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Abstract. Asymptotically sharp bounds for the integral means spectrum of lacunary series
are proved. In particular, we show that Rohde’s estimates for lacunary series with positive coeffi-
cients are sharp and hold not only for the positive case. Moreover, a relation between the law of
the iterated logarithm and the integral means spectrum is established. Using this we give a sharp
version of the Makarov law of the iterated logarithm for lacunary series.

1. Introduction

Let log f ′(z) =
∑∞
k=1 akz

nk be a lacunary series with bounded coefficients
and nk+1/nk ≥ λ ≥ 2 and

β(t) = limr→1−
log
∫
|z|=r |f ′(z)|tdθ

log
1

1− r
be the integral means spectrum.

In this paper we show that

lim
r→1

| log f ′(rζ)|√
log

1

1− r log log log
1

1− r

≤ 2 lim
t→0

√
β(t)

t

for almost all ζ on |ζ| = 1. The equality holds if there exists

lim
r→1

b2(r)

log
1

1− r
where b2(r) =

∞∑

k=1

|ak|2r2nk .

This result follows from the law of the iterated logarithm and the asymptotic
formula

β(t) =
t2

4
lim
r→1

b2(r)

log
1

1− r
+O(t2.5) as t→ 0
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which will be proved later. The law of the iterated logarithm, proved by Weiss [11],
states that

lim
r→1

| log f ′(rζ)|
b(r)

√
log log b(r)

= 1 for almost all |ζ| = 1.

A more general result was obtained by Makarov [5]:

lim
r→1

| log f ′(rζ)|√
log

1

1− r log log log
1

1− r

≤ ‖ log f ′‖B

for almost all ζ on |ζ| = 1 and all functions log f ′ ∈ B . Here B is the class of
Bloch functions, i.e., analytic in the unit disk D = {|z| < 1} functions g with the
norm

‖g‖B = sup
z∈D
|g′(z)|(1− |z|2) < +∞.

One of the main problems of the boundary behaviour of conformal maps is
the investigation of the integral means spectrum βf (t) for univalent functions f
([2], [3], [4], [7] and [9]). Since the properties of Bloch functions are similar to the
properties of lacunary series it is helpful to study βf (t) for lacunary series because
it is well known that, for any conformal mapping f , log f ′ is a Bloch function.

The first non-trivial result about the integral means spectrum for lacunary
series was obtained by Makarov [6]. He showed that if f is defined by

log f ′(z) =
i

5

∞∑

k=1

z2k

then βf (t) ≥ 0.00035t2 for small t . Using Bessel functions Rohde [10], [8] im-
proved this result. He obtained that βf (t) ≥ log I0(at)/ log q for the lacunary
series

log f ′(z) = a
∞∑

k=1

zq
k

, a > 0

where I0(x) is the modified Bessel function.
First we prove some auxiliary results. It is convenient to use the following

abbreviation ∫
hdθ ≡

∫ 2π

0

h(reiθ) dθ.

Lemma 1. Let log f ′, logϕ′ ∈ B . Then there exists C > 0 such that

1

C
(1− r)t2.5

∫
|f ′|t dθ ≤

∫
|g′| dθ ≤ C

(
1

1− r

)Ct2.5 ∫
|f ′|t dθ,

where f ′t = g′ϕ′t
2

and t < 1 .
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Proof. It is known [8], [1] that there exists C > 0 such that

|f ′|t, |g′| ≤ C
(

1

1− r

)Ct
,

∫
|f ′|t dθ,

∫
|ϕ′|±t dθ,

∫
|g′| dθ ≤ C

(
1

1− r

)Ct2
.

Using the Hölder inequality we have
∫
|f ′|t dθ =

∫
|g′| |ϕ′|t2 dθ

≤
(∫
|g′|1/(1−t3/2) dθ

)1−t3/2(∫
|ϕ′|t1/2

dθ

)t3/2

≤ (sup |g′|)t3/2

(∫
|g′| dθ

)1−t3/2

C

(
1

1− r

)Ct5/2

≤ C2

(
1

1− r

)2Ct5/2 ∫
|g′| dθ

(∫
|g′| dθ

)t3/2

≤ C3

(
1

1− r

)3Ct5/2 ∫
|g′| dθ.

Analogously applying the Hölder inequality to
∫
|f ′|t|ϕ′|−t2 dθ we obtain

∫
|g′| dθ =

∫
|f ′|t|ϕ′|−t2 dθ ≤ C3

(
1

1− r

)3Ct5/2 ∫
|f ′|t dθ.

Lemma 1 is proved.

Lemma 2. Let log f ′ =
∑∞
k=1 akz

k ∈ B . Then there exists C > 0 such that

1

C
(1− r)Ct5/2

I(r, t) ≤
∫
|f ′|t dθ ≤ C

(
1

1− r

)Ct5/2

I(r, t)

where

I(r, t) =

∫ ∞∏

k=1

|1 + aktz
k/2|2 dθ.

Proof. We have

t log f ′ =

∞∑

k=1

takz
k =

∞∑

k=1

2 log(1 + takz
k/2) +

∞∑

k=1

t2a2
kz

2k/4 +

∞∑

k=1

O((takr
k)3).

From [8], [1] it follows that logϕ′ =
∑∞
k=1 a

2
kz

2k ∈ B and
∑∞
k=1O

(
(akr

k)3
)

=

O
(
log
(
1/(1− r)

))
. Therefore, we can apply Lemma 1 and obtain the required

inequalities.
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Now we can prove our main result.

Theorem 1. Let log f ′ =
∑∞
k=1 akz

nk be a lacunary series with bounded
coefficients and nk+1/nk ≥ λ ≥ 2 .

Then

βf (t) =
t2

4
lim
r→1

∑∞
k=1 |ak|2r2nk

log
1

1− r
+O(t5/2) as t→ 0.

Proof. By Lemma 2, to prove this result it is enough to estimate

∫ ∞∏

k=1

|1 + takz
nk/2|2 dθ =

∫ ∞∏

k=1

(
1 + t2|ak|2r2nk/4 + t|ak|rnk cos(nkθ + θk)

)
dθ.

We multiply out and integrate term-by-term. Since

cosα cosβ = 0.5[cos(α+ β) + cos(α− β)]

then

(1)
cos(np1θ + θp1) cos(np2θ + θp2)× · · · × cos(npjθ + θpj )

=
1

2j

∑
cos((np1 ± np2 ± · · · ± npj )θ + γ).

The integral of (1) by θ is equal to zero because
∑j−1
k=1 npk ≤

∑pj−1
k=1 nk <

npj/(λ− 1) ≤ npj . Therefore

∫ ∞∏

k=1

|1 + aktz
nk/2|2 dθ = 2π

∞∏

k=1

(1 + t2|ak|2r2nk/4)

= 2π exp

[ ∞∑

k=1

log(1 + t2|ak|2r2nk/4)

]

= 2π

(
1

1− r

)O(t3)

exp

[
0.25t2

∞∑

k=1

|ak|2r2nk

]
.

This concludes the proof.

Applying Theorem 1 to the law of the iterated logarithm we obtain

Theorem 2. For almost all ζ on |ζ| = 1 the following inequality holds

lim
r→1

| log f ′(rζ)|√
log

1

1− r log log log
1

1− r

≤ 2 lim
t→0

√
β(t)

t
.

The inequality is sharp, i.e., if limr→1

(
b2(r)/log(1/(1− r))

)
exists then equality

holds.
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Now we will prove an estimate for a partial case nk = qk , q is an integer.
To prove this result we need some lemmas.

Lemma 3. Let

In(x) =

(
x

2

)n ∞∑

ν=0

x2ν

4νν!(ν + n)!
(n = 0, 1, 2, . . .)

be modified Bessel functions. Then

x cos θ − log

(
I0(x) + 2

q−1∑

n=1

In(x) cos(nθ)

)
= O(xq) as x→ 0.

Proof. It is known [8] that

exp(x cos θ) = I0(x) + 2
∞∑

n=1

In(x) cos(nθ).

Hence

exp(x cos θ) = I0(x) + 2

q−1∑

n=1

In(x) cos(nθ) +O(xq)

because In(x) ≤ (|x|n/2n) exp(|x|2/4)/n! . Therefore

x cos θ = log

(
I0(x) + 2

q−1∑

n=1

In(x) cos(nθ)

)

+ log

(
1 +

O(xq)

I0(x) + 2
∑q−1
n=1 In(x) cos(nθ)

)

= log

(
I0(x) + 2

q−1∑

n=1

In(x) cos(nθ)

)
+O(xq).

Lemma 4. Let q > 1 , sij 6= 0 , pij > 0 be some integers and |sij | < q ,
pij 6= pls , (i, j) 6= (l, s) . Then

(2)

∫ m∏

i=1

cos

(
θ

ni∑

j=1

sijq
pij + θi

)
dθ = 0.

Proof. The proof is by induction on m . Consider the case m = 1. Suppose
that ∫

cos

(
θ

n∑

j=1

sjq
pj + θ1

)
dθ 6= 0.
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Then
∑n
j=1 sjq

pj = 0. Without loss of generality we can suppose p1 < p2 · · · < pn .

Multiplying our equation on q−(p1+1) we conclude that s1/q is an integer number
but this is impossible because 0 < |s1| < q .

Now suppose that m ≥ 2 and (2) holds for m − 1. Using cosα cosβ =
0.5[cos(α+ β) + cos(α− β)] we can write our integral as the sum of two integrals
with m− 1 factors and hence our hypothesis is true.

Theorem 3. We have

βf (t) = lim
r→1

∑∞
k=1 log I0(t|ak|rq

k

)

log
1

1− r
+O(tq) as t→ 0.

Proof. Since
∫
|f ′(z)|t dθ =

∫
exp

[
t

∞∑

k=1

|ak|rq
k

cos(qkθ + θk)

]
dθ

=

∫ ∞∏

k=1

exp[t|ak|rq
k

cos(qkθ + θk)] dθ.

it follows from Lemma 3 that
∫ ∞∏

k=1

exp[t|ak|rq
k

cos(qkθ + θk)] dθ

=

(
1

1− r

)O(tq) ∫ ∞∏

k=1

(
I0(t|ak|rq

k

) + 2

q−1∑

j=1

Ij(t|ak|rq
k

) cos j(qkθ + θk)

)
dθ

where we have used that
∑∞
k=1 r

qk = O
(
log 1/(1− r)

)
.

We multiply out and integrate term-by-term. By Lemma 4 our integral is

2π

∞∏

k=1

I0(t|ak|rq
k

).

Theorem 3 is proved.

Corollary. Let |ak| = a > 0 then

βf (t) =
log I0(at)

log q
+O(tq) as t→ 0.

Proof. From the proof of Rohde it follows easily that

lim
r→1

∑∞
k=1 log I0(tarq

k

)

log
1

1− r
=

log I0(at)

log q
+O(tq) as t→ 0.
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Applying Theorem 3 we conclude that

βf (t) = lim
r→1

∑∞
k=1 log I0(atrq

k

)

log
1

1− r
+O(tq) =

log I0(at)

log q
+O(tq) as t→ 0.

Acknowledgements. I thank Professors F.G. Avhadiev and S.R. Nasyrov for
helpful discussions.

This work was supported by Russian Fund of Fundamental Research (proj.
99-01-00366, 99-01-00173).

References

[1] Anderson, J.M., J. Clunie, and Ch. Pommerenke: On Bloch functions and normal
functions. - J. Reine Angew. Math. 270, 1974, 12–37.

[2] Bertilsson, D.: On Brennan’s conjecture in conformal mapping. - Ph.D. Thesis, Royal
Institute of Technology, Stockholm, 1999.

[3] Carleson, L., and P.W. Jones: On coefficient problems for univalent functions and
conformal dimension. - Duke Math. J. 66, 1992, 169–206.

[4] Kraetzer, Ph.: Experimental bounds for the universal integral means spectrum of con-
formal maps. - Complex Variables Theory Appl. 31, 1996, 305–309.

[5] Makarov, N.G.: On the distortion of boundary sets under conformal mappings. - Proc.
London Math. Soc. 51, 1985, 369–384.

[6] Makarov, N.G.: A note on the integral means of the derivative in conformal mapping.
- Proc. Amer. Math. Soc. 96, 1986, 233–236.

[7] Makarov, N.G.: Fine structure of harmonic measure. - St. Petersburg Math. J. 10, 1999,
217–268.

[8] Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. - Springer-Verlag, Berlin,
1992.

[9] Pommerenke, Ch.: The integral means spectrum of univalent functions. - Zap. Nauchn.
Sem. St. Petersburg 237, 1997, 119–128.

[10] Rohde, S.: Hausdorffmas und Randverhalten analytischer Functionen. - Thesis, Tech-
nische Universität, Berlin, 1989.

[11] Weiss M.: On the law of the iterated logarithm for lacunary trigonometric series. - Trans.
Amer. Math. Soc. 91, 1959, 444–469.

Received 2 March 2000


