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Abstract. We deal with the iteration of transcendental entire functions, and prove some
properties on the Julia sets.

1. Introduction and main results

Let f: C — C be a transcendental entire function; we define the iterated
sequence of f by f°(z) = z, f**(z) = fo f*(2), n = 1,2,.... The Fatou
set and the Julia set are defined by N(f) = {z € C | {f"} is normal at z}
and J(f) = C\ N(f) respectively. Qiao ([7]) proved that the Julia set of a
transcendental entire function of finite order has infinitely many limiting direc-
tions; here a limiting direction of J(f) means a limit of the set {argz, | z, €
J(f) is an unbounded sequence}. The example in [1] shows that there exists an
entire function of infinite order whose Julia set has only one limiting direction. In
this note we shall prove

Theorem 1. Let f be a transcendental entire function of lower order A\ < co.
Then there exists a closed interval I € R such that all § € I are the common
limiting directions of J(f™), n=0,+1,%2,---, and mesI > 7/ max( ,A). Here
f(") denotes the n-th derivative or the n-th mtegral primitive of f for n >0 or
n < 0 respectively.

We know that Mittag-Leffler’s function

Z 0<a<?2,
o 1—|—om

is a transcendental entire function of order 1/«. Put Q(—0,0) = {z € C \ -0 <
arg < 0}. By the discussion used in [3] it is easy to verify that for any F,(z),
0 < a < 2, there exists a constant k£ > 0, such that

fak(C\Q( ; ;))CC\Q( ;%)
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here for = Eo(2) — k. Hence J(far) C Q(—a/2m, a/27). This shows that the
estimate of the length of the closed interval I in Theorem 1 is sharp.

Liverpool ([5]) proved that: if J(f) lies in the half-plane {z € C | Rez > 0}
for a transcendental entire function f of order < 1, then there exists a positive
constant ¢ such that for any horizontal strip region S with width ¢, J(f) NS is
unbounded; here a strip region means a region between two parallel straight lines.
It is easy to see from Theorem 1 that f is of lower order > 1 provided J(f) lies
in a half-plane. Therefore, Liverpool’s result is valid only for entire functions with
order and lower order one. We shall prove

Theorem 2. Let f be a transcendental entire function of lower order 1, J(f)
lie in the half plane {z € C | Rez > 0}. Then there exists a positive constant c
such that all J(f™)N S, n=0,£1,42,--, are unbounded for any non-vertical
strip region S with width c.

Liverpool ([5]) has pointed out that
{zeC|@n+)r<Imz<(2n+2)r}nJ(e* —1) =0, n=0,+1,+2,....
But we shall prove this kind of “gap strips” will disappear for a class of entire

functions of order > 1.

Theorem 3. Let f be a transcendental entire function of order o > 1,
and all limiting directions of J(f) belong to (—w/o,7/0). Then all J(f™)N S,
n=0,+1,42,---, are unbounded for an arbitrary horizontal strip region S'.

Theorem 4. Let f be a transcendental entire function of order ¢ > 1, and
lower order \ > 3. If all limiting directions of J(f) belong to [—m/2X,7/2)],

then all J(f(”)) NS, n=0,£1,42,..., are unbounded for an arbitrary strip
region S which is parallel to 0 € (—m /2, 7/2\).
2. Some lemmas

In order to prove the above results, we investigate the growth of f on its
Fatou set. The following two lemmas are the improvements of the main results
in [2] and [5] respectively. For zp € C and 60, € R, put

Q(20,0,0) ={z € C||arg(z — z0) — 0] < 0}.

We have

Lemma 1. Let f be a transcendental entire function, and €(zo,0,d) C
N(f). Then
F() =0, 2 €Q(20,0,8)

for arbitrary ¢’ € (0,9).
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Proof. Since Q(zg,60,0) C N(f), there is an unbounded component Gq of
N(f) such that ©(z9,60,0) C Go. By [1] we know that every component of N(f)
is a simply connected hyperbolic domain. Let f(G() belong to some component

G of N(f). It is easy to verify that the mapping
O

P 672'920)#/25 -1

=h(z) = . .
w (Z) (e—zez _ e—zHZO)Tr/25 +1

maps §2(zg,0,5) conformally onto the unit disk {|w| < 1}. Put h=}(0) = a €
Q(z0,0,0). By the Riemann theorem, there is a conformal mapping w = ¢g(z): G —

{|w| < 1} satisfying g(f(a)) =0 and ¢'(f(a)) > 0. Hence F(w) =go foh™!(w)
is an analytic mapping from the unit disk to itself. By the Schwarz lemma,

(1) [F(w)| < |wl,  fw| <1.
Since g1 is univalent on {|w| < 1}, by Koebe’s distortion theorem we have
@) 7 ) = F@)g' (@) | £ 1l <1,
Since f =g 'o Foh, it follows from (1) and (2) that
1
B VOISO e ¢ et
For arbitrary z € Q(zg,6,4"), put
n=z—z=re® o= % /\—sm% > 0.
Then
,  |1—(cosa(a—0))/r*+i(sino(a—0))/r™ + o(1/r) ?
@) = 14 (coso(a—0))/r* —i(sino(a —0))/r™ + o(1/r*)
1—2(cosa(a—0))/r* +o(1/r*)
1+2(cosa(a 9))/r* 4+ o(1/r*)
Thus
| h(2)] > 1—|h(2)]?  4(cosao(a—8))/r* +o(1/r*)

2 B 14 2(coso(a—0))/r*+ o(1/re)
AN/r* +o(1/r%)
T 142/re+o(l/re)
By the above inequality and (3) we can easily deduce the result of Lemma 1. The
proof of Lemma 1 is complete.
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For any real numbers a > 0 and A > 0, put
H(a,A)={z€ C|Rez>a, |Imz| < A}.
We have

Lemma 2. Let f be a transcendental entire function, and H(a, A) C N(f),
then

F@I=0(ew ). <€ o)
for arbitrary A" € (0, A).

Proof. Let Gy, G be two components of N(f) such that H(a,A) C G,
f(Go) C G. It is easy to verify that

maps H(a, A) conformally onto {Rew > 0}\{|w| < 1}, and w = ha(z) = (2—2)/2
maps {Rez > 1} conformally onto {|w| < 1}. By the Riemann theorem, there
exists an univalent analytic function g(z) which maps G onto {|w| < 1}. Hence
F(w) = go foh{'ohy(w) is an analytic mapping from the unit disk to itself.
As in the proof of Lemma 1 we obtain

|wl

(4) 97" o F(w)] = o(m) | < 1.

Obviously, f = g o Fohgohy and hi(z) € {Rew > 1} for z € H(a, A’) and
sufficiently large |z|. By similar calculations as in the proof of Lemma 1, we can
deduce the result of Lemma 2. The proof of Lemma 2 is complete.

Below we shall use the fundamental concepts and basic notations of Nevan-
linna’s theory ([4]).

Lemma 3 ([7]). Let f be a transcendental entire function satisfying
T

r—=o ™M

=0

for some fixed natural number m. Then for arbitrary « € [0,27), the set

m 2k —1 2
J(f)ﬁ[U{zEC’ K 7r+a<argz<—k7r+aH
k=1 m m

is unbounded.

Lemma 4 ([4]). Let f be a transcendental entire function. Then

m(r,‘?) :O(long(r, f)), r — 00,

at most with an exceptional set of r whose linear measure is finite.



On limiting directions of Julia sets 395

3. The proofs of the theorems

The proof of Theorem 1. We distinguish the following two cases:

(A) Suppose f is of lower order A < 1. We shall prove that, all 6 € [0, 27) are
the limiting directions of all J(f(”)), n =0,+1,+2,---. Assume this statement
is not true, then there exist 6 € [0,27) and an integer ny such that 6 is not a
limiting direction of J(f™°). Therefore J(f™0) N (0,6,6) is bounded for some
constant 0 > 0. By Lemma 1,

() [fTO @) =0(=7),  argz=0;

here k is a positive constant. Since the lower order of f™°(z) is less than %, by
(5) and Wiman’s theorem on minimum modulus (see [4]) we get a contradiction.

B) Suppose f is of lower order A > 1 put
2
E, = {ew | 6 is a limiting direction of J(f("))}.

Obviously, E,, is a closed set on the unit circle I'. Denote E = (), ., E), here
Z is the set of integers. It is easy to see that the arguments of the points in F
are the common limiting directions of all J(f(™), and the components of E are
closed arcs on I'. Put

0
v = {a ‘ ais an open arc on I' with length < N and its endpoints are not in E}

Assume the maximum component of FE is of length < 7/, then the set 7 covers T".
So there exist finitely many aq, a, ..., a, € 7 such that U§:1 a; D I'. Denote the
arguments of two endpoints of «; by 0,,,0;,, 0;, < 0;,, respectively, and suppose
0;, is not the limiting direction of J(f(1)), 6;, is not the limiting direction of
J(f("2)). By Lemma 1,

(6) ) (2)| = O(|zFn),  argz =0,
(7) |f (732 (2)]

Here k;, , k;, are two positive constants.
Put m = mini<;<,(nj,,nj,). Note

= O(|z|"2), argz = 0,,.

frnD(z) = /Oz ) () dn + e,

where ¢ is a constant, and the above integral path is the segment of a straight line
from 0 to z. From the above equality and (10) we deduce

[fPaTD @) =0z H), gz =0,
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Repeating the above discussion, we can obtain
[F () = 0(="),  argz =6,
where ki is a positive constant. By the same method we have
[ () = O0(2*),  argz =6,

where ko is a positive constant. Note that 6;, —0;, < m/A. By the Phragmén-
Lindelof principle we have

’f(m)(z)‘ = O(‘Zlk)a 9j1 <argz < ejza

where k = max(ky,ks). Since aq,9,...,q, cover I', it follows that f is a
polynomial. This contradicts the transcendence of f. The proof of Theorem 1 is
complete.

The proof of Theorem 2. Assume the conclusion of this theorem is not true;
then there exists a sequence of non-vertical strip regions .S; with width ¢; — oo,
and a sequence of J(f(™)) such that J(f("))NS; is bounded. Let S; be parallel
to the ray argz =0, € (—%77, %ﬂ') Choose points z; € S;, j =1,2,.... Then
theray L;:z=z; + te’s | t >0, lies on S;. By Lemma 2,

0 I =0(ew ). se;

J

We distinguish two cases:
(A) Suppose there are infinitely many n; > 0 such that (8) holds. Integrating
f)(2), by (8) we easily obtain

s — 2r
@ =0(ldew ZA). el

J
Repeating this procedure we can get
" 2m
(9) [f(2)] = O[]V exp—|2 ), z €Ly
J
Since L; is not vertical, we can draw two rays:
L'j:z:zj—f—temj, t>0, L"j:z:zj—I—teZﬂj7 t >0,

satisfying a; < B;, «a;,08; € (%7‘(‘, %7‘(‘) The angle from L; to L and the angle

from L7 to L; are both less than m. Since there are no points of J(f) in the left
half-plane, by Lemma 1

(10) F)| =0,  zeLjorLL.
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By (9), (10) and the Phragmén—-Lindel6f principle we have

_ 27
lf(2)| = O(|z\”ﬂ exp c—]z|>, z € C.

J

We thus obtain

7—00 T Cj
Letting c; — oo we get
T
tim L) g
rT—00 /r'

By Lemma 3, we deduce a contradiction.

(B) Suppose there are infinitely many n; < 0 such that (8) holds. As in

, we can draw the ray L. and the ray L. ; hence ollows. Using to
A d h L; d th L;’ h 10) foll Usi 10
estimate the integrand, we can deduce

|f("j)(z)| = O(|z|*T), z € L;- or L;-’.

It follows from this equality, (8) and the Phragmén—Lindel6f principle that

(nj)
(1) o L f) 2
r—00 T Cj

On the other hand, by Lemma 4,

()
fni)

T@ﬂ%“hsﬂnﬂmww(n )s0+dwﬂvjwh+@bw

for sufficiently large r, r ¢ Ejl, mes EJ1 < 0o. Here k; is a positive constant.
Note that n; < 0. Repeating the above estimation, we obtain

(12) T(r, f) < (1 + 0(1))T(7“, f("j)) + Kjlogr

for 7 ¢ Ej, mes E] < co. Here Kj is a positive constant. By (11) and (12), we

have
lim AGY)) < 2—7T
oo T ¢

Furthermore, by the same method as used in (A), we can deduce a contradiction.
The proof of Theorem 2 is complete.
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The proof of Theorem 3. Assume there exist a horizontal strip region S and
an integer n such that J(f™) N S is bounded. Denote the width of S by c.
Choose a point 2y € S, and draw theray L:z =29+ t, t > 0. By Lemma 2,

(13) 1™ (2)| = O(exp 2?7T|z|), z € L.

Since all limiting directions of J(f) belong to (—7m/0,7/0), we can draw two
rays: L' 1z = zo+te’, t > 0, and L” : 2z = 29 + te™ ", t > 0, such that
(—0,0) C (—m/o0,m/0) and all limiting directions of J(f) belong to (—6,0). By
Lemma 1,

(14) [f(2)=0(z"),  zeL orL"

here k is a positive constant. Put m = min(n,0). Using (13) and (14) to estimate
the integrand, we can obtain

2
(15) e =0l e 0l ). sl

(16) 1F™ ()] = O(z|*2), zeL or L

here ki, ko are two positive constants. It follows from (15), (16) and the Phrag-
mén—Lindelof principle that

2
an =0k e el -0 <ae— ) <.

Since all limiting directions of J(f) belong to (—m/g,7/0), by Lemma 1, there
exists a positive constant k such that (14) holds for 0§ < arg(z — z9) < 27 — 6.
This and (17) imply that f(™ is of order < 1. This is a contradiction. The proof
of Theorem 3 is complete.

The proof of Theorem 4. Assume there exist a strip region S which parallels
0 € (—m/2X\,7/2)), and some J(f™) such that J(f) NS is bounded. Denote
the width of S by c¢. Choose a point zg € S, by Lemma 2,

2 :
\f(")(z)\:O<eXp—7T]z\), z€L: 2=z +te? t>0.
c
Obviously, we can draw two rays
L':z=z+te!, t>0, Lz =z +te?®, t>0,
such that (61,02) D [—7/2\,7/2)], 02 — 6 < w/X and 6 — 61 < 7w/A. Using the
same method as in the proof of Theorem 3, we can deduce

2
7 =0(ew Zlal), oy < arg(e - z0) <0

1™ (2)] = O(|z]?), 0, < arg(z — z) < 01 + 2.

It follows that f is of order < 1. This is a contradiction. The proof of Theorem 4
is thus complete.
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