
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 26, 2001, 401–407

THE HYPERBOLIC METRIC OF A RECTANGLE
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Abstract. By using the theory of elliptic integrals we give an exact formula for the hyperbolic
density of a rectangle at its centre. We compare this to the hyperbolic density of an infinite strip
and obtain (in this special case) a quantitative version of the Carathéodory Kernel Theorem.

1. Introduction

The upper half-plane H supports the hyperbolic metric λH(z) |dz| , where
λH(z) = 1/ Im[z] , and if f is any conformal map of H onto a domain D , then
the hyperbolic metric on H transfers to the hyperbolic metric λD(z) |dz| on D ,
where

(1.1) λD
(
f(z)

)
|f ′(z)| = λH(z).

The hyperbolic distance dD(z1, z2) between points z1 and z2 in D is then the
infimum of the integral of λD(z) |dz| along γ taken over all curves γ joining z1

to z2 in D . The function λD is the hyperbolic density of D and one of its most
important properties is its monotonicity: if U and V are conformally equivalent
to H , and if U ⊂ V , then λV ≤ λU on U . This attractive property allows one to
estimate the hyperbolic density of a given domain by comparing it with domains
whose hyperbolic densities are known; however, its usefulness is severely limited
by the scarcity of such comparison domains. With this in mind, we explore these
ideas in greater depth in the case of rectangular domains. For more details on the
hyperbolic metric see, for example, [1] and [8].

It is convenient to work with normalized rectangles and throughout, we shall
be considering the rectangle

R(l) = (−l, l)× (−π/2, π/2),

where l > 0, and where we identify R2 with C . If l = +∞ then R(l) is the
infinite strip given by points x + iy where |y| < π/2, and we prefer to denote
this by S . The function z 7→ log z− πi/2 maps H conformally onto S and using
(1.1) we see that λS(x) = 1 for all real x . By using the classical theory of elliptic
integrals, we are able to give the following exact formula for λR(l)(0) (clearly one
can obtain a corresponding result for any rectangle by applying a scaling map).
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Theorem 1.1. With R(l) as above, we have

λR(l)(0) = 1 + 2
∞∑

n=1

1

cosh 2nl
.

We shall make three applications of this result, and we now describe these.
First, it is well known that if D is a convex domain, then

1

dist (z, ∂D)
≤ λD(z) ≤ 2

dist (z, ∂D)

(see [8]). These inequalities are best possible, and they show that if D is a square
of side 2a and centre 0, then 1/a ≤ λD(0) ≤ 2/a . As a by-product of the proof
of Theorem 1.1 we obtain the following result.

Theorem 1.2. Let D be a square of side 2a and centred at the origin. Then

λD(0) =
K(1/

√
2 )

a
=

1 · 8541 . . .

a
,

where K is the elliptic integral given by

(1.2) K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

.

Our second application concerns the Carathéodory Kernel Theorem. This
result implies that if Dn is an increasing sequence of simply connected domains
whose union D is conformally equivalent to H , then λDn(z) decreases strictly,
and monotonically, to λD(z) as n → ∞ (see [3] and [6]). It seems difficult to
obtain a quantative version of this general result; however, if we apply it to R(l)
and S (as l→ +∞) we can establish, at least in this case, the following accurate
estimate of the rate of convergence of λR(l)(0) to 1.

Corollary 1.3. Suppose that l > π/2 . Then

1 +
2

cosh 2l
< λR(l)(0) < 1 +

2

cosh 2l
+

5

e4l
.

We remark that by symmetry (and scaling) there is no loss of generality in
assuming that l > π/2 here. Note that this shows that λR(l)(0) ∼ 1 + 4e−2l as
l→ +∞ , and it also gives an explicit estimate of the error term. We shall see later
(in the proof of the next result) that one can give similar estimates for λR(l)(x)
for any real x .

Our final application concerns estimates of the hyperbolic length in R(l) .
Hayman ([5, Lemma 6, p. 170]) has used a method closely related to extremal
length (but not involving the hyperbolic density) to obtain estimates of the hyper-
bolic distance in R(l) . He shows that if 0 < x < l − π/2, then x ≤ dR(l)(0, x) ≤
x + π/2. It is natural to expect that dR(l)(0, x) = x + o(1) as l − x → +∞ , and
we shall establish such a result (which does not seem to follow from Hayman’s
method). Our result (which could be improved slightly) is as follows.
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Theorem 1.4. Suppose that 0 < x < l − π/2 . Then

(1.3) x < dR(l)(0, x) < x+
4

e2(l−x)
.

This shows, for example, that as l→∞ , dR(l)(0, l/2) = l/2 +O(e−l) .

The plan of the paper is as follows. In Section 2 we discuss the hyperbolic
density of a rectangle in terms of two standard elliptic integrals, and we give
some of the properties of these integrals. We prove Theorems 1.1 and 1.2, and
Corollary 1.3, in Section 3, and we prove Theorem 1.4 in Section 4. In Section 5
we make some further remarks. The author thanks the referee for several helpful
comments.

2. A preliminary result

We begin with the elliptic integral K given in (1.2) and its companion integral

K ′(k) = −i
∫ 1/k

1

dt√
(1− t2)(1− k2t2)

,

where 0 < k < 1, and where the integrals K and K ′ are taken over the real
intervals [0, 1] and [1, 1/k] , respectively. For brevity we shall often write K and
K ′ for K(k) and K ′(k) . For more details the reader can consult, for example, any
of [2] (which we recommend), [4], [7], [9, p. 280] and [11]. The single result in this
section shows that the hyperbolic density of a rectangle is intimately connected to
the two elliptic integrals K and K ′ .

Theorem 2.1. Suppose that R = (−a, a) × (−b, b) , where a and b are
positive. Then there exists a unique positive t such that

(−at, at)× (−bt, bt) =
(
−K(k),K(k)

)
×
(
−K ′(k),K ′(k)

)

for some (unique) k , and then λR(0) = t .

Theorem 2.1 shows the importance of the elliptic integrals K and K ′ for our
discussion of the hyperbolic metric of a rectangle, and because of this we briefly
recall some of their properties. It is well known that k 7→ K(k) is a strictly
increasing map of (0, 1) onto (π/2,+∞) that is given by the power series

(2.1) K(k) =
π

2

(
1 +

12

22
k2 +

1232

2242
k4 +

123252

224262
k6 + · · ·

)

(see [4, p. 90]). As K ′(k) = K
(√

1− k2
)

, it follows that the map k 7→ K(k)/K ′(k)
is a strictly increasing map of (0, 1) onto (0,+∞) . As usual, we define the function
q on (0, 1) by

(2.2) q(k) = exp
(
−πK ′(k)/K(k)

)
;
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then k 7→ q(k) is a homeomorphism of (0, 1) onto itself whose inverse is given by

(2.3) k2 = 16q

∞∏

n=1

(
1 + q2n

1 + q2n−1

)8

.

For these facts, see [9, pp. 281–289]. As we can express k as a function of q , we
can also express K as a function of q , and the formula for this is

(2.4) K
(
k(q)

)
=
π

2

(
1 + 4

∞∑

n=1

qn

1 + q2n

)

(see [2, (3.14), p. 50]).

The proof of Theorem 2.1. Suppose that 0 < k < 1 and let

R0 = (−K,K)× (0,K ′), R1 = (−K,K)× (−K ′,K ′).
The unique conformal map F of the upper half-plane H onto R0 that maps −1/k ,
−1, 1, 1/k to the points −K + iK ′ , −K , K , K + iK ′ , respectively, is given by
the Schwarz–Christoffel formula

(2.5) F (z) =

∫ z

0

dw√
(1− w2)(1− k2w2)

(see [9, p. 280–282]). The map g(z) = (z2 − 1)/(z2 + 1) maps the right half-plane
Σ (given by x > 0) onto the complex plane C cut from −∞ to −1, and from
1 to +∞ , which we denote by Ω. As F maps (−1, 1) onto (−K,K) , and H
onto R0 , we can use the Reflection Principle to extend F to an analytic map of
Ω onto R1 . Thus F ◦ g maps Σ conformally onto R1 , and because F (0) = 0,
F ′(0) = 1 and λΣ(z) = 1/Re[z] , an application of (1.1) shows that λR1(0) = 1.
In particular, if a = K(k) and b = K ′(k) for some k in (0, 1) then R = R1 for
this k and so λR(0) = 1.

As the function k 7→ K(k)/K ′(k) maps (0, 1) monotonically onto (0,+∞)
there is a unique value of k such that b/a = K ′(k)/K(k) , and hence a unique
value of t such that at = K(k) and bt = K ′(k) . Then (from the result above)
1 = λR1(0) = t−1λR(0) and the proof is complete.

3. The proofs of Theorems 1.1, 1.2 and Corollary 1.3

We begin with the proof of Theorem 1.1. Given any positive l , we can choose
k such that K/K ′ = π/(2l) , and we note that with this choice of k , q = e−2l .
Now let R = (−K,K) × (−K ′,K ′) . Then g(z) = πiz/2K maps R onto R(l) ,
and from (1.1), Theorem 2.1 and (2.4), we have

λR(l)(0) =
2K(k)

π
λR(0) =

2K(k)

π
= 1 + 4

∞∑

n=1

qn

1 + q2n
= 1 + 2

∞∑

n=1

1

cosh 2nl

as required.
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The proof of Theorem 1.2. We use the same notation as above. There is
exactly one value, say k0 , of k such that K(k0) = K ′(k0) and it is easy to
see that k0 = 1/

√
2 . It follows from Theorem 2.1 that if R∗ is the rectangle

(−c, c)× (−c, c) , where c = K(1/
√

2 ) = 1 · 8541 . . . , then λR∗(0) = 1. The result
for a general rectangle now follows from (1.1) by applying the map z 7→ az/c .

The proof of Corollary 1.3. The lower bound of λR(l)(0) is immediate from
Theorem 1.1. The upper bound also follows easily from Theorem 1.1 if we use the
inequality 2 coshx > ex for all positive x and then sum the resulting geometric
series.

4. The proof of Theorem 1.4

The first inequality in (1.3) holds because if γ is the hyperbolic geodesic
segment in R(l) that joins 0 to x , then

dR(l)(0, x) =

∫

γ

λR(l)(t) dt >

∫

γ

λS(t) dt ≥ x

because λS(z) ≥ 1 throughout S . Now suppose that 0 < t < l − π/2, write
l′ = l− t and let R′ be the rectangle (t− l′, t+ l′)× (−π/2, π/2). Then (from the
monotonicity of the metric, and Corollary 1.3)

λR(l)(t) < λR′(t) = λR(l′)(0) < 1 +
2

cosh 2(l − t) +
5

e4(l−t) ,

and as

dR(l)(0, x) ≤
∫ x

0

λR(l)(t) dt

the second inequality in (1.3) follows.

5. Closing remarks

In this section we continue our discussion of the hyperbolic metric of rectangles
and elliptic integrals, and we present some ideas which may be of use in other
circumstances. First, we note the following variation on Theorem 2.1.

Theorem 5.1. Let R = (−K,K) × (0,K ′) , where 0 < k < 1 . Then
λR(iK ′/2) = 1 + k .

Proof. The function F given by (2.5) is the conformal map of H onto the
rectangle R with −1/k , −1, 1, 1/k mapping to the vertices of R as described
earlier. The inverse of F is the Jacobian function sn: R → H which can be
continued analytically over C to give an elliptic function with periods 4K and
2iK ′ , simple zeros at 2nK + 2imK ′ (and no other zeros), and simple poles at
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2nK + 2imK ′+ iK ′ (and no other poles), where m and n are integers. It follows
that the function sn(z)sn(iK ′ − z) is elliptic and without poles and so is con-
stant. By equating its values at K and iK ′/2, and writing η = iK ′/2, we obtain
sn(η)2 = −1/k , and we deduce from this that sn(η) = i/

√
k . Now from (1.1),

λR(η) = λH

(
sn(η)

)
|sn′(η)| =

√
k | sn′(η)| . Associated to the function sn(z) are

the Jacobi functions cn(z) and dn(z) , and these satisfy the relations sn2+cn2 = 1,
k2sn2 + dn2 = 1 and sn′ = cn dn. We deduce that

|sn′(η)| =
√

1− sn(η)2
√

1− k2sn(η)2

from which we obtain λR(η) = 1 + k as required.

We end this paper with a brief discussion of the rectangle R(l) when l is
large. As K(k) → π/2 when k → 0, and as we know how the hyperbolic metric
transforms under a scaling map z 7→ µz , it suffices to study the the rectangle R =
(−K,K)×(−K ′,K ′) as k → 0. When k is small and positive R is approximately
the rectangle (−π/2, π/2)× (−K ′,K ′) and so its shape (or modulus) depends on
the nature of the singularity of K ′(k) at k = 0. It is known that

(5.1) lim
k→0

(
K ′(k)− log

4

k

)
= 0

so that when k is small R is approximately (−π/2, π/2) × (− log 4/k, log 4/k) .
There are many proofs of (5.1) in the literature, and an elementary proof, valid
for 0 < k < 1 (which is sufficient for our purpose), is given in [11, p. 522]. Other
proofs, and other inequalities, can be found in the more recent [10, p. 45], and
proofs for complex k occur in [4, pp. 91 and 178], [11, pp. 299 and 521–522], and
[7, pp. 25–27 and 73–75]. Here, we provide a short and elementary proof (which
is perhaps new) of the following result.

Theorem 5.2. As k → 0 ,

K ′(k) =

(
1 +

k2

4

)
log

4

k
+O(k2).

Proof. Throughout we assume that k and hence q , lie in (0, 1). We begin by
proving that k2 + k4 > 16q when 0 < k <

√
3/8 . First, from (2.3) we have

(5.2) k2 >
16q

(1 + q)8
> 16q(1− 8q)

(because (1 + x)8(1− 8x) is strictly decreasing for x ≥ 0) and it follows from this
that

k2 + k4 > 16q + 128q2(1− 32q) + 214q4.
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Now the inequality in (5.2) shows that if q = 1/32 then k2 > 3/8; thus if 0 < k <√
3/8 then 0 < q < 1/32 and so k2 + k4 > 16q as claimed. Now (2.2) implies

that

K ′ =
K

π
log

1

q
=

2K

π
log

4

k
− K

π
log

(
16q

k2

)
,

and so using (2.3) again and the inequality k2 + k4 > 16q , we see that

2K

π
log

4

k
≥ K ′ ≥ 2K

π
log

4

k
− K

π
log(1 + k2).

Now log(1 + x) < x when x > 0, and using this and (2.1), Theorem 5.1 follows
easily.
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