pair of generators is called a generator-step. It is known that before it
finally determines that the group is or is not discrete, the algorithm considers at
most a polynomial number of pairs of generators [3] and these generators are given
as words in the initial generators. At the n -th generator step, let w(n) denote

2000 Mathematics Subject Classification: Primary 30F40, 32G15, 68Q25.

376 Yicheng Jiang

the word length of the current generators when given as words in the algorithm’s
two initial generators. The main result of this paper is that w(n) is bounded by a
polynomial function. The polynomial complexity of the full discreteness algorithm
follows from this.

The algorithm given that appears in [5] and [2], proceeds by considering the
geometric types of the pair of generators (e.g. hyperbolic-hyperbolic, hyperbolic-
elliptic). A bound for the complexity of the algorithm for a Turing machine imple-
mentation in any finite extension field of the rational numbers was given in [3]. The
complexity bound involved some exponential terms for two cases in the algorithm:

(1) Hyperbolic-hyperbolic with disjoint axes;
(2) Hyperbolic-hyperbolic with intersecting axes.

For each of these cases we will produce a polynomial bound.
A generator step in the algorithm is called a G-step for short and consists

of replacing a pair of generators by a Nielsen equivalent pair. The exponential
complexity resulted from the possibility at the n -th G-step of generators of ex-
ponential word length in the two initial generators. To understand this, assume
that (g, h) is the initial pair of two generators, and count this pair as G-step 0.
According to the algorithm, each of these hyperbolic-hyperbolic cases might give
a sequence of generating pairs of the form:

(g, h)→ (gh, g)→ (ghg, gh)→ (ghg2h, ghg)→ (ghg2hghg, ghg2h)→ · · · .

When this happens, the word length in the two initial generators will increase as
a Fibonacci sequence related to the number of generating pairs that remain in
that type of hyperbolic-hyperbolic case. We will call such a sequence of pairs of
generators a Fibonacci sequence. Denote by F (n) the length of the longest word
in the generators at G-step n in a Fibonacci sequence growth (i.e. F (−2) = 0,
F (−1) = 1, F (n) = F (n − 1) + F (n − 2), n ≥ 0 so that

(
3
2

)n
< F (n) < 2n ,

n > 1).
There are also sequences where the word length grows linearly as the number

of generating pairs. Such a sequence will be referred to as a non-Fibonacci sequence
of generators. An example of a non-Fibonacci sequence would be,

(g, h)→ (g, gh)→ (g, g2h)→ · · · → (g, gnh).

When the algorithm repeats and returns to the same geometric type for either type
of hyperbolic-hyperbolic case, the whole process could be the mixture of these two
types of sequences. For the other cases the algorithm considers (e.g. where the
pairs of generators are either hyperbolic-elliptic, hyperbolic-parabolic, parabolic-
parabolic, parabolic-elliptic, or elliptic-elliptic) this does not happen. The word
length does not grow as Fibonacci sequence for repeated cases of these types,
see [3].

Polynomial complexity of the Gilman–Maskit discreteness algorithm 377

Since the total number of G-steps estimated before in [3] for all cases is poly-
nomial in the initial trace (initial trace is defined more precisely below), the word
length for the Fibonacci sequence might be exponential in terms of the maximal
initial trace.

The organization of this paper is as follows: In Section 3 we show that the
number of G-steps that contribute to a Fibonacci sequence type growth for the
hyperbolic-hyperbolic case with disjoint axes is not a polynomial function of the
initial trace and that in fact it is a doubly logarithmic function, that is, the loga-
rithm of a logarithm (Theorem 3.2) and in Section 4, we show that it is a logarith-
mic function for hyperbolics with intersecting axes (Theorem 4.2). In Section 5 we
use the results of Sections 3 and 4 to obtain bounds on the worst word length that
each case must consider (Theorems 5.1 and 5.2). Since in all forms the algorithm
proceeds by considering successive pairs of generators, these results improve Corol-
lary 5.4 of [3] and can be substituted into results of [4] to obtain the polynomial
complexity bound for the Turing machine implementation. This is done in the last
section, Section 6.

2. Notation and preliminaries

Here is some notation that will be used. We let GL(2,R)+ denote the general
linear (2× 2)-matrix group in R with positive determinant where R denotes the
real numbers. If g ∈ GL(2,R)+ and

g =

(
a b
c d

)
,

denote the trace of the equivalent matrix with determinant one by T (g) . That is,

T (g) =
a+ b

(ad− bc)1/2
.

Here saying g is equivalent to h means

g√
det(g)

=
h√

det(h)
.

We know both g and −g project onto the same element in PSL(2,R). The
algorithm picks the preimage with non-negative T (g) when normalizing the initial
generators in carrying out the calculation before each G-step in both hyperbolic-
hyperbolic cases and the repetitions of that type of case.

If g and h are the initial two matrices with T (g) and T (h) non-negative,
T will denote the maximal initial trace, which is the maximum of |T (g)| , |T (h)| ,
|T (gh)| and |T (g−1h)| . When the algorithm is implemented as a Turing machine

378 Yicheng Jiang

algorithm, the input includes polynomials with rational coefficients and their de-
grees. That is, the entries in the matrices are assumed to be given by polynomials
with rational coefficients, and the size of the entries is measured by the semi-norms
of the polynomials and by their degrees (see [3]). SI is used to denote the maximal
initial semi-norm. (More details are supplied in Section 6.) We remind the reader
that if

P (x) =
n∑

i=0

ai
bi
xi,

then the semi-norm of P is denoted by SN(P) and defined by

SN (P) =
n∑

i=0

(|ai|+ |bi|).

3. Hyperbolic-hyperbolic with disjoint axes

Suppose g, h ∈ GL(2,R)+ are two initial hyperbolic elements with disjoint
axes, and 2 < T (g) ≤ T (h) . Denote the ordered pair as (g, h) .

For any hyperbolic element f , let af be the attracting fixed point of f , and
rf the repelling fixed point. Let the cross ratio

C(g, h) =
(rg − ah)(ag − rh)

(rg − rh)(ag − ah)

if rg , ag , rh , ah are finite, and let the cross ratio be defined by continuity if any
one of the fixed points is infinite. We follow the algorithm as given on pp. 15–17,
steps I-7, I-8, I-9, and I-10 of [5] or equivalently pp. 182–183 of [2].

By the algorithm we may assume that the pairs are normalized so that the
cross ratio, C(g, h) < 1, the Jørgensen number µ(g, h) = |T ([g, h])− 2|+ |T (g)2−
4| > 1 and if T (gh) > 2, then we repeat this hyperbolic-hyperbolic case with the
pair (g, gh) or (gh, g) , and we always have T (gh) < T (h) . That is, throughout
this section we assume the transformations are normalized with T (h) > T (g) > 2
so that the hyperbolic-hyperbolic case is repeated precisely when T (gh) > 2.
Otherwise, (if T (gh) ≤ 2) the algorithm will stop, saying either that G the group
is discrete or that G is not discrete, or it will switch to another case, not a
hyperbolic-hyperbolic case.

We first establish a variant on the lower bound obtained on p. 23 of [5].

Lemma 3.1. With above assumption, we have

T (h)− T (gh) > 1
9 .

Proof. Since T (g) is invariant under conjugation, as in [5], we can normalize
g and h so that the repelling fixed point of g is at 0 and the attracting fixed

Polynomial complexity of the Gilman–Maskit discreteness algorithm 379

point of g is at ∞ . Since the axes are disjoint and the cross ratio is < 1, we can
normalize further so that the repelling fixed point of h is at 1 and the attracting
fixed point of h is at a with 0 < a < 1. Here a is just the cross-ratio. Then we
can express g and h in SL(2, R) as

g =

(
R 0
0 R−1

)
, h =

1

a− 1

(
aK −K−1 a(K−1 −K)
K −K−1 aK−1 −K

)

with 0 < a < 1 < R < K . Then following and extending the calculation on p. 20
in [5], we have

T (h)− T (gh) =
R− 1

1− a (R−1K −K−1 + aK − aR−1K−1).

From [1], we know the Jørgensen number will be

µ(g, h) =
(R−R−1)2(K −K−1)2

(√
a −√a−1)2 + (R−R−1)2.

Let q(x) = (x − x−1)2 , here q(x) is just the function 1/f(x2) of [1] and K , R
here are K2 , R2 in that paper. Then similarly to [1],

µ(g, h) =
q(R)q(K)

q
(√
a
) + q(R).

We have two cases to consider.

(i) q(R) > 1
2 . Since R > 1, from q(R) > 1

2 we can get R >
√

2 and R − 1 >

R/
√

2 (R+ 1). With 0 < a < 1 < R < K , we have

T (h)− T (gh) >
R(R−1K −K−1)√

2 (R+ 1)
>

R− 1√
2 (R+ 1)

=

(
(R+ 1)− 2

)
√

2 (R+ 1)
=

1√
2
− 2√

2 (R+ 1)
>

1

9
.

(ii) q(R) ≤ 1
2 . Since the Jørgensen number µ(g, h) is greater than 1, we have

1 < µ(g, h) = q(R)

(
q(K)

q
(√
a
) + 1

)
≤ 1

2

(
q(K)

q
(√
a
) + 1

)
.

Then q(K) > q
(√
a
)

= q
(√
a−1

)
. Since as in [1], q′(x) = 2x−3(x4 − 1) > 0 when

x > 1, we can get K >
√
a−1 > 1, so K2a > 1. Similarly to case (i), we know

1 < R ≤
√

2 . Then

R− 1 >
R

R+ 1
· 1− a√

(a− 1)2 + a(K −K−1)2
.

380 Yicheng Jiang

With this inequality, we can get, for this case,

T (h)− T (gh) >
K −K−1 +K−1(1− a) +RK−1(aK2 − 1)

(R+ 1)
√

(a− 1)2 + a(K −K−1)2

>
1

(R+ 1)
√(

aq(
√
a)/q(K)

)
+ a

>
1

(R+ 1)
√
a+ a

>
1

(
√

2 + 1)
√

2
>

1

9
.

By (i) and (ii), the lemma is proved.

Now consider the case when the word length grows as Fibonacci sequence. We
observe that a G-step results in the word length growing as Fibonacci sequence
only if

2 < T (gh) < T (g) ≤ T (h).

This condition dictates the next pair of generators so at the next G-step, the pair
will be (gh, g) and at the following G-step the pair will be (gh, ghg) or (ghg, gh) ,
i.e., the word length will increase as Fibonacci sequence.

So we look at that situation, to find a bound for T (gh) in terms of T (h)
and we then use this to get the bound for the number of G-steps in such growth.
Namely, we will show

T (gh) <
√

2T (h) + 1.

From this we will show the bound of number of such G-steps will not be a poly-
nomial function in the initial trace.

From the paper [5], we know if 2 < T (gh) < T (g) ≤ T (h) , we can normalize
the pair to be

g =

(
y2 0
0 1

)
and h =

(
2 −(z − w)

z − w 2zw

)

with

−1 < −y < −w < 0 < z < y < 1.

See Figure 1, where L is the common perpendicular geodesic of Axis (g) and
Axis (h) , let r , rg , rh denote the reflections about L , Lg , Lh , then g = rgr , and
h = rrh . (Note a slight difference in notation: here the w of [5] is replaced by
−w .)

Then

gh =

(
2y2 −y2(z − w)

(z − w) 2zw

)
.

Polynomial complexity of the Gilman–Maskit discreteness algorithm 381

-1 10-y y

Axis(h)

Axis(g)

z-w

L

Lg
Lh

Figure 1.

And

T (g) = y +
1

y
, T (h) =

2(1 + zw)

z + w
, T (gh) =

2(y2 + zw)

y(z + w)
.

So we have
2(y2 + zw)

y(z + w)
<
y2 + 1

y
≤ 2(1 + zw)

z + w
.

Because 0 < z < y < 1 and 0 < w < y < 1, then

0 < z + w < 2y < 2.

Here we have two cases:

(1) T (h) ≤ 4.

We know from Lemma 3.1, in this case,

T (h)− T (gh) > 1
9 .

If T (h) ≤ 4, to stay in the same case, the number of G-steps we have will be
bounded by a constant number C1 − 7.

(2) T (h) > 4.

T (h) =
2(1 + zw)

z + w
> 4z + w <

1 + zw

2
< 1.

Since T (gh) < T (g) , then

2(y2 + zw)

y(z + w)
<
y2 + 1

y
,

382 Yicheng Jiang

and we have

2(y2 + zw) < (y2 + 1)(z + w),

y2
(
2− (z + w)

)
< (z + w)− 2zw,

y2 <
(z + w)− 2zw

2− (z + w)
<

z + w

2− (z + w)
< z + w,

y <
√
z + w .

Then,

T (gh) =
2y

z + w
+

2zw

y(z + w)
<

2√
z + w

+
2

(y/w) + (y/z)
<

2√
z + w

+ 1

and

T (h) =
2(1 + zw)

z + w
>

2

z + w

so that we have

T (gh) <

√
4

z + w
+ 1 <

√
2T (h) + 1.

Suppose we stay in this case for n G-steps. Here we do not require these n
G-steps to be consecutive, and the initial step is labeled as G-step 0. Let t(i)
denote the maximal trace of the pair at i -th G-step. We have

t(i+ 1) ≤ t(i) since T (g) ≤ T (h), and T (gh) < T (h),

t(i+ 2) <
√

2t(i) + 1 since T (gh) <
√

2T (h) + 1

<
√

2t(i) + 1
2

√
t(i) since t(i) ≥ 4

= a
√
t(i) where a =

√
2 + 1

2 .

Let k = 2[n/2] , if t(n) ≥ 4, we have 4 ≤ t(n) < a2 k
√
t(0), then k

√
t(0) > 4/a2 ,

i.e.,

2[n/2] <
log2 t(0)

log2 (4/a2)
< 8 log2 t(0),

we can get n < 2 log2 log2 t(0) + 7. We can thus conclude:

Theorem 3.2. The total number of Fibonacci type G-steps for a sequence
that remains in the disjoint axes case, is bounded by

2 log2 log2 t(0) + C1

where C1 is a constant number and t(0) is the maximal initial trace. The bound
holds whether or not the Fibonacci type G-steps are consecutive.

Proof. From (1) and (2), we can say the number of G-steps for Fibonacci
sequence is at most

n < 2 log2 log2 t(0) + 7 + C1 − 7 = 2 log2 log2 t(0) + C1.

Polynomial complexity of the Gilman–Maskit discreteness algorithm 383

4. Hyperbolics with intersecting axes

In this section we use the algorithm for intersecting axes given in [2] and
the repetition criteria given there. We let g , h be two initial elements with
intersecting axes, and assume by the repetition criteria that 2 < T (g) ≤ T (h) .
As in the previous section, t(i) denotes the maximal trace at G-step i . With the
current notation we know

Lemma 4.1. The number of G-steps that stay in this case beginning at
G-step i is bounded by 169 · t(i)2 .

Proof. See Theorem 5.2 in [3].

Now consider the G-steps with word length growing as Fibonacci sequence.
From Section 2.5 and also step 2 on p. 181 in [2], we can see that the word length
increases as a Fibonacci sequence only if

2 < T (gh) < T (g) ≤ T (h) ≤ T (gh−1),

i.e. this is what is called a “turn a corner step” in Section 2.5 of [2].
In this case we will show

T (gh)

T (gh−1)
<

1

T (h)− 1
.

Since this is the intersecting axes case, we can normalize g to

g =

(
k2 0
0 1

)
with k > 0, k 6= 1,

and let the attracting fixed point of h be x with x > 0, and the repelling fixed
point of h be −1,

h =

(
xR2 + 1 xR2 − x
R2 − 1 R2 + x

)
with R > 1.

Then

gh =

(
xk2R2 + k2 xk2R2 − k2x
R2 − 1 R2 + x

)

and

T (g) = k +
1

k
, T (h) = R+

1

R
, T (gh) =

xk2R2 + k2 +R2 + x

kR(x+ 1)
.

To stay in this case, we must have

T (gh−1) > T (gh),

384 Yicheng Jiang

-1 1 x

- +

0

Axis(h)

Axis(g)
-

+

Figure 2.

otherwise, the algorithm will stop at the acute triangle step. From

T (gh−1) =
k2R2 + k2x+ xR2 + 1

kR(x+ 1)
>
xk2R2 + k2 +R2 + x

kR(x+ 1)
= T (gh),

we get (k2 − 1)(1 − x)(R2 − 1) > 0. By R > 1, we have (k2 − 1)(1 − x) > 0.
There are two cases to consider:
(1) x > 1 and k < 1. (See Figure 2 for this situation.)

Let l = 1/k > 1, then 1 < l ≤ R . Since T (gh) < T (g) , we can get
l2(R − 1)(R − x) < (R − 1)(1 − xR) . By x > 1, and R > 1, we get R < x and
l2 > (xR− 1)/(x−R) .

Let f(t) = (a+ bt)/(at+ b) , where a = xR2 + 1, b = R2 + x , and a − b =
(x− 1)(R2 − 1) > 0, we have f ′(t) = (b2 − a2)/(at+ b)2 < 0. Then

T (gh)

T (gh−1)
= f(l2) < f

(
xR− 1

x−R

)
=

R

R2 −R+ 1
=

1

T (h)− 1
.

(2) k > 1 and 0 < x < 1.
This time we have 0 < x < 1 < k ≤ R . Then by T (gh) < T (g) , we can get

x(k2R − 1) < k2 − R , so k2 > R and x < (k2 −R)/(k2R− 1) < 1. Consider
T (gh)/T (gh−1) = (xa+ b)/(a+ xb) , where a = k2R2 + 1, b = k2 + R2 and
a − b = (k2 − 1)(R2 − 1) > 0. As in the first case, let f(t) = (ta+ b)/(a+ tb) .
Then f ′(t) = (a2 − b2)/(a+ tb)2 > 0.

T (gh)

T (gh−1)
= f(x) < f

(
k2 −R
k2R− 1

)
=

1

R− 1 + (1/R)
=

1

T (h)− 1
.

Polynomial complexity of the Gilman–Maskit discreteness algorithm 385

From (1), (2), if T (gh) < T (g) ≤ T (h) ≤ T (gh−1) , we always have

T (gh)

T (gh−1)
<

1

T (h)− 1
.

Denote the pair of i -th G-step as (gi, hi) . Since the algorithm is trace mini-
mizing, to estimate the maximal number of G-steps of Fibonacci sequence, we can
suppose all G-steps satisfy T (gihi) < T (gi) ≤ T (hi) ≤ T (gih

−1
i) , i.e. that all will

contribute to the word length increasing as Fibonacci sequence. We have following
relations:

gi+1 = gihi,

hi+1 = gi,

gi+1h
−1
i+1 = gihig

−1
i ,

T (gi+1h
−1
i+1) = T (hi).

Let t(i) be the maximal trace of the pair (gi, hi) , i.e t(i) = T (hi) .

t(i+ 3)

t(i)
=
T (hi+3)

T (hi)
=
T (gi+2)

T (hi)
=
T (gi+1hi+1)

T (gi+1h
−1
i+1)

<
1

2
when t(i+ 1) ≥ 3.

Suppose t(n) ≥ 3 and k = [1
3n] , then

3 ≤ t(n) <
(

1
2

)k
t(0),

k + log2 3 < log2 t(0),

n < 3 log2 t(0)− 2.

So if T (h) ≥ 3, there are at most 3 log2 t(0)− 2 G-steps.

We can now obtain one of our main results:

Theorem 4.2. The number of Fibonacci growth G-steps for the intersecting
axes case will be bounded by

3 log2 t(0) + C2

where C2 is some constant number. This is true whether or not these Fibonacci
type G-steps are consecutive.

Proof. If T (h) < 3, we know from Lemma 4.1, that the number of G-steps
will be bounded by a constant number C2 + 2. Then from the above discussion,
the total number of G-steps for this case will be bounded by

3 log2 t(0)− 2 + C2 + 2 = 3 log2 t(0) + C2.

Thus for both cases, the number of G-steps of Fibonacci sequence length
growth is bounded by a logarithmic function of the initial trace.

386 Yicheng Jiang

5. Worst word length estimates

Now we use the results of the last two sections to give new estimates for
the word lengths of [3], [4]. The purpose here is to consider the mixture of Fi-
bonacci G-steps and non-Fibonacci G-steps, so that we can get the worst word
length in general. Recall that we are only looking at G-steps that remain in a
hyperbolic-hyperbolic case, and before each G-step, the generator pair (g, h) will
be normalized as needed so that 2 < T (g) ≤ T (h) .

For an ordered generator pair (g, h) with T (g) ≤ T (h) , let l1 be the word
length of h and l2 be the word length of g , i.e. the length pair would be (l2, l1) .
Also let d = l1 + l2 , i.e. d is the word length of gh since from the algorithm, there
is no possibility for word cancellation between g and h .

Denote n consecutive Fibonacci G-steps as Fn , i.e. Fn is

(g, h)→ (gh, g)→ (ghg, gh)→ (ghg2h, ghg) · · ·
with n+ 1 pairs, and m consecutive non-Fibonacci G-steps as Lm , i.e. Lm is

(g, h)→ (g, gh)→ · · · (g, gmh)

with m+ 1 pairs.
If l1 , l2 and d are the corresponding word lengths of h , g and gh before Fn

or Lm , denote l1(Fn) , l2(Fn) and d(Fn) be the new value of the corresponding
length after n consecutive Fibonacci steps, i.e., let Fn be (g0, h0) → (g1, h1) →
· · · → (gn, hn) , then

l1 = the word length of h0 ,
l2 = the word length of g0 ,
d = l1 + l2 , the word length of g0h0 ,
l1(Fn) = the word length of hn ,
l2(Fn) = the word length of gn ,
d(Fn) = l1(Fn) + l2(Fn) , the word length of gnhn .

Similarly let l1(Lm) , l2(Lm) , d(Lm) denote the corresponding length after Lm .
We also allow Fn and Lm to be composed with each other. For example,

FnLm means we have n consecutive Fibonacci G-steps first, then followed by m
consecutive non-Fibonacci G-steps, and the end pair of Fn will be the initial pair
of Lm .

With this notation, we have Fn1Fn2 = Fn1+n2 , Lm1Lm2 = Lm1+m2 , and
li(Fn1Fn2) = li(Fn1+n2) , li(Lm1Lm2) = li(Lm1+m2) , i = 1, 2.

For n > 0 and m > 0, we have

l1(Fn) = F (n− 3)l1 + F (n− 2)l2,

l2(Fn) = F (n− 2)l1 + F (n− 1)l2,

l1(Lm) = m · l2 + l1,

l2(Lm) = l2.

Polynomial complexity of the Gilman–Maskit discreteness algorithm 387

Then

d(Fn) = l1(Fn) + l2(Fn) = F (n− 1)l1 + F (n)l2 < 2n(l1 + l2) = 2nd

and

d(Lm) = l1(Lm) + l2(Lm) = m · l2 + l1 + l2 < (m+ 1)(l1 + l2) = (m+ 1)d.

Denoting F0 as the empty step, then d(Fn) ≤ 2nd for n ≥ 0. Similarly denoting
L0 as the empty step, we have d(Lm) ≤ (m+ 1)d for m ≥ 0.

As our purpose is to get a bound for the word length after Fn1Lm1 · · ·FnkLmk ,
we need to use some additional notation. Given l1 , l2 , the initial word lengths of
h and g , and d = l1 + l2 , define

l1(F ′n) = 2n−1(l1 + l2),

l2(F ′n) = 2n−1(l1 + l2),

l1(L′m) = ml2 + (m+ 1)l1,

l2(L′m) = l2.

Then we have li(Fn) ≤ li(F ′n) and li(Lm) ≤ li(L′m) , i = 1, 2. By the fact that

d(F ′n) = l1(F ′n) + l2(F ′n) and d(L′m) = l1(L′m) + l2(L′m),

we get d(F ′n) = 2nd with n ≥ 0 and d(L′m) = (m+ 1)d with m ≥ 0.
Just as we compose Fn and Lm , we have a similar composition between F ′n

and L′m . Then it is easy to check

li(Fn1Lm1 · · ·FnkLmk) ≤ li(F ′n1
L′m1
· · ·F ′nkL′mk), i = 1, 2,

and
d(F ′nL

′
m) = d(L′mF

′
n) = (m+ 1)2nd.

Suppose we stay in one of the hyperpolic-hyperbolic cases for N G-steps, and
with a sequence Fn1 , Lm1 , Fn2 , Lm2 , . . . , Fnk , Lmk , where the n ’s and m ’s
are non-negative integers. Let w(N) be the longest word length in the initial pair
after these G-steps, and let l1 , l2 and d be the initial word length of h , g and
gh , then

w(N) < d(Fn1Lm1 · · ·FnkLmk) = l1(Fn1Lm1 · · ·FnkLmk) + l2(Fn1Lm1 · · ·FnkLmk)

< l1(F ′n1
L′m1
· · ·F ′nkL′mk) + l2(F ′n1

L′m1
· · ·F ′nkL′mk) = d(F ′n1

L′m1
· · ·F ′nkL′mk)

= d(F ′n1
F ′n2
· · ·F ′nkL′m1

· · ·L′mk) = d(F ′nL
′
m) = (m+ 1)2nd,

where n = n1 + · · ·+nk is the total number of G-steps for the Fibonacci sequence,
and m = m1 + · · · + mk is the total number of G-steps for the non-Fibonacci
sequence, and d = 2, the sum of word lengths of the initial pair.

From the previous sections, we know for both cases, there are bounds for such
n and m .

For the disjoint axes case, from Theorem 3.2, n < 2 log2 log2 t(0) + C and
from Lemma 3.1, m < 9

(
t(0)− 2

)
, we obtain

388 Yicheng Jiang

Theorem 5.1. The worst word length for the disjoint axes case is

w(N) < C1t(0)
(
log2 t(0)

)2

where C1 is some constant.

For the intersecting axes case, by Theorem 4.2, n < 3 log2 t(0) + C , and
Lemma 4.1, m < 169t(0)2 , so

Theorem 5.2. The worst word length for the intersecting axes case is

w(N) < C2t(0)5

where C2 is some constant.

We observe that these bounds are actually independent of the number N of
pairs of generators that we must consider.

6. Complexity estimate

A complete discussion of algorithms that provides a conceptual framework in
which to discuss the real number algorithm and the Turing machine algorithms ap-
pears in [2] (see Chapter 14, Section 14.1 and pp. 167–173 or [3], p. 94, Section 3.2).
The real number algorithm is considered as a BSS-machine (a Blum–Shub–Smale
machine).

The complexity analysis needed for a number of different forms of the algo-
rithm is carried out in [3]. In particular, it is shown that as a BSS machine the
real number algorithm is of linear complexity. But only an exponential bound is
found for the Turing machine algorithms, TM1 and TM2, where the algorithm
is implemented using symbolic computation with minimal polynomials in finite
extensions of the rationals.

The analysis in [3] takes into account bounds on (1) the number of pairs of
generators the algorithm considers before it stops, (2) the length of the longest
words the algorithm must process (denoted Length (T,D) in [3]), (3) the com-
plexity of carrying out basic arithmetic operations using symbolic computation in
a finite extension of the rationals, and (4) how the algorithm increases the size of
the numbers (semi-norm of the polynomials) one is dealing with.

In particular Lemma 5.3 and Corollary 5.4 of [3] show that Length (T,D)
is a product of factors, one for each geometric case. But t(0) = T . That is,
the t(0) that appears in Theorems 5.1 and 5.2 here is the same as T . Thus we

are able to replace 29T and 2169T 2

, the exponential factors used in [3] for the
hyperbolic-hyperbolic cases, by T 5 and T (log T)2 , our two estimates for w(n) .

We remark that the estimates obtained here are better because they use more
of the force of the trace decreasing property of the algorithm than [3].

Polynomial complexity of the Gilman–Maskit discreteness algorithm 389

We apply Theorems 5.1 and 5.2 to bound the complexity of the Turing ma-
chine implementations of the algorithm.

We recall that there are two different Turning machine implementations of the
algorithm: for TM 1 the input is eight minimal polynomials one for each of the
eight entries in the two input matrices, S0 the maximal semi-norm of these eight
polynomials and D the product of their degrees. For TM 2 the eight initial entries
are assumed to lie in the same finite simple extension of the rationals, Q(γ) , an
extension of degree D . The input for TM 2 includes the minimal polynomial for
γ and the representing polynomials for the eight entries, that is, the polynomials
in γ that give each of the eight matrix entries and SI the maximal semi-norm of
these nine polynomials.

In short, we let T be the maximal initial trace, D be the degree of the simple
extension field of Q or the product of the eight degrees, S0 be the maximal initial
semi-norm of TM 1, SI be the maximal initial semi-norm of TM 2, L(SN) be
the log of the semi-norm SN and Length (T,D) be the worst word length in
initial generators of words considered by the algorithm. For more details of these
definitions and notation, one can check [3] and [4].

First, from Theorem 5.1, for a hyperbolic pair with disjoint axes case, the
word length w(n) would be bounded by w(n) < C1T (log2 T)2 . Second, from
Theorem 5.2, for a hyperbolic pair with intersecting axes case, the worst is w(n) <
C2T

5 .

Corollary 5.4 of [3], says that

Length (T,D) = (1− δih)(2δdh9T)2T (34D2 + 1)9 + δih2(13T)2

,

where
δdh = 1 when the initial generators are a pair of hyperbolics with disjoint

axes and 0 otherwise, and
δih = 1 when the initial generators are a pair of hyperbolics with intersecting

axes and 0 otherwise.
Substituting our bounds into the proof of Corollary 5.4 [3], we get

Length (T,D) = (1− δih)
(
δdhC1T (log2 T)2 + 1

)
2T (34D2 + 1)9 + δihC2T

5.

We next use Corollary 7.7 of [3]. It says that the complexity of TM 1 is at
worst

O
(
D8
(
L(S0)

)2 ·
[
D
(
2(D − 1)Length (T,D) + 1

)
Length (T,D)

]2 · P (T,D)
)

where P (T,D) = 170T 2 + 32D2 + 14.
We substitute the new bound for Length (T,D) into that of Corollary 7.7 of

[3] and also use Lemma 7.6 of [3], which says that T ≤ 4(S0D)2 , to conclude

Length (T,D) ≤ O
(
S10

0 D22
(
log2(S0D)

)2)
and P (T,D) ≤ O(S4

0D
4).

Since L(S) < S and log2 S < S , we obtain

390 Yicheng Jiang

Theorem 6.1. The complexity of TM 1 at worst is

O
((
L(S0)

)2
S44

0 D104
(
log2(S0D)

)8)
or O

(
S54

0 D112
)
.

For TM 2, from Corollary 3.3 in [4], we know the complexity is

O
(
D30

(
L(SI)

)2 ·
[
D
(
2(D − 1)Length (T,D) + 1

)
Length (T,D)

]2 · P (T,D)
)
,

and by Lemma 3.2 in [4], T ≤ 4(1 + SI)
2 , we have

Length (T,D) ≤ O(S10
I D

18) and P (T,D) ≤ O(S4
I +D2).

We conclude

Theorem 6.2. The complexity of TM 2 at worst is

O
((
L(SI)

)2
S28
I D

108
)

or O
(
S30
I D

108
)
.

Remark. The first completely correct discreteness algorithm was given by
Rosenberger [7]. While the Gilman–Maskit algorithm is not exactly the same, it
is likely that the complexity analysis given here could be modified to apply to a
similar Turing machine implementation of the Rosenberger algorithm over a finite
extension of the rationals and that the complexity would also be polynomial.

References

[1] Gilman, J.: A geometric approach to Jøgensen’s inequality. - Adv. Math. 85, 1991, 193–
197.

[2] Gilman, J.: Two-generator discrete subgroups of PSL(2,R). - Mem. Amer. Math. Soc.
117, 1995, 1–204.

[3] Gilman, J.: Algorithms, complexity and discreteness criteria in PSL(2,C). - J. Anal.
Math. 73, 1997, 91–114.

[4] Gilman, J.: Complexity of a Turing machine discreteness algorithm. - Contemp. Math.
256, 2000, 165–171.

[5] Gilman, J., and B. Maskit: An algorithm for 2-generator Fuchsian groups. - Michigan
Math. J. 38, 1991, 13–32.

[6] Maskit, B.: Kleinian Groups. - Springer-Verlag, 1988.

[7] Rosenberger, G.: All generating pairs of all two-generator Fuchsian groups. - Arch.
Math. (Basel) 46, 1986, 198–204.

Received 18 January 2000
Received in revised form 27 November 2000

