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Abstract. Given any simple closed curve Γ with enough smoothness we take any large
number, say N , of points ζn on Γ, equispaced thereon with respect to harmonic measure, seen
from ∞ , for the exterior of Γ . Then, if P is any polynomial of degree M < N , the values |P (z)|
can, for z inside Γ, be estimated in terms of the logarithmic average (1/N)

∑N
n=1 log+ |P (ζn)| .

When M and N both tend to ∞ the estimate holds uniformly for each fixed z inside Γ as long
as the ratio M/N remains bounded away from 1, and that requirement cannot be lightened.

The least superharmonic majorant and its properties play an important rôle in the proof of
this result; other tools used are Jensen’s formula and the Koebe 1

4 -theorem.

Introduction

The set of polynomials P (z) for which the sum
∑∞
−∞(log+ |P (n)|)/(1 + n2)

comes out sufficiently small is a normal family in the complex plane. This result,
to be found on p. 522 of [4], was proved again, in a different way from that of [4],
by Pedersen in [11], and a simplified version of his argument has been given in [8].
It was shown in [7] that the conclusion holds for the entire functions P (z) of any
exponential type A < π . This limitation on the exponential type is sharp.

Taking the sums involving log+ |P | over the integers is not essential; in [12]
Pedersen has obtained a result (for polynomials) analogous to the above one, in
which the sum over Z is replaced by one over a real sequence {λn} with the
property that every real interval of some given length L contains at least one
point λn . Here, it is not necessary that the points λn be disposed symmetrically
about 0, and the conclusion still holds for entire functions P (z) of sufficiently
small exponential type depending on L .

In all of these results, a sum stands in place of the familiar Poisson integral
(1/π)

∫∞
−∞
((

log+ |P (x)|
)
/(1 + x2)

)
dx , and it is well known that the boundedness

of the latter for any set of functions P (z) figuring in it (whether polynomials or
entire and of bounded exponential type) makes that set a normal family in C .
Statements involving sums are in fact stronger than those phrased in terms of
the integral, and seem therefore to hold out some promise for applications. The
results initially cited are indeed strong enough to imply the multiplier theorem of
Beurling and Malliavin; see [6] or especially Section 3 of [7].
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This motivates us to seek analogous statements for other configurations of
the nodes over which the sums involving log+ |P | are to be taken; one desires in
particular to see what can be deduced when those nodes do not lie on a straight
line.

Some configurations can be reduced to the original one by direct transfor-
mation. Consider, for instance, the parabola x = 1 − 1

4y
2 in the z -plane, image

of the line Rw = 1 under the mapping w → z = w2 . If P (z) is a polynomial,
so is Q(w) = P (w2) ; it therefore follows from the result initially cited that the
polynomials P (z) with

∞∑

−∞

log+
∣∣P
(
(1 + ni)2

)∣∣
1 + n2

=

∞∑

−∞

log+ |Q(1 + ni)|
1 + n2

sufficiently small form a normal family in C ; here the nodes of the left-hand sum
lie on the parabola. Taking into account the more general result from [7], we see
that the last conclusion also holds for the entire functions P (z) of order 1

2 growing

at most like exp(A|z|1/2) , where A < π . The limitation on A is sharp.

Such generalizations could be multiplied, but the scope of the (rather trivial)
procedure yielding them is limited, and it seems worthwhile to look for a direct way
of extending [8]’s approach to various configurations of the nodes. For that one
needs first of all to recognize the approach’s essential ideas, distinguishing between
them and the technical particularities accompanying their use when considering
nodes located on the real line. Among those particularities must be counted the
extensive use of Schwarz reflection made in [8], the formation there of functions
like 1+f(z)f(z̄) , subsequent application of the Fejér–Riesz “square root” theorem,
and so forth. These techniques are no longer available for general configurations
of the nodes, and have to be abandoned.

Certainly the main feature of [8] lies in its systematic use of the least super-
harmonic majorant, the service rendered there by this object being largely due to
the smoothness of its Riesz mass under the given circumstances. Positivity of a
certain quadratic form involving the least superharmonic majorant and its Riesz
mass also played a crucial rôle in [11], in [7] (the continuation of [8]), and again
in [12]. It seems likely that these are the ideas that would have to be kept in
adapting the method of [8] to more general situations.

Here we have, as a first step, carried out the adaptation for a somewhat special
configuration: all the nodes lie on a given simple closed curve Γ. This curve is
required to be rather smooth, but is otherwise arbitrary. Only sums involving
polynomials are considered.

This is what we will prove. Fix any number λ , 0 < λ < 1, and take any
large number, say N , of nodes ζn on Γ, equally spaced thereon with respect to
harmonic measure, as seen from ∞ , for the exterior of Γ. Then, if P (z) is any
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polynomial of degree ≤ λN and z0 is any point inside Γ , we have

log |P (z0)| ≤ A(z0)

N

N∑

n=1

log+ |P (ζn)|+B(z0),

where A(z0) and B(z0) depend on z0 , on λ , and on the curve Γ , but are inde-
pendent of N .

The result is new even when Γ is a circle. In that situation it is reminiscent
of an old one due to S. Bernstein, in which the average of log+ |P (ζn)| is replaced
by supn |P (ζn)| . The latter follows in turn from (and is essentially equivalent to)
a well-known theorem of Miss Cartwright about entire functions of exponential
type; see [1, p. 180].

1. Throughout the remainder of this article we consider a given simple closed
curve Γ, supposed to have a certain amount of smoothness. Such a curve divides
the complex plane into two domains: its inside D and its exterior E , this usually
supposed to (also) include the point at ∞ .

We shall require a little more than C1 smoothness of Γ. If fD(z, z0) and
fE (z) denote conformal mappings of D and E respectively onto the unit disk, the
first sending any given z0 ∈ D to 0 and the second taking ∞ to 0, we shall need
to know that f ′D(z, z0) and f ′E (z) are bounded away from zero near Γ and extend
continuously up to it. This property is guaranteed by Kellogg’s theorem provided
that the direction of the tangent to Γ at a point ζ depends in Lipα fashion on ζ
for some α > 0. See, e.g., pp. 103–105 of [5].

Let us agree from now on to say that the curve Γ has Kellogg smoothness
when the geometric condition just enunciated holds for it. In that event, the
continuous extensions of f ′D(z, z0) and f ′E (z) to Γ are designated by f ′D(ζ, z0)
and f ′E (ζ) respectively, and then the quantities |f ′D(ζ, z0)|, |f ′E (ζ)| are bounded
above and below on Γ by two strictly positive constants.

Harmonic measure for the domain D is, as customary, denoted by ωD( · , z0)
when seen from z0 ∈ D ; that measure for E (seen from z0 ∈ E ) is similarly
denoted by ωE ( · , z0) . When Γ has Kellogg smoothness, we have, for ζ running
along that curve,

dωD(ζ, z0) = (1/2π)|f ′D(ζ, z0) dζ|
and

dωE (ζ,∞) = (1/2π)|f ′E (ζ) dζ|;
both left-hand members therefore lie between two strictly positive constant mul-
tiples of |dζ| , the element of arc length along Γ. ωD( · , z0) and ωE ( · ,∞) are, in
other words, both equivalent to arc-length measure on Γ, and therefore equivalent
to each other. The strictly positive constants describing this equivalence depend
of course on the choice of z0 ∈ D as well as on the curve Γ.
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Green’s function for the domain E is denoted by GE (z, z0) ; we shall make
particular use of GE (z,∞) , for which see, e.g., pp. 124–125 of [10] or pp. 106–110
and 132 of [13]. GE (z,∞) is harmonic in E (save at ∞) and continuous down to
Γ, where it equals zero. For z →∞ ,

(1) GE (z,∞) = log |z|+ γE +O(1/|z|),

where γE is a number called the Robin constant for E .

With the help of GE (z,∞) and ωE ( · , z) we can represent any function U(z)
harmonic in E (save at ∞), continuous down to Γ, and asymptotic to M log |z|
for z → ∞ . It suffices to look at the two functions U(z) − (M + δ)GE (z,∞) ,
U(z) − (M − δ)GE (z,∞) , where δ > 0. Both are harmonic in E (save at ∞),
continuous down to Γ, and equal to U(z) thereon, but one goes to −∞ and
the other to ∞ when z → ∞ . They must therefore straddle

∫
Γ
U(ζ) dωE (ζ, z) ,

harmonic and bounded in E , and equal to U(z) on Γ. On making δ → 0 we find
from this that

(2) U(z) =

∫

Γ

U(ζ) dωE (ζ, z) +MGE (z,∞), z ∈ E .

This relation will be used when U(z) is the smallest harmonic majorant, in
E , of the subharmonic function log+ |P (z)| , P (z) being a polynomial of precise
degree M . In that case we have

(3) U(z) =

∫

Γ

log+ |P (ζ)| dωE (ζ, z) +MGE (z,∞)

for z ∈ E ; making the usual interpretation of the integral as log+ |P (z)| for z ∈ Γ,
we extend the formula down to Γ.

A second expression for this particular function U(z) , based on the Riesz
representation formula (see [3, pp. 311–328] or [13, pp. 71–78]) will be very use-
ful. The Riesz mass µ corresponding to the subharmonic function log+ |P (z)| is
positive, finite and also of compact support, being carried on certain closed curves
surrounding the zeros of P (z) . We can therefore write

(4) log+ |P (z)| =
∫

C

log |z − w| dµ(w) + a

with a certain constant a ; this is the Riesz representation of log+ |P (z)| .
Now when z ∈ Γ,

log |z − w| =
∫

Γ

log |z − ζ| dωE (ζ, w) +GE (w,∞) for w ∈ E
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and

log |z − w| =
∫

Γ

log |z − ζ| dωD(ζ, w) for w ∈ D .

For z ∈ Γ, we thus have, by (4),

log+ |P (z)| =
∫

E

∫

Γ

log |z − ζ| dωE (ζ, w) dµ(w) +

∫

E

GE (w,∞) dµ(w)

+

∫

D

∫

Γ

log |z − ζ| dωD(ζ, w) dµ(w) +

∫

Γ

log |z − ζ| dµ(ζ) + a,

as µ may well put some charge on Γ. The right side of this relation is of the form∫
Γ

log |z − ζ| dν(ζ) + a′ , where ν is a certain positive measure on Γ, called the
balayage of µ to Γ. Since P (z) is a polynomial of precise degree M , µ(C) = M
and therefore

ν(Γ) = µ(C) = M.

Thus,

(5) log+ |P (z)| =
∫

Γ

log |z − ζ| dν(ζ) + a′ for z ∈ Γ.

The right side of (5) is harmonic for z ∈ E (save at ∞), coincides with log+ |P (z)|
on Γ, and is asymptotic to ν(Γ) log |z| = M log |z| for z → ∞ . It is, moreover,
continuous down to Γ. That follows, for instance, from the Evans–Vasilesco theo-
rem ([3, p. 335]; [13, p. 54]); the right side, equal to log+ |P (z)| on Γ, the support
of ν , is certainly continuous there. The right-hand members of (3) and (5) there-
fore have the same boundary behaviour at Γ and the same behaviour at ∞ . Being
both harmonic in E , they are thus equal there, and we have

∫

Γ

log |z − ζ| dν(ζ) + a′ =

∫

Γ

log+ |P (ζ)| dωE (ζ, z) +MGE (z,∞)

for z ∈ E , as well as for z on Γ.
A similar argument can be made for the domain D and for it an analogous

relation is found. We thus arrive at

Lemma 1. If P(z) is a polynomial of precise degree M ,

(6)

∫

Γ

log+ |P (ζ)| dωE (ζ, z)+MGE (z,∞) =

∫

Γ

log |z−ζ| dν(ζ)+a′ for z ∈ E

and

(7)

∫

Γ

log+ |P (ζ)| dωD(ζ, z) =

∫

Γ

log |z − ζ| dν(ζ) + a′ for z ∈ D ,

where ν is a positive measure on Γ with ν(Γ) = M and a′ is a constant depending
on P . Both relations hold for z on Γ provided that the integrals standing on their
left sides are there given the usual interpretation.
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What is the value of the constant a′ figuring in this lemma? It is given by
the relation

(8) a′ = MγE +

∫

Γ

log+ |P (ζ)| dωE (ζ,∞).

It is easy to deduce this formula—which in any event will not be needed here—from
(1) and (6); cf. the discussion of the constant c in the next section.

2. We now fix a small constant κ > 0; later on we shall see how it is to be
chosen. Then, given any polynomial P (z) of precise degree M , we form a new
function F (z) by putting

F (z) =

∫

Γ

log+ |P (ζ)| dωE (ζ, z)− κMGE (z,∞) for z ∈ E ,(9)

F (z) =

∫

Γ

log+ |P (ζ)| dωD(ζ, z) for z ∈ D ,(10)

and

F (z) = log+ |P (z)|, z ∈ Γ.(11)

This function F (z) is continuous everywhere, and harmonic both in D and in E
(save at ∞).

It will be convenient for us to extend the Green’s function GE (z,∞) to D by
putting it equal to zero there. Then GE (z,∞) becomes subharmonic in C , and
for the function F we clearly have

(12) F (z) ≤ C − κMGE (z,∞)

(everywhere), with C some constant depending on P . The right side is superhar-
monic in C , so F (z) has a (finite) superharmonic majorant in C , and therefore
a least one, which we denote by (MF )(z) .

The main properties of (MF )(z) are described in [3, pp. 363–371]. This func-
tion is continuous and everywhere ≥ F (z) ; it is harmonic wherever it is > F (z)
and also wherever the latter function is harmonic. In the present circumstances,
that makes (MF )(z) harmonic both in D and in E ; its Riesz mass is therefore car-
ried on Γ and indeed on the closed subset E of that curve where (MF )(ζ) = F (ζ) .

Referring to (9) and (12) we find that
∫

Γ

log+ |P (ζ)| dωE (ζ, z)− κMGE (z,∞) ≤ (MF )(z) ≤ C − κMGE (z,∞)

for z ∈ E , and on making z → ∞ we see from this that the total Riesz mass
corresponding to MF (carried on E ⊆ Γ and taken, with some inconsistency of
language, as positive) is equal to κM . We can thus write the Riesz representation

(13) (MF )(z) =

∫

Γ

log
1

|z − ζ| d%(ζ) + c,
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where c is a constant and % , the Riesz mass, is a positive measure of total mass
κM carried, as already noted and by (11), on

(14) E =
{
ζ ∈ Γ; (MF )(ζ) = log+ |P (ζ)|

}
.

Later on we shall need a lower bound for c . From [10, pp. 124–125] or [13,
pp. 106–110] we have the formula

(15) GE (z,∞) =

∫

Γ

log |z − ζ| dωE (ζ,∞) + γE

where γE is Robin’s constant for E ; with the above specification of GE (z,∞) in
D and the usual interpretation of the integral for z ∈ Γ, this holds everywhere.
Substituting (15) into (9) and then using (13) and the value %(Γ) = κM in the
relation F (z) ≤ (MF )(z) , we find that

∫

Γ

log+ |P (ζ)| dωE (ζ, z)−κM(γE +log |z|)+O(1/|z|) ≤ −κM log |z|+O(1/|z|)+ c

for |z| → ∞ . Thence,

(16) c ≥
∫

Γ

log+ |P (ζ)| dωE (ζ,∞)− κMγE .

3. A remarkable smoothness relation for the Riesz mass % , due to that mea-
sure’s being supported on the set E given by (14), will be very important for us.
From Lemma 1 (end of Section 1), (9), (10), (11) and (13) we have

(17) F (z)− (MF )(z) =

∫

Γ

log |z − ζ| (dν(ζ) + d%(ζ))− (1 + κ)MGE (z,∞)− b

where b is a certain constant; with GE (z,∞) interpreted as zero for z ∈ D , this
relation holds everywhere.

Lemma 2. Provided that Γ has Kellogg smoothness, the measure % is ab-
solutely continuous with respect to arc length on Γ , and we have

(18) d%(ζ) ≤ (1 + κ)MdωE (ζ,∞).

Proof. The left side of (17) is everywhere ≤ 0 and equal to zero precisely at
the points of E . Fixing any z0 ∈ E , we therefore have

(19)

∫

Γ

log |z0 − ζ|
(
dν(ζ) + d%(ζ)

)
= (1 + κ)MGE (z0,∞) + b = b
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and

(20)

∫

Γ

log |z − ζ| (dν(ζ) + d%(ζ)) ≤ (1 + κ)MGE (z,∞) + b for all z,

the Green’s function being zero on Γ ⊇ E .
Let us denote by ∆r the disk |z − z0| < r . Then, by (19), (20) and Jensen’s

formula we have, for r0 > 0,
∫ r0

0

ν(∆r) + %(∆r)

r
dr ≤ (1 + κ)M

2πr0

∫

∂∆r0

GE (ζ,∞) |dζ|.

By Jensen’s formula and (15) the right side of this last relation equals

(1 + κ)M

∫ r0

0

ωE (∆r,∞)

r
dr

since GE (z0,∞) = 0; the measure ν being positive, we thence get

(21)

∫ r0

0

%(∆r)

r
dr ≤ (1 + κ)M

∫ r0

0

ωE (∆r,∞)

r
dr.

Now under our hypothesis the density

dωE (ζ,∞)

|dζ| = ω′E (ζ,∞)

exists everywhere on Γ and is continuous (see beginning of Section 1). Therefore,
and since Γ has, in particular, a tangent at z0 , the right side of (21) is of the form

(22) 2(1 + κ)Mr0 ω
′
E (z0,∞) + o(r0)

for r0 → 0.

Concerning
d%(ζ)

|dζ| = %′(ζ),



Use of logarithmic sums to estimate polynomials 417

all we know to begin with is that it exists a.e. (with respect to arc length) on Γ.
If it exists and is finite at z0 , the left side of (21) will be

(23) 2r0 %
′(z0) + o(r0)

when r0 → 0, but if %′(z0) exists and is infinite, the left side of (21) eventually
becomes larger than any multiple Lr0 when r0 → 0. Referring to (22) and
(21) and remembering that ω′E (ζ,∞) is bounded, we see first of all that this last
possibility cannot occur. Therefore % must be absolutely continuous with respect
to arc length; otherwise there would certainly be points z0 in its support E with
%′(z0) =∞ .

Outside the closed set E we have everywhere %′(ζ) = 0, and for almost every
z0 ∈ E we get, from (21), (22) and (23),

%′(z0) ≤ (1 + κ)Mω′E (z0,∞).

Therefore (18) holds since % is absolutely continuous with respect to arc length.

As we observed in the course of the proof, ω′E (ζ,∞) is bounded on Γ. We
thus have the useful

Corollary. Under the hypothesis of the lemma,

d%(ζ) ≤ (1 + κ)MC |dζ|,

where C is a constant depending on the curve Γ .

Remark. Kellogg smoothness is not really needed for the conclusion of
Lemma 2, which holds even for non-rectifiable curves Γ. That follows from a gen-
eral measure-theoretic result, due to Grishin [2] and recently extended by Sodin
in [15]. The version given here—actually a consequence of Grishin’s result—is suf-
ficient for our purposes, and its proof, which replaces an earlier longer argument,
has been included for the reader’s convenience. The idea of using Jensen’s formula
in that proof comes from Sodin’s paper and goes back to Grishin.

4. From Lemma 2 and its corollary we can deduce a useful limitation on the
variation of (MF )(ζ) along Γ, but for that we will need a preliminary result.1

1 The geometric considerations in this and the next sections can be largely avoided, for

the simple inequality in Remark 2 near the end of Section 11 easily yields a serviceable version

of Theorem 1, to be given in the next section. But the result obtained by the present method is

capable of further refinement than can be achieved using the alternative approach. See the remark

at the end of the next section.
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Given z0 on Γ, we denote by n0 the unit outward normal to Γ at z0 .

Lemma 3. If Γ has Kellogg smoothness,

lim sup
t→0+

∣∣∣∣
d(MF )(z0 + n0t)

dt

∣∣∣∣ ≤ (1 + κ)MC ′

for each z0 ∈ Γ , where C ′ is a constant depending only on Γ .

Proof. In order to simplify the notation, we may just as well take z0 to be at
the origin and the axis of abscissae tangent to Γ there, making n0 = i . Writing
ζ = ξ + iη , we then have, from (13),

(24) −d(MF )(iy)

dy
= −I

∫

Γ

d%(ζ)

iy − ζ =

∫

Γ

y

|iy − ζ|2 d%(ζ)−
∫

Γ

η

|iy − ζ|2 d%(ζ).

The first of the two integrals on the right is positive for y > 0. In order to
examine its behaviour for y → 0+, we fix a small quantity δ > 0, denote by σ
the arc of Γ through 0 whose abscissae ξ lie between −δ and δ (see figure), and
by Γδ the complement Γ ∼ σ . We have

(25)

∫

Γ

y

|iy − ζ|2 d%(ζ) =

∫

σ

y

|iy − ζ|2 d%(ζ) +

∫

Γδ

y

|iy − ζ|2 d%(ζ),

and the second integral on the right clearly goes to 0 as y → 0.
In the first integral on the right we can put ζ = ξ+ iη(ξ) with ξ ranging from

−δ to δ where, for some α > 0, η(ξ) = O(|ξ|1+α) and η′(ξ) = O(|ξ|α) in view of
the Kellogg smoothness of Γ. Along σ we also have

d%(ζ) =
d%(ζ)

|dζ|
√

1 + (η′(ξ))2 dξ ≤ (1 + κ)MC
√

1 +O(|ξ|2α) dξ
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by the corollary to Lemma 2, and besides,

|iy−ζ|2 = ξ2+
(
y−η(ξ)

)2
= ξ2+y2−2yξO(|ξ|α)+O(|ξ|2+2α) ≥

(
1−O(δα)

)
(y2+ξ2).

Substituting these estimates into the first right-hand integral of (25), we find that
quantity to be

≤
(
1 +O(δα)

)
(1 + κ)MC

∫ δ

−δ

y dξ

y2 + ξ2
< π

(
1 +O(δα)

)
(1 + κ)MC;

this, then, is an upper bound on the left side of (25) for sufficiently small y > 0.
(By taking ever smaller values of δ one can show by a refinement of the argument
just made that the left side of (25) tends to π%′(0) for y → 0+; that result will
not be needed here.)

Consider now the second integral on the right in (24). With our fixed δ > 0
(which can be taken to be the same no matter to which z0 on Γ our origin
corresponds in the present discussion), we write

(26)

∫

Γ

η

|iy − ζ|2 d%(ζ) =

∫

σ

η

|iy − ζ|2 d%(ζ) +

∫

Γδ

η

|iy − ζ|2 d%(ζ).

Here the first right-hand term is in absolute value

≤ (1 + κ)MC

∫ δ

−δ

|η(ξ)|
ξ2

√
1 +

(
η′(ξ)

)2
dξ

≤ (1 + κ)MC

∫ δ

−δ
O

(
1

|ξ|1−α
)
dξ = (1 + κ)MC ·O(δα),
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thanks again to the corollary of Lemma 2 and to the Kellogg smoothness of Γ.
(Essential use of the second property is being made at this point; C1 smoothness
of Γ would have been enough for the examination of (25).)

In the second right-hand integral of (26) we have

|iy − ζ| ≥ const. > 0

for ζ on Γδ , provided that y > 0 is sufficiently small—Γ is simple! At the same
time, |η| is bounded, so the integral in question is

≤ const. %(Γ) = const. κM

for small enough y > 0.
Putting these results together we see that the left side of (26) is in absolute

value
≤ const. (1 + κ)M

for sufficiently small y > 0, with a constant depending only on Γ.

The estimates just found for the left sides of (25) and (26) are now substituted
into (24), and we find that for small enough y > 0,

∣∣∣∣
d(MF )(iy)

dy

∣∣∣∣ ≤ (1 + κ)MC ′

with a constant C ′ depending only on Γ. The lemma is thus proved.

Using the fact, noted in Section 1, that dωE (ζ,∞)/|dζ| = ω′E (ζ,∞) is bounded
away from zero, the result just obtained can be rephrased as a

Corollary. Under the conditions of the lemma, we have

(27) lim sup
t→0+

∣∣∣∣
d(MF )(z0 + n0t)

dt

∣∣∣∣ ≤ (1 + κ)MC ′′ω′E (z0,∞)

at each z0 on Γ , with a constant C ′′ depending only on Γ .

Remark. The hypothesis of Kellogg smoothness has again been used here,
after having already been called on in Section 1. In both instances, this condition
on Γ could be weakened slightly, but that curve would still be required to have
more than C1 regularity. Such further refinement hardly seems worthwhile in the
present context.

5. We can now proceed with the comparison of (MF )(z1) and (MF )(z2) for
two neighbouring points, z1 , z2 , on Γ. For this purpose it is best to bring in the
function

(28) U(z) = (MF )(z) + κMGE (z,∞);

according to (9) and the relation (MF )(z) ≥ F (z) , U(z) is positive in E . It is
also harmonic there, including at ∞ by (13) and the relation %(Γ) = κM , and
continuous down to Γ.
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Theorem 1. If Γ has Kellogg smoothness, we have

(29) (MF )(z2) ≤ 3(MF )(z1) + (1 + κ)MBωE (z1, z2,∞)

for any two points z1 , z2 on Γ , where z1, z2 denotes either arc of Γ from z1 to
z2 and B is a constant depending only on Γ .2

Proof. Take a conformal mapping z → w = φ(z) of E onto {|w| > 1} which
sends ∞ to ∞ , and for |w| ≥ 1, put

(30) V (w) = U(z) when w = φ(z).

Defined in this way, the function V (w) is positive and harmonic in {|w| > 1} ,
including at ∞ , and continuous down to the unit circle. Introduce polar coordi-
nates in the w -plane, writing w = reiϑ when w = φ(z) with z ∈ E ∪ Γ. Then,
since GE (z,∞) = log |φ(z)| , we have, from (28) and (30),

(31) V (reiϑ) = (MF )(z) + κM log r.

Consider any point z0 on Γ. If φ(z0) = eiϑ0 , say, the unit normal n0 to Γ
at z0 corresponds, under the conformal mapping φ , to a radial vector at eiϑ0 , of
length |φ′(z0)| . Thence, and by (31),

lim sup
r→1+

∣∣∣∣
∂V (reiϑ0)

∂r

∣∣∣∣ =
1

|φ′(z0)| lim sup
t→0+

∣∣∣∣
d(MF )(z0 + n0t)

dt

∣∣∣∣+ κM.

Referring now to (27) and keeping in mind that

ω′E (ζ,∞) =
dωE (ζ,∞)

|dζ| =
|φ′(ζ)|

2π

for ζ ∈ Γ, we see from this that

(32) lim sup
r→1+

∣∣∣∣
∂V (reiϑ0)

∂r

∣∣∣∣ ≤
(1 + κ)MC ′′

2π
+ κM.

This holds at all points eiϑ0 of the unit circle.

Now the function

r
∂V (reiϑ)

∂r

is also harmonic for r > 1 including at ∞ ; that can, for instance, be seen by
looking at the expansion of V (reiϑ) in negative powers of r . From (32) and the
principle of maximum we therefore have

(33)

∣∣∣∣
∂V (reiϑ)

∂r

∣∣∣∣ ≤
(1 + κ)ML

r
for r > 1,

with a constant L depending only on Γ.

2 See footnote at beginning of Section 4.
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Suppose now that we are given two points z1 , z2 on Γ; without loss of
generality φ(z1) = 1 and φ(z2) = eih with h > 0. Then

(34) (MF )(z1) = U(z1) = V (1), (MF )(z2) = U(z2) = V (eih),

and our task has boiled down to the comparison of V (eih) with V (1). The pro-
cedure is suggested by the figure.

We have, by (33),

V (eh) ≤ V (1) + (1 + κ)MLh.

Again, since V (w) is harmonic and > 0 for |w| > 1,

V (eh+ih) ≤ 3V (eh)

by Harnack. Finally,

V (eih) ≤ V (eh+ih) + (1 + κ)MLh,

again by (33).
Putting these estimates together, we get

V (eih) ≤ 3V (1) + 4(1 + κ)MLh

with, here, h = 2πωE (z1, z2,∞) . From this and (34) we immediately obtain (29),
proving the theorem.

Remark. The result obtained will suffice for our purposes. Relation (29)
could, however, be much improved by going out, in the above argument, to a
circle |w| = r0 with r0 > 1 suitably chosen rather than to the circle |w| = eh .
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6. Let us carry on with the main plan of this paper. Fixing a number
N > (1 + κ)M , we take N points ζ1, . . . ζN on Γ, equidistant thereon with re-
spect to the measure dωE (ζ,∞) , and seek to estimate

∫
Γ

log+ |P (ζ)| dωE (ζ,∞)

in terms of the average (1/N)
∑N
n=1 log+ |P (ζn)| for polynomials P (z) of de-

gree M . From an observation made at the beginning of Section 1 it follows that
the preceding integral can, in the case of Kellogg smoothness, be used to estimate∫

Γ
log+ |P (ζ)| dωD(ζ, z0) for each z0 ∈ D ; our program, if successful, will thus

enable us to give a bound on |P (z0)| in terms of the average for such z0 .

On the closed subset E of Γ we have (MF )(ζ) = log+ |P (ζ)| . At the same
time, if a point ζn figuring in the average is not too far from a ζ ∈ E , (MF )(ζn)
and (MF )(ζ) are roughly comparable by Theorem 1. This suggests that we try
to use the values (MF )(ζn) to get an upper bound on

∫
Γ
(MF )(ζ) d%(ζ) , taking

advantage of % ’s being carried on E . Further support for this idea comes from

Lemma 4. We have

(35)

∫

Γ

(MF )(ζ) d%(ζ) ≥ κM
∫

Γ

log+ |P (ζ)| dωE (ζ,∞).

Proof. By (13), (16) and the relation %(Γ) = κM , we have

(36)

∫

Γ

(MF )(ζ) d%(ζ) ≥
∫

Γ

∫

Γ

log
1

|z − ζ| d%(ζ) d%(z)

+ κM

∫

Γ

log+ |P (ζ)| dωE (ζ,∞)− (κM)2γE .

Now GE (z,∞) vanishes on Γ, so by (15),

γE =

∫

Γ

log
1

|z − ζ| dωE (ζ,∞) for z ∈ Γ.

It is, moreover, known from Frostman’s theorem ([13, p. 59]) that for positive
measures µ on Γ with µ(Γ) = 1,

∫

Γ

∫

Γ

log
1

|z − ζ| dµ(ζ) dµ(z)

assumes its minimum for µ = ωE ( · ,∞) ; that minimum is therefore equal to γE .

We see from this that the double integral in (36) is ≥
(
%(Γ)

)2
γE = (κM)2γE .

The whole right side of (36) is therefore

≥ κM
∫

Γ

log+ |P (ζ)| dωE (ζ,∞),

and we have (35), as required.
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Theorem 1 now enables us, as mentioned above, to give an upper bound for
the left side of (35) in terms of the values (MF )(ζn) , but if that bound is to
be of any use to us we must know that those values are not much larger than
log+ |P (ζn)| for at least some of the ζn . There is hope of our being able to verify
this for the points ζn near the set E on which (MF )(ζ) and log+ |P (ζ)| are equal.
It does not, however, seem possible to do that by working solely in D or in E ,
and we will have to make use of P (z) ’s analyticity across the curve Γ.

7. According to the idea just put forth, P (z) should at least not vanish at
too many of the points ζn adjacent to any ζ0 ∈ E . We are able to show this for
such points ζ0 where |P (ζ0)| ≥ 1, and shall indeed need to know a bit more than
that.

In order to make things explicit, let us specify once and for all that the N
points ζ1, ζ2, . . . ζN are taken to be arranged in that order around the curve Γ,
and in such fashion as to have

(37) ωE (ζn, ζn+1,∞) = ωE (ζN , ζ1,∞) =
1

N

for each of the arcs ζ1, ζ2 , ζ2, ζ3 , . . . ζN , ζ1 of Γ between two neighbouring
points ζn . We shall have to take N quite large. That will entail no restric-
tion in our final results because, for bounded N , any limitation on the average
(1/N)

∑N
n=1 log+ |P (ζn)| implies a corresponding one (perhaps enormous, but no

matter!) on the individual values P (ζn) , and thereby (e.g., via Lagrange’s inter-
polation formula) a limitation on |P (z0)| for each z0 ∈ D , as long as the degree
M of P is < N .

It will in fact be necessary to have the ratio M/N bounded away from 1.
With that in mind, we first fix a number λ < 1 and then require the quantity
κ > 0 introduced at the beginning of Section 2 to be so small as to still have

(38) (1 + κ)
M

N
< λ

for the degree M of any polynomial P (z) under consideration. The estimates we
obtain will depend on this number λ .

From now on, it will always be assumed that the curve Γ has Kellogg smooth-
ness, usually without further mention in the various hypotheses.

If |P (ζ0)| ≥ 1 for a point ζ0 ∈ E , it will turn out that P (ζn) cannot, as
stated above, vanish for too many of the ζn next to ζ0 , and that will depend on
the analyticity of P (z) across an arc σ of Γ on which the ζn in question are
supposed to lie. Now P (z) is, of course, analytic everywhere, but we shall need
the corresponding result for certain functions H(z) analytic in (D ∪ E ) ∩C and
across σ , but not necessarily elsewhere. The behaviour of these functions imitates
that of P (z) in its relation to (MF )(z) .
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The difference log |P (z)|− (MF )(z) is subharmonic everywhere (save at ∞),
so its magnitude in C is governed by how big it is on Γ and its growth at ∞ . On
Γ, we have

log |P (z)| − (MF )(z) ≤ log+ |P (z)| − (MF )(z) ≤ 0,

and when z →∞ both differences go to ∞ like (1 + κ)M log |z| . Therefore

log |P (z)| − (MF )(z) ≤ (1 + κ)MGE (z,∞)

(everywhere) by the principle of maximum (cf. the derivation of (2) in Section 1).
The functions H(z) to be considered here will also satisfy this condition.

The arc σ over which analytic continuation of one of our functions H(z) is
to be assumed possible can be given the following description. Fixing any ζ0 on
Γ, we describe a circle of (small) radius r0 , say, about ζ0 , and take for σ the arc
of Γ included within that circle. The radius r0 is furthermore to be so chosen as
to make

(39) ωE (σ,∞) =
2k + 1

N
,

where k is some fixed and reasonably large integer, much smaller, however, than N .

Under these circumstances, we have

Lemma 5. Suppose that for H(z) , analytic in (D ∪ E ) ∩C and across the
arc σ of Γ , we have

(40) log |H(z)| − (MF )(z) ≤ (1 + κ)MGE (z,∞)
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(wherever H(z) is defined), with M and κ > 0 satisfying (38) for some fixed
λ < 1 . Suppose also that

(41) log |H(ζ0)| − (MF )(ζ0) ≥ −c0 > −∞,

where ζ0 ∈ Γ is the centre of the circle cutting off the arc σ on Γ . Then, if
the integer k in (39) is taken large enough (depending on λ and c0 ), the function
H(z) cannot, for sufficiently large N (depending on λ and on the curve Γ), vanish
at all of the points ζn on σ .

Proof. By contradiction, following the idea used in proving Lemma 2. Sup-
pose, then, that H(z) does vanish at each of the points ζn on σ . It is convenient
for the following discussion to re-index those points, denoting those to one side of
ζ0 by ζ1, ζ2, . . . etc. (in that order), and those to the other side by ζ−1, ζ−2, . . .
successively. (According to (41), ζ0 cannot coincide with any of the points ζn
on σ .) The disk {z ; |z − ζ0| < r} is designated by ∆r .

Let m(∆r) be the number of zeros of H(z) in ∆r . In view of (13), (40) and
(41) then imply, by Jensen’s formula,

∫ r0

0

m(∆r) + %(∆r)

r
dr − c0 ≤

(1 + κ)M

2πr0

∫

∂∆r0

GE (ζ,∞) |dζ|.

As in the proof of Lemma 2, the right side of this relation equals

(1 + κ)M

∫ r0

0

ωE (∆r,∞)

r
dr.
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Therefore, since % ≥ 0,

(42)

∫ r0

0

m(∆r)

r
dr ≤ (1 + κ)M

∫ r0

0

ωE (∆r,∞)

r
dr + c0

(cf. (21)).
We have supposed that H(z) vanishes at each of the points ζn on σ , therefore

m(∆r) is at least equal to the number of such points in the disk ∆r . Assume,
then, that the circle of radius r < r0 about ζ0 cuts σ on one side of ζ0 between
the points ζ−p and ζ−p−1 , p ≥ 1, and on the other side between ζq and ζq+1 ,
q ≥ 1. Then m(∆r) ≥ p+ q , but by (37),

ωE (∆r,∞) ≤ p+ q + 1

N
.

In this situation, we thus have

(43) m(∆r) ≥ NωE (∆r,∞)− 1,

and it is seen in the same way that this relation also holds when ∂∆r only sur-
rounds points ζn lying to one side of ζ0 , or when it encloses none of the ζn .

Choosing now an r1 , 0 < r1 < r0 , to be specified in a moment, we have,
by (43),

∫ r0

0

m(∆r)

r
dr ≥

∫ r0

r1

m(∆r)

r
dr ≥ N

∫ r0

r1

ωE (∆r,∞)

r
dr − log

r0

r1

= N

∫ r0

0

ωE (∆r,∞)

r
dr −N

∫ r1

0

ωE (∆r,∞)

r
dr − log

r0

r1
,

and substitution of this into (42) yields, after transposition,

(44)

N

∫ r0

0

ωE (∆r,∞)

r
dr ≤ (1 + κ)M

∫ r0

0

ωE (∆r,∞)

r
dr

+N

∫ r1

0

ωE (∆r,∞)

r
dr + log

r0

r1
+ c0.

If r0 is small enough (independently of the position of ζ0 on Γ), we have, for
0 < r < r0 ,

(45) (1− ε)ωE (∆r0 ,∞)

r0
≤ ωE (∆r,∞)

r
≤ (1 + ε)

ωE (∆r0 ,∞)

r0

where ε > 0 is arbitrary, thanks to the continuity of dωE (ζ,∞)/|dζ| (and to its
non-vanishing) due, in turn, to the Kellogg smoothness of Γ. Since the latter
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property ensures that dωE (ζ,∞)/|dζ| is bounded away from 0 on Γ, we can, for
any fixed k , make r0 —determined by (39)—and hence the ε in (45) as small as
we like by taking N sufficiently large (independently of ζ0 ).

From (44), (45) and (39) we get

(1− ε)(2k + 1) ≤ (1 + ε)(1 + κ)
M

N
(2k + 1) + (1 + ε)(2k + 1)

r1

r0
+ log

r0

r1
+ c0,

that is, by (38),

(46) 2k + 1 ≤ 1 + ε

1− ε

(
λ+

r1

r0

)
(2k + 1) +

1

1− ε

(
log

r0

r1
+ c0

)
.

Here λ was given as < 1, so we can first assign a value τ > 0 to the ratio
r1/r0 , so small as to make λ + τ <

√
λ (say), and then decide on a value for ε ,

0 < ε < 1
2 , small enough for us to still have

(47)
1 + ε

1− ε (λ+ τ) <
√
λ ;

with these choices of τ and ε (46) will read

(48) 2k + 1 ≤
√
λ (2k + 1) + 2

(
log

1

τ
+ c0

)
.

But this relation cannot hold for arbitrarily large k ,
√
λ being < 1. Fix, then,

a value of k for which (48) fails, and then consider the N for which (45) holds
with the ε just agreed upon, small enough to guarantee (47). As just observed, all
sufficiently large N will have that property. For such N , H(z) cannot vanish at
all the points ζn on the arc σ determined in the way described earlier, by using
our chosen value of k in (39). Otherwise, (48) would hold, but it does not, due to
the choice of k . The lemma is proved.

Remark 1. The result just obtained is analogous to Lemma 1 of [7], and the
method followed here can also be applied to yield the latter. Such an argument
would be simpler and shorter than the original one in [7].

Remark 2. In an earlier and more elaborate proof of Lemma 5 an interme-
diate result was used which is no longer needed here but seems interesting in its
own right.

Fixing any ζ0 ∈ Γ we consider, as above, the arc σ cut off on Γ by a circle
of small radius r0 about ζ0 , and imagine that σ has then been removed from Γ,
yielding a new domain O ⊃ D ∪ E bounded by Γ ∼ σ .
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Taking any z on the excised arc σ , let us consider the ratio

GO(z,∞)

ωE (σ,∞)
.

When r0 is small this ratio is practically equal to

π

2

√
1− |z − ζ0|2/r2

0 ,

and the more nearly so as r0 gets smaller. In particular, the limiting value of
GO(ζ0,∞)/ωE (σ,∞) for r0 → 0 is 1

2π .

This result must be known, but I did not know it! To prove it, one first writes

GO(z,∞) =

∫

σ

GO(z, ζ) dωE (ζ,∞).

When r0 is small, dωE (ζ,∞) can be safely replaced by
(
ωE (σ,∞)/2r0

)
|dζ| in

the integral.
In order to get an idea of GO(z, ζ) when z and ζ both lie on σ , we do a

blow-up, using an affine transformation from the z -plane to the w -plane which
sends ζ0 to 0, the circle of radius r0 about ζ0 to |w| = 1, and the tangent of
Γ at ζ0 to the real axis. This mapping takes O to a domain Ω bounded by the
affine image of Γ ∼ σ . When r0 is small, Ω practically coincides, at moderate
distances from the origin, with the complement Ω0 of (−∞,−1] ∪ [1,∞) in C ,
and the more so as r0 gets smaller.
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Denoting by w the affine image of z ∈ σ and by w′ that of ζ ∈ σ , we of
course have

GO(z, ζ) = GΩ(w,w′);

here, however, GΩ(w,w′) is nearly equal to GΩ0(w,w′) (in the appropriate sense)
when r0 is so small as to make Ω about the same as Ω0 . The function GΩ0(w,w′)
may thus be used to obtain an approximation to GO(z, ζ) , appearing in the above
integral representation of GO(z,∞) . An explicit formula for GΩ0(w,w′) is, how-
ever, available. Using it (after suitable transformation) in the integral, one obtains
the above approximation to the ratio in question.

This procedure of course involves a dominated convergence argument, but
the results to be given in the next section furnish what is needed to carry that
through.

I think that the same kind of relation can be proved, and in more or less the
same way, for sufficiently smooth closed surfaces in Rn .

The limiting value 1
2π of the ratio GO(ζ0,∞)/ωE (σ,∞) is directly related

to the upper limit 1 on the quantity λ figuring in (38). This value 1
2π is not,

however, universal, but depends on the smoothness of Γ. If, for instance, Γ has
a corner (of opening 6= π ) at ζ0 but is otherwise smooth enough, a conformal
mapping described on pp. 189–190 of [9] can be used to show that the limiting
ratio still exists but is not 1

2π ; instead it is a complicated function of the opening
at ζ0 . I think this example could be used to show that the final results of this
paper, established for polynomials whose degree M satisfies (38) with λ < 1,
are no longer valid for curves Γ with less smoothness unless the ratio M/N is
subjected to a more severe restriction. That would be worthwhile.

8. We wish to continue along the lines of Section 1 in [7]. Taking a point
ζ0 on Γ we consider, as in the last section, the arc σ of Γ cut off by a circle of
(small) radius r0 about ζ0 and, as in Remark 2 at the end of that section, the
complement O (on the Riemann sphere) of the closed arc Γ ∼ σ . An estimate
of GO(z, z′) will be needed, and its derivation is simplified if one first makes the
affine transformation described in Remark 2. We therefore put

(49) w =
ω

r0
(z − ζ0),

with a constant ω , |ω| = 1, so chosen as to make the tangent to Γ at ζ0 correspond
to the real axis in the w -plane.

Under the mapping
z −→ w,

Γ ∼ σ goes over to an arc Γ̃σ in the w -plane, and O to that arc’s complement Ω.
Note that ∞ ∈ Ω, since ∞ ∈ O . If, in that mapping, z and z′ correspond
respectively to w and w′ , we (of course) have

(50) GO(z, z′) = GΩ(w,w′),
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and we proceed to estimate the Green’s function standing on the right for certain
pairs w , w′ . For this we are helped by the circumstance that Ω includes the unit
disk while ∂Ω = Γ̃σ has two points on the boundary of that disk.

Lemma 6. When r0 > 0 is small enough (independently of the position of
ζ0 on Γ), we have

(51) GΩ(w, 0) ≤ log
20

|w| for |w| ≤ 1 .

Proof. Let w → Z = f(w) be a conformal mapping of the simply connected
domain Ω onto the unit disk in the Z -plane, with f(0) = 0. Then

(52) GΩ(w, 0) = log
1

|f(w)| for w ∈ Ω.

The function f maps {|w| < 1} ⊂ Ω conformally onto a certain domain U ,
0 ∈ U , lying inside the disk {|Z| < 1} . Letting

δ = inf{|f(w)| ; |w| = 1}

be the distance from ∂U to 0, we see that the function

F (w) =
f(w)

f ′(0)
,

univalent for |w| < 1, has F (0) = 0, F ′(0) = 1, and takes {|w| < 1} conformally
onto a domain

(
1/f ′(0)

)
·U , whose boundary is distant by δ/|f ′(0)| units from 0.

It follows by the Koebe 1
4 -theorem ([13, p. 140] or [14, p. 288]) that δ/|f ′(0)| ≥ 1

4 ,
i.e., that

(53) δ ≥ 1
4 |f ′(0)|.
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In order to get a lower bound on |f ′(0)| , we consider the mapping

Z → w = φ(Z)

inverse to w → Z = f(w) , which takes {|Z| < 1} conformally onto Ω. For the
function

Φ(Z) =
φ(Z)

φ′(0)
,

univalent in the unit disk, we do have Φ(0) = 0 and Φ′(0) = 1, but Koebe’s
theorem cannot be directly applied to Φ(Z) since ∞ ∈ Ω, causing Φ(Z) to have
a pole at some Z , |Z| < 1.

To deal with this difficulty, we must take account of the fact that for any ζ0
on Γ, one has points on Γ distant by at least a certain h > 0 from ζ0 , where
h depends on Γ but is independent of the choice of ζ0 thereon. One may, for
instance, take h = 1

2 diam. Γ (observation of H.L. Pedersen). When r0 < h we

will thus have points w0 on Γ̃σ with

|w0| ≥
h

r0
> 1,

and by taking r0 small enough we can ensure that |w0| ≥ 5, say.
Considering henceforth any small r0 > 0 for which that is possible, we fix a

w0 , |w0| ≥ 5, on Γ̃σ , and put

Ψ(Z) =
w0Φ(Z)

w0 − φ′(0)Φ(Z)

for |Z| < 1. Since φ′(0)Φ(Z) = φ(Z) never takes the value w0 there, Ψ(Z) is
analytic in the unit disk, and (like Φ(Z)) univalent there; moreover, Ψ(0) = 0,
Ψ′(0) = 1. Koebe’s theorem is therefore applicable to Ψ(Z) .

The boundary Γ̃σ of Ω has on it a point w1 with |w1| = 1, so Φ(Z) never
takes the value w1/φ

′(0) for |Z| < 1. The function Ψ(Z) thus never takes the
value

w0w1

w0 − w1
· 1

φ′(0)

in the unit disk, and by the 1
4 -theorem we have
∣∣∣∣
w0w1

w0 − w1

∣∣∣∣ ·
1

|φ′(0)| ≥
1

4
.

Using the values |w0| ≥ 5, |w1| = 1, we find from this that

1

|φ′(0)| ≥
1

5
,

i.e., that |f ′(0)| ≥ 1
5 , since φ is the inverse function to f .
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Substituting the last relation into (53), we obtain

δ ≥ 1

20
,

i.e., |f(w)| ≥ 1/20 for |w| = 1, and thence

(54)

∣∣∣∣
w

f(w)

∣∣∣∣ ≤ 20 for |w| ≤ 1

by the principle of maximum, w/f(w) being analytic in the unit disk, and con-
tinuous up to its boundary. Referring now to (52), we have the lemma by (54).

Corollary 1. Let |w| ≤ 1 , |w0| < 1 . Then

(55) GΩ(w,w0) ≤ log
40

|w − w0|

as long as r0 > 0 is sufficiently small (independently of the position of ζ0 on Γ).

Proof. We can write

(56) GΩ(w, 0) = log
1

|w| + h(w, 0)

for w ∈ Ω, with h(w, 0) harmonic at the finite points of that domain and, like

GΩ(w, 0), continuous down to Γ̃σ = ∂Ω. The behaviour of h(w, 0) at ∞ is
governed by the requirement that GΩ(w, 0) remain finite there; we thus have

h(w, 0) = log |w|+O(1) for w →∞.

Fixing a w0 , |w0| < 1, we have similarly

(57) GΩ(w,w0) = log
1

|w − w0|
+ h(w,w0)

in Ω, with h(w,w0) harmonic at the finite points of Ω, continuous down to Γ̃σ ,
and behaving in the same way as h(w, 0) for w →∞ .

The difference
h(w,w0)− h(w, 0)

is thus harmonic and bounded in Ω (including at ∞). It is also continuous down

to Γ̃σ , where GΩ(w,w0) and GΩ(w, 0) both vanish, so we have

h(w,w0)− h(w, 0) = log

∣∣∣∣
w − w0

w

∣∣∣∣ for w ∈ Γ̃σ
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by (56) and (57). Since |w| ≥ 1 when w ∈ Γ̃σ , the left side of this last relation is

≤ log(1 + |w0|) < log 2 on Γ̃σ , and the principle of maximum thence yields

(58) h(w,w0)− h(w, 0) ≤ log 2

for all w ∈ Ω.
When |w| = 1, we have, by (51) (from Lemma 6) and (56),

h(w, 0) ≤ log 20;

this must then hold for |w| ≤ 1 by the principle of maximum, making

h(w,w0) ≤ log 40 for |w| ≤ 1

by (58). The desired result now follows from (57).

Let us return, now, to our original domain O , the complement of Γ ∼ σ .
From (49), (50) and (55) we immediately obtain

Corollary 2. For z and z′ inside the circle of radius r0 about ζ0 (and, in
particular, on the arc σ ), we have

(59) GO(z, z′) ≤ log
40r0

|z − z′| ,

as long as r0 is small enough (independently of the position of ζ0 ).

9. As previously, E denotes the exterior of the curve Γ, while the arc σ of
Γ and the complement O of Γ ∼ σ are as in the last section.

Lemma 7. If r0 (the radius of the circle about ζ0 ∈ Γ cutting off the arc σ )
is small enough, we have

(60)

∫

σ

GO(z, ζ) dωE (ζ,∞) ≤ 2(1 + log 40)ωE (σ,∞)

for any point z on σ .

Proof. Under the conditions of the lemma, the integral in (60) is

≤
∫

σ

log
40r0

|z − ζ| dωE (ζ,∞)

according to (59).
Here one may proceed as in the proof of Lemma 3 (Section 4), taking (wlog)

the centre ζ0 of the circle cutting off σ to be at the origin, and the tangent to Γ
at ζ0 as the axis of abscissae. (The reader may refer to the figure accompanying
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the proof of Lemma 3.) We can then write ζ = ξ + iη(ξ) for the points ζ of σ ,
and the last integral takes the form

∫ r′′0

−r′0

(
log

40r0

|z − ζ|

)
dωE (ζ,∞)

|dζ|

√
1 +

(
η′(ξ)

)2
dξ,

where 0 < r′0 ≤ r0 , 0 < r′′0 ≤ r0 , both r′0 and r′′0 being very close to r0 .
In the last expression the logarithm is made larger when we replace its ar-

gument by 40r0/|x − ξ| with x = Rz ; also, dωE (ζ,∞)/|dζ| is very near to
ωE (σ,∞)/2r0 along σ , and |η′(ξ)| very small there, when r0 is small. In that
circumstance, what we have is thus

≤ 2ωE (σ,∞)

∫ r′′0

−r′0

(
log

40r0

|x− ξ|

)
dξ

2r0
.

This integral is increased when r′0 and r′′0 are both replaced by r0 , and then
it is as large as possible when x = 0. Evaluation of the resulting expression now
leads directly to (60).

Here is an analogue of Theorem 1 from [7].

Theorem 2. Let ζ0 ∈ Γ , and suppose that for some c0 ≥ 0 ,

(61) log |P (ζ0)| − (MF )(ζ0) ≥ −c0 > −∞,

where P (z) is a polynomial whose degree M satisfies (38) with some κ > 0 and
λ < 1 , N being large (depending on λ and the curve Γ). Then, if σ is an arc
of Γ , cut off by a circle about ζ0 and for which (39) holds with a suitable integer
k > 0 (depending on c0 and λ), we must have

(62) log |P (ζn)| − (MF )(ζn) ≥ −c1 > −∞

for at least one of the points ζn (specified by (37)) lying on σ . Here, c1 depends
on c0 and λ .

Proof. By reduction to Lemma 5 (Section 7), using Lagrange interpolation.
For this it will be helpful to consider, along with the arc σ , another arc, σ′ , of
Γ, cut off by a circle of radius 2r0 about ζ0 , where r0 is the radius of the circle
about that point cutting off σ . We then denote by O ′ the complement of Γ ∼ σ′
on the Riemann sphere, and we shall work with GO′(z, z

′) whose properties are
the same as those of the function GO(z, z′) considered in the last section. During
the following discussion the quantity k figuring in (39) will be taken as fixed, and
we shall see at the end how it should be chosen.
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Taking GO′(z, z
′) , we form the function

V (z) =

∫

σ′
GO′(z, ζ) d%(ζ)− (MF )(z) + (1− {κM})GO′(z,∞),

where {κM} = κM − [κM ] is the fractional part of κM . According to (13), V (z)
is harmonic in O ′ , except at ∞ , for the logarithmic singularities of GO′(z, ζ)
at the points ζ of σ′ serve to exactly cancel the contributions to the potential
(MF )(z) from its Riesz mass on that arc. At ∞ , V (z) is equal to ([κM ]+1) log |z|
plus a bounded function, where [κM ]+1 is an integer. We therefore have a function
ψ(z) , analytic in the simply connected region O ′ save at ∞ where, however, it
behaves like const. z1+[κM ] , with log |ψ(z)| = V (z) , i.e.,

(63) log |ψ(z)| =
∫

σ′
GO′(z, ζ) d%(ζ) + (1− {κM})GO′(z,∞)− (MF )(z);

ψ(z) is, in particular, never zero in O ′ .

Let us estimate the first two right-hand terms of (63) for z on σ′ . For this we
use Lemma 7 and, to deal with the integral, Lemma 2 (from Section 3). Referring
to (18) and then replacing O by O ′ and σ by σ′ in (60), we find in the first place
that ∫

σ′
GO′(z, ζ) d%(ζ) ≤ 2(1 + log 40)(1 + κ)MωE (σ′,∞)

for z on σ′ . Here ωE (σ′,∞) has about twice the value of ωE (σ,∞) given by
(39) for large values of N (i.e., for small values of r0 ), and the last relation then
becomes
∫

σ′
GO′(z, ζ) d%(ζ) ≤ 5(1 + log 40)(1 + κ)M(2k + 1)

N
≤ 5(1 + log 40)(2k + 1)
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in view of (38), since λ < 1. Again, (1− {κM})GO′(z,∞) ≤ GO′(z,∞) with, for
z ∈ σ′ ,

GO′(z,∞) =

∫

σ′
GO′(z, ζ) dωE (ζ,∞)

(cf. Remark 2 at the end of Section 7). The integral on the right is (as above)

≤ 5(1 + log 40)
2k + 1

N

for large N so we have, with the preceding estimate,

(64)

∫

σ′
GO′(z, ζ) d%(ζ) + (1− {κM})GO′(z,∞) ≤ 5(1 + log 40)(2k + 2)

for z on σ′ and N large.
Write

D = 5(1 + log 40)(2k + 2);

D , like k , stays fixed. Supposing that (62) is violated for every ζn on σ (sic!),
we will then have, by (63) and (64),

(65) |P (ζn)ψ(ζn)| < eD−c1

for each of the ζn on σ . This means that the values P (ζn)ψ(ζn) will all be nearly
zero if c1 is very large, and that in turn gives us the idea of constructing a new
function, analytic and bounded in O ′ , taking the same values at those points.

For that purpose we take, for each ζn ∈ σ , a function g(z, ζn) mapping O ′

(sic!) conformally onto the unit disk and sending ζn to 0. Then, if we put

(66) F (z) =
∏

ζn∈σ
g(z, ζn) for z ∈ O ′,

the function

(67) Q(z) =
∑

ζn∈σ

P (ζn)ψ(ζn)

(z − ζn)F ′(ζn)
F (z),

analytic and bounded in O ′ (where |F (z)| < 1), will satisfy

(68) P (ζn)ψ(ζn)−Q(ζn) = 0 for ζn ∈ σ.

Here Q(z) can be estimated with the help of Corollary 2 (end of last section),
because

GO′(z, ζn) = log
1

|g(z, ζn)| .
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Using this and the relation

F ′(ζn) = g′(ζn, ζn)
∏

ζl∈σ, l 6=n
g(ζl, ζn)

we get, after replacing O by O ′ and r0 by 2r0 in (59),

(69) |F ′(ζn)| ≥ 1

80r0

∏

ζl∈σ, l 6=n

|ζl − ζn|
80r0

.

Now for small enough r0 , |ζl − ζn|/2r0 is practically equal, by (37), (39) and
the continuity of dωE (ζ,∞)/|dζ| , to

|l − n|/N
(2k + 1)/N

=
|l − n|
2k + 1

,

and the number of points ζn on σ is at most 2k + 2, again by (37) and (39).
For small r0 > 0, the right-hand product in (69) has thus at most 2k+ 1 factors,
each > 1/(80k+ 80), say, and is hence (and by far!) > (80k+ 80)−2k−1 . In other
words,

(70) |F ′(ζn)| ≥ L

r0
for ζn ∈ σ

with a certain fixed constant L > 0.
Substituted into (67), (65) and (70) yield, with (66),

|Q(z)| ≤ r0

L
eD−c1

∑

ζn∈σ

1

|z − ζn|

for z ∈ O ′ . On ∂O ′ = Γ ∼ σ′ , the expression on the right is ≤ (2k + 2)eD−c1/L ,
since |z−ζn| ≥ r0 there for each of the ζn on σ (and that is why we brought σ′ into
this discussion!). Therefore, since Q(z) is bounded in O ′ (besides being continuous
up to ∂O ′ like the functions g(z, ζn) used to form F (z)), the (extended) principle
of maximum implies that

(71) |Q(z)| ≤ 2k + 2

L
eD−c1 for z ∈ O ′.

Given the quantity c0 figuring in (61), we now take c1 so large (depending
on D , L and k , i.e., on k alone) as to make the right side of (71) < 1

2e
−c0 , say,

and then form

(72) H1(z) = P (z)− Q(z)

ψ(z)
for z ∈ O ′.
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This function is analytic in O ′ ∩C , and by (68),

(73) H1(ζn) = 0 for ζn ∈ σ.

Again,

(74) e−(MF )(z)H1(z) = e−(MF )(z)P (z)− e−(MF )(z)

ψ(z)
Q(z)

by (72), with the second term on the right of modulus

≤ e−
∫
σ′
GO′ (z,ζ) d%(ζ) e−(1−{κM})GO′ (z,∞)|Q(z)| ≤ |Q(z)| ≤ 1

2e
−c0

according to (71), (63) and the choice of c1 just made. From (61) and (74) we
therefore have

(75) e−(MF )(ζ0)|H1(ζ0)| ≥ 1
2e
−c0 .

On the other hand,

e−(MF )(z)|P (z)| ≤ e(1+κ)MGE (z,∞)

(see near the beginning of Section 7), so, since c0 ≥ 0, (74) and the estimate just
given also yield

(76) e−(MF )(z)|H1(z)| ≤ e(1+κ)MGE (z,∞) + 1
2e
−c0 ≤ 2e(1+κ)MGE (z,∞)

for z ∈ O ′ .

Put, finally,

H(z) = 1
2H1(z).

By (76), the function H(z) , analytic in O ∩C ⊆ O ′ ∩C , satisfies the hypothesis
of Lemma 5, save for (41). In place of the latter, we have, however,

log |H(ζ0)| − (MF )(ζ0) ≥ −c0 − log 4,

from (75). Lemma 5 can thus still be applied, and it tells us that (73) cannot hold
provided that k is chosen large enough to begin with. Fixing such a value of k
and then taking c1 in consequence so as to make the right side of (71) < 1

2e
−c0 ,

we see that (65) cannot hold either for every ζn on σ . That relation will therefore
fail for some ζn ∈ σ , and then (62) will be satisfied at that ζn .

We are done.
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10. Let us now return to the closed set E on Γ, described by (14). Concerning
its points, we have

Theorem 3. Suppose that N is large, and that P (z) is a polynomial of
degree M where (38) holds with some κ > 0 and λ < 1 . Then there are an
integer k > 0 and a constant γ < ∞ , both depending only on λ and the curve
Γ , such that, for any ζ0 ∈ E , we have

(77) log+ |P (ζn)| ≥ 1
3 (MF )(ζ0)− γ

for at least one of the points ζn specified by (37) and lying on an arc σ of Γ , cut
off by a circle about ζ0 and for which (39) holds.

Proof. When log+ |P (ζ0)| = 0 there is nothing that needs to be done, for
then (MF )(ζ0) = 0 by (14), and (77) holds for any ζn ∈ σ as long as γ ≥ 0.

Otherwise, log+ |P (ζ0)| = log |P (ζ0)| , and then we have (61) with c0 = 0.
Assuming N sufficiently large we can thus, by Theorem 2, choose k corresponding
to the given value of λ so that (62) will hold for an appropriate ζn ∈ σ (the arc
determined by k according to (39)), and with a c1 < ∞ corresponding to the
value c0 = 0. For such a ζn , that makes

log |P (ζn)| ≥ (MF )(ζn)− c1.

A lower estimate for the right side of this relation is furnished by Theorem 1
(Section 5). According to (29), it is

≥ 1
3 (MF )(ζ0)− 1

3 (1 + κ)MBωE (ζ0, ζn,∞)− c1
≥ 1

3 (MF )(ζ0)− 1
3 (1 + κ)MBωE (σ,∞)− c1

≥ 1

3
(MF )(ζ0)− 1 + κ

3
MB

2k + 1

N
− c1

with a constant B depending on Γ; we have used (39). Referring finally to (38),
we see that

log |P (ζn)| ≥ 1
3 (MF )(ζ0)− γ

with
γ = 1

3 (2k + 1)Bλ+ c1,

and (77) is proved.

We come finally to the main result of this paper.

Theorem 4. Under the conditions of the preceding theorem, we have

(78)

∫

Γ

log+ |P (ζ)| dωE (ζ,∞) ≤ α

N

N∑

n=1

log+ |P (ζn)|+ β,

where α and β are constants depending on κ , λ and the curve Γ .
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Proof. With N large we take the arcs ζN , ζ1 , ζn, ζn+1 , n = 1, 2, . . . N − 1,
and look at the intersections

(79) EN = E ∩ (ζN , ζ1), En = E ∩ (ζn, ζn+1), n = 1, 2, . . . N − 1,

where E is given by (14).
From Lemma 4 (Section 6) we have, by (35),

(80) κM

∫

Γ

log+ |P (ζ)| dωE (ζ,∞) ≤
∫

Γ

(MF )(ζ) d%(ζ),

and since the Riesz mass % corresponding to MF is supported on E (and is
absolutely continuous—see the corollary to Lemma 2, end of Section 3), the right
side is equal to

(81)
N∑

n=1

∫

En

(MF )(ζ) d%(ζ).

Theorem 3 and Lemma 2 (Section 3) are used to obtain an upper bound on each of
the integrals in (81) for which %(En) > 0; the remaining ones contribute nothing
to that sum.

Let us, for the moment, concentrate on a particular En with %(En) > 0. We
take a point ζ0 ∈ En where (MF )(ζ) assumes its maximum on that closed set,
making ∫

En

(MF )(ζ) d%(ζ) ≤ (MF )(ζ0)%(En).

By (18), (79) and (37) the right side is

≤ (MF )(ζ0)(1 + κ)MωE (En,∞) ≤ (1 + κ)M

N
(MF )(ζ0),

so we get

(82)

∫

En

(MF )(ζ) d%(ζ) ≤ (1 + κ)M

N
(MF )(ζ0).

Here the right side can be estimated by Theorem 3. According to that result,
if we take an arc σ of Γ about ζ0 (∈ E !), of such size as to make

ωE (σ,∞) =
2k + 1

N
,

we will have

(83) (MF )(ζ0) ≤ 3(log+ |P (ζl)|+ γ)



442 Paul Koosis

at one (at least) of the points ζl on σ ; this ζl of course depends on the particular
set En where we have taken our point ζ0 , so we henceforth denote the index l
(for which (83) holds) by l(n) . Combining (82) and (83), we get

(84)

∫

En

(MF )(ζ) d%(ζ) ≤ 3(1 + κ)M

N
(log+ |P (ζl(n))|+ γ)

for each n with %(En) > 0.

Our idea is now to use (84) to estimate the sum (81), but the trouble is that
more than one value of n may correspond to the same index l(n) . In order to see
how many such values there can be, we again fix our attention on one En with
%(En) > 0, and on the point ζ0 therein. Here ζ0 and ζl(n) both lie on the arc
σ formed in the way described above, so an arc, say σn , joining ζ0 to ζl(n) , is
contained in σ . Therefore,

ωE (σn,∞) ≤ ωE (σ,∞) =
2k + 1

N
,

and it follows by (37) that there cannot be more than 2k+2 of the different points
ζj on the closed arc σn .

That being the case for any n with %(En) > 0, let us, for such a fixed n ,
count off successively 2k + 1 of the points ζm lying immediately to one side of
ζl(n) , and 2k + 2 such points lying immediately to the other side. Together with
ζl(n) , this gives us altogether 4k+ 4 points ζm for which the corresponding index

l(m) could equal l(n) if %(Em) > 0; for any other ζm the set Em , if non-empty,
will consist entirely of points ζ ′ lying between ζm and ζm+1 and separated from
ζl(n) by more than 2k of the ζj along the curve Γ. Each of the indices l(n) is, in
other words, shared by at most 4k + 4 of the values of n . This means that

N∑

n=1

log+ |P (ζl(n)| ≤ (4k + 4)

N∑

n=1

log+ |P (ζn)|.
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Using this together with (84) to evaluate the sum (81), we find, by (80), that

κM

∫

Γ

log+ |P (ζ)| dωE (ζ,∞) ≤ 3(1 + κ)(4k + 4)

N
M

N∑

n=1

(
log+ |P (ζn)|+ γ

)
,

i.e., that

∫

Γ

log+ |P (ζ)| dωE (ζ,∞) ≤ 3(1 + κ)(4k + 4)

κN

N∑

n=1

log+ |P (ζn)|+ 3(1 + κ)

κ
(4k+ 4)γ.

The theorem is proved.

Corollary. Under the conditions of the preceding two theorems we have, for
any polynomial P (z) of degree M and any z0 ∈ D , the inside of Γ ,

(85) log+ |P (z0)| ≤ A(z0)

N

N∑

n=1

log+ |P (ζn)|+B(z0)

with two functions A(z0) , B(z0) , each bounded in the interior of D and depending
only on z0 , λ and the curve Γ .

Proof. For z0 ∈ D , we have

log+ |P (z0)| ≤
∫

Γ

log+ |P (ζ)| dωD(ζ, z0).

When z0 ranges through D , the variation of the integral on the right is governed
by Harnack for each P . Refer to the observations at the beginning of Section 1
and to (78).

11. It is perhaps worthwhile to end this paper with a qualitative variant of
the last results.

Theorem 5. Given a sequence of polynomials Pj(z) having the respective
degrees Mj let us, for each j , take Nj points ζn,j , n = 1, 2, . . . Nj , around the
curve Γ , in such fashion as to have

ωE (ζn,j , ζn+1,j ,∞) = ωE (ζNj ,j , ζ1,j ,∞) =
1

Nj

for n = 1, 2, . . . Nj − 1 . Suppose that

Mj

Nj
≤ λ′ < 1

for all j , with some fixed λ′ . Then, if the averages

1

Nj

Nj∑

n=1

log+ |Pj(ζn,j)|

are bounded, the Pj(z) form a normal family in D , the inside of Γ .
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Proof. Take a κ > 0 and λ < 1 for which

(1 + κ)λ′ < λ;

corresponding to this λ and to the curve Γ, Theorem 4 and its corollary will
hold for sufficiently large values of N . According to an observation made at the
beginning of Section 7 there is no loss of generality in our assuming that Nj →∞
as j → ∞ , and we may thus restrict our attention to the j for which the results
just mentioned are valid when N = Nj . The present theorem then follows on
taking N = Nj and ζn = ζn,j in (85), for here (38) is satisfied with M = Mj and
N = Nj .

Remark 1. In this result, the requirement that the ratios Mj/Nj be bounded
away from 1 (and not merely < 1) is essential. To see this, take any large
composite integer N having a divisor K such that

K

N
= ε

is small, and put
ω = e2πi/N , χ = e2πi/K ,

making ωL = χ for L = N/K .
Then

R(z) =
zN − 1

zK − 1
=

∏

1≤n≤N
L†n

(z − ωn)

is a polynomial of degree M = N−K with R(0) = 1. R(z) vanishes at each of the
points ωn on the unit circle, except those of the form χm = ωmL , m = 1, 2, . . .K .
At any one of these,

|R(χm)| =
∣∣∣∣
Nχm(N−1)

Kχm(K−1)

∣∣∣∣ =
N

K
,

so

1

N

N∑

n=1

log+ |R(ωn)| = K

N
log

N

K
= ε log

1

ε
.

Put now

P (z) =
1

ε
R(z).

Then P (0) = 1/ε , but

1

N

N∑

n=1

log+ |P (ωn)| = ε log
1

ε2
.

By arranging matters so as to make M/N = 1 − (K/N) = 1 − ε close to 1 we
render the logarithmic average small but P (0) large. Therefore no bound can, for
|z| < 1, be deduced on P (z) from a bound on the logarithmic average when M/N
gets arbitrarily close to 1.
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Remark 2. The procedure of this paper can, most likely, be extended to more
general closed curves Γ—MF sits upon F like a rider on the back of a camel.
As noted at the end of Section 3, Lemma 2 holds without any special assumptions
about Γ; that is so by the result of Grishin. Without resorting to the geometric
considerations of Section 4, one can also obtain a substitute for Theorem 1:

(MF )(z2) ≤ 3(MF )(z1) + (1 + 9κ)M

∫ 2|z1−z2|

0

ωE (∆r,∞)

r
dr,

where ∆r denotes the disk of radius r about z2 (sic!); this is a simple consequence
of the Poisson–Jensen formula, Lemma 2, and the positivity of
(MF )(z) + κMGE (z,∞) . It seems quite probable that suitable versions of the
other intermediate results used in this paper could also be established. Any exten-
sion of Theorem 5 obtainable in such fashion would probably involve a restriction
more stringent than

Mj

Nj
≤ λ′ < 1

on the degrees Mj of the polynomials Pj(z) ; see the observation at the end of
Remark 2 in Section 7.

A more useful generalization would involve replacement of the simple closed
curve Γ by one going out to ∞ (in both directions). For this one would have to take
a fixed infinite set of nodes ζn on Γ instead of the collections {ζn,j} accumulating
ever more densely on the bounded curve Γ figuring in Theorem 5. In place of
polynomials P (z) , entire functions subject to a growth restriction depending on
Γ and the nodes ζn could be allowed. I think that the simple result involving
a parabola, formulated in the introduction, could, for instance, be deduced quite
easily using a modification of the method followed in the preceding sections.

It seems to me, however, that a real extension of the above work would involve
getting rid of the curve Γ altogether and looking directly at certain distributions
of given nodes ζn . At present, I have only the foggiest glimmerings of how that
might be carried out.

In conclusion, I must thank the referee who pointed out a bad mistake in an
earlier version of Section 1 and also insisted on my giving appropriate credit to
Grishin in the remark at the end of Section 3.
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