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Abstract. It is shown that if Ω is a domain in a metric measure space X such that X is
proper, doubling, supports a (1, p) -Poincaré inequality, and is ϕ -convex, then Modp(E,F,Ω) is
equal to the locally Lipschitz p -capacity of the triple (E,F,Ω).

1. Introduction

Let X be a metric measure space equipped with a Borel measure, and Ω be
a domain in X , that is, Ω is an open connected set in X . Assume also that for
each ball B ⊂ X , µ(B) is finite and non-zero. If Γ is any collection of paths in
Ω, for 1 ≤ p < ∞ the p -modulus of the collection is defined to be the (possibly
infinite) number

Modp(Γ) := inf
%
‖%‖pLp(Ω),

where the infimum is taken over all non-negative Borel-measurable functions %
such that for each locally rectifiable path γ in Γ, the integral

∫
γ
% ds is not less

than 1. If E and F are disjoint non-empty compact sets in Ω, let Modp(E,F,Ω)
denote the p -modulus of the collection of all rectifiable paths γ in Ω with one
endpoint in E and the other endpoint in F .

Following [HeK1], a non-negative Borel-measurable function % is said to be
an upper gradient of a real-valued function u if for all rectifiable paths γ

(1) |u(x)− u(y)| ≤
∫

γ

% ds,

where x and y denote the endpoints of γ . If inequality (1) holds true only for
the paths that are not in a fixed collection of p -modulus zero, then % is said to be
a p -weak upper gradient of u . In the rest of the paper let p be a fixed number
such that 1 < p < ∞ , and p -weak upper gradients are refered to as weak upper
gradients. By [KM, Lemma 2.4], the existence of a weak upper gradient in Lp(Ω)
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is equivalent to the existence of upper gradients in Lp(Ω) that converge in Lp(Ω)
to the weak upper gradient. Hence in the following definitions of capacity one
can consider weak upper gradients instead of only upper gradients to obtain the
same number. The p -capacity of the triple (E,F,Ω) is defined to be the (possibly
infinite) number

Capp(E,F,Ω) = inf
%
‖%‖pLp(Ω),

where the infimum is taken over all non-negative Borel-measurable functions %
that are upper gradients (or weak upper gradients) of some function u with the
property that u|E ≥ 1 and u|F ≤ 0. It is easily seen that the same number is
obtained if the above definition is modified to say that u|E = 1, u|F = 0, and
0 ≤ u ≤ 1. This definition does not assume any regularity on the functions u ; it is
not even required of u to be measurable. A more sensitive capacity is obtained if in
the above definition it is also required that the functions u be continuous; denote
this number Cont-Capp(E,F,Ω). If u is also required to be locally Lipschitz,
then the corresponding number obtained is denoted locLip-Capp(E,F,Ω). It is
immediate that

Modp(E,F,Ω) ≤ Capp(E,F,Ω) ≤ Cont-Capp(E,F,Ω) ≤ locLip-Capp(E,F,Ω).

In [HeK1, Proposition 2.15] Heinonen and Koskela show that in arbitrary
metric spaces Modp(E,F,Ω) = Capp(E,F,Ω). Furthermore, they also prove
that if Ω is a compact ϕ -convex metric measure space, then Modp(E,F,Ω) =
Cont-Capp(E,F,Ω). A metric space X is said to be ϕ -convex if there is a cover
of X by open sets {Uα} together with homeomorphisms {ϕα: [0,∞) → [0,∞)}
such that each pair of distinct points x and y in Uα can be joined by a curve
whose length does not exceed ϕα

(
d(x, y)

)
. For domains in Rn equipped with

the Lebesgue measure Hesse, Shlyk, and Ziemer proved that Modp(E,F,Ω) =
Cont-Capp(E,F,Ω), while Shlyk, Aikawa and Ohtsuka prove this for bounded
Euclidean domains with strong A∞ weights, see [Z1], [Z2], [Shl1], [Shl2], [AO],
[H], and [F]. In [HeK1, Remark 2.17] Heinonen and Koskela pose the question
whether it is true that Modp(E,F,Ω) = Cont-Capp(E,F,Ω) if Ω is a general
domain in a metric measure space, not necessarily bounded. This paper answers
this question in the affirmative in the case that Ω is a domain in a ϕ -convex
metric measure space X that is proper, doubling, and supports a (1, p)-Poincaré
inequality. The arguments used in this paper are different from those in the above
citations. The machinery of Newtonian spaces developed in [Sh] is used here.
Properness means that closed balls are compact and the measure µ is doubling
if there is a constant Cµ ≥ 1 such that µ(2B) ≤ Cµµ(B) for all balls B in the
space; 2B is the ball with the same center as B but with twice the radius of B .
Following [HeK1], a metric measure space X is said to support a (1, p)-Poincaré
inequality if there are constants C > 0 and τ ≥ 1 so that for each ball B in X
and each continuous function u in τB with upper gradient % in τB the following
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inequality holds:

(2)

∫
−
B

|u− uB | ≤ C
(
diam(B)

)(∫
−
τB

%p
)1/p

,

where fB denotes the mean value integral of f over B . In the rest of the paper it
is assumed that τ = 1. Minor modifications would yield the results when τ > 1.

The main theorem of this paper is:

Theorem 1.1. If X is a proper ϕ -convex metric measure space equipped
with a doubling measure and supporting a (1, p) -Poincaré inequality with 1 < p <
∞ , and Ω is a domain in X , then for all disjoint compact non-empty subsets E
and F of Ω ,

Modp(E,F,Ω) = Cont-Capp(E,F,Ω) = locLip-Capp(E,F,Ω),

where locLip-Capp(E,F,Ω) is defined similarly to Cont-Capp(E,F,Ω) , with the
test functions being required to be locally Lipschitz.

The authors do not know whether the (1, p)-Poincaré inequality assumption
is essential for the conclusion in Theorem 1.1. This theorem has a wide range of
applications. For example, in [KST, Corollary C], Koskela, Shanmugalingam and
Tuominen show that certain types of porous sets are removable for the Loewner
condition by using this theorem. The idea here is to show that these porous sets
are removable for continuous capacitary estimates, and then as a consequence of
Theorem 1.1 they note that the Loewner property is preserved when such porous
sets are removed.

Following the notation in [Sh], the space N1,p
loc (Ω) is defined to be the col-

lection of all functions in Lploc(Ω) which have upper gradients in Lp(Ω). Note
that the upper gradients are required to be in Lp(Ω), not merely in Lploc(Ω). The
collection Lploc(Ω) is the collection of all functions in Ω that are p -integrable on
every bounded subset of Ω. The proof of Theorem 1.1 uses the fact that in the
setting of Theorem 1.1 locally Lipschitz functions are dense in N1,p

loc (Ω).

Proposition 1.2. If X is a metric measure space equipped with a doubling
measure and supporting a (1, p) -Poincaré inequality with 1 < p <∞ , and Ω is a
domain in X , then there exists a constant C > 0 such that for each function u
in N1,p

loc (Ω) and for all ε > 0 there is a locally Lipschitz function uε in N1,p
loc (Ω)

with the property that there exists an upper gradient gε of uε − u so that

‖gε‖Lp(Ω) < ε and ‖uε − u‖Lp(Ω) < Cε.

Proposition 1.2 is interesting in its own right as it proves a local analogue of
the classical Sobolev space theory result H1,p = W 1,p . Using an idea of Semmes
[S1], the result is proved for the case Ω = X in [Sh, Theorem 4.1].

Section 2 is devoted to proving Proposition 1.2, and in Section 3 Theorem 1.1
is proved.

Acknowledgement. The authors wish to thank Pekka Koskela, Juha Hei-
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2. Proof of Proposition 1.2

The idea behind the proof is to approximate u in balls in Ω by applying [Sh,
Theorem 4.1] in these balls, and then paste the approximations together using a
partition of unity to obtain an approximation in Ω.

The following covering lemma is needed for the proof of Proposition 1.2. For
a proof of this lemma see [S2] and [KST].

If B is a ball of radius r , then for k > 0 the ball with the same center as B
and radius kr is denoted kB .

Lemma 2.1. Let X be a metric measure space equipped with a doubling
measure, and Ω a domain in X . Then there is a collection {Bi}i∈N of balls in X
such that

(i)
⋃
iBi = Ω ,

(ii) there exists a constant C1 ≥ 1 such that if 2Bi ∩ 2Bj 6= ∅ , then

1

C1
rad (Bi) ≤ rad (Bj) ≤ C1rad (Bi)

where rad (Bi) is a pre-assigned radius of Bi ,
(iii) with C2 = 12(C1 + 1) , C2Bi b Ω , and
(iv) there exists a constant D ≥ 1 so that

∑
i χ2Bi ≤ D .

Note that a ball in X may have more than one center and more than one
radius. Hence in this lemma it may be necessary to consider the balls Bi to have
pre-assigned centers and radii.

If {Bi}i∈N is the collection obtained by Lemma 2.1, then for each positive
integer i there exists a (C/diam (Bi))-Lipschitz function ϕi so that 0 < ϕi ≤ 1,∑
i∈N ϕi = χΩ , and ϕi|Ω\2Bi = 0. The constant C in the Lipschitz constant

estimate depends only on the constants C1 and D of Lemma 2.1.
The following lemma also is needed in the proof of Proposition 1.2. Its proof is

a modification of a technique in [Ha, Proposition 1], and will be omitted here. Let
u be a real-valued function on a metric measure space Y . Following the notation
in [Sh], the function u is said to be ACCp in Y if on all rectifiable paths γ ⊂ Y
outside a family of p -modulus zero the function u◦γ is absolutely continuous. By
[Sh, Proposition 3.1], functions in N1,p

loc (Ω) are ACCp in Ω.

Lemma 2.2. Let Y be a metric measure space, and u be a real-valued
ACCp function on Y . If there exist two non-negative Borel measurable functions
g and h on Y such that for all rectifiable paths γ connecting x to y it is true
that

|u(x)− u(y)| ≤
∫

γ

g + d(x, y)
(
h(x) + h(y)

)
,

then g + 4h is a weak upper gradient of u .
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Proof of Proposition 1.2. By [HeK2, Theorem A], the (1, p)-Poincaré in-
equality (2) is satisfied by any real-valued function u in L1

loc(X) and its upper
gradient g , since X is proper, ϕ -convex, doubling, and supports a (1, p)-Poincaré
inequality.

Let {Bi}i∈N be as in Lemma 2.1, and {ϕi}i∈N be the corresponding partition
of unity constructed above. For each i the proof of [Sh, Theorem 4.1] can be
applied on the space N1,p(C2Bi) to obtain Lipschitz approximations to u|C2Bi .
The proof of [Sh, Theorem 4.1] uses the doubling property of the measure and
the Poincaré inequality. In this general situation of an arbitrary domain Ω, we
can still use these two properties on the balls Bi because of the properties from
Lemma 2.1. Hence we can apply the proof of [Sh, Theorem 4.1] here.

Let vi,λ be such a Cλ -Lipschitz approximation of u|C2Bi . Fix ε > 0. Choos-
ing λ sufficiently large, an approximation vi = vi,λ can be obtained for each ball
2C2Bi so that in addition,

(3) ‖vi − u‖N1,p(2C2Bi) < 2−iε,

and

(4) ‖vi − u‖Lp((2C2Bi)) < 2−idiam (Bi)ε.

By (3), we have an upper gradient gi of vi − u with ‖gi‖Lp((2C2Bi) < 2−iε . Now
let uε =

∑
i viϕi . While viϕi is defined in all of Ω, since it has its non-zero

values only inside 2Bi , by (iv) of Lemma 2.1 the above sum is a finite sum on Ω.
Furthermore, it is easily seen that uε is Lipschitz on each ball Bi , and hence is
locally Lipschitz. Since u =

∑
i uϕi , we have uε − u =

∑
i(vi − u)ϕi . Just as in

the papers [S2] and [KST] it can be shown that the function

gε =
∑

i

(
gi +

4C

diam (Bi)
|vi − u|

)
χ2Bi

is an upper gradient of uε − u . Now just as in [KST], it can be easily seen
by the bounded overlap property (iv) of Lemma 2.1 and by inequalities (3) and
(4) that

∫
Ω
gε(x)p ≤ Cεp . Therefore ‖gε‖Lp(Ω) ≤ Cε , and the function uε has

g + gε ∈ Lp(Ω) as an upper gradient. Furthermore, by inequality (4),

‖uε − u‖Lp(Ω) ≤
∑

i

‖vi − u‖Lp((4C1+2)Bi) ≤
(∑

i

2−i
)
ε.

Hence uε is a locally Lipschitz function that approximates u as required.
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3. Proof of Theorem 1.1

The idea behind the proof of Theorem 1.1 is as follows. It is first shown that
if A , B are non-empty compact subsets of Ω, then

Modp(A,B,Ω) = N1,p
loc − Capp(A,B,Ω)

where N1,p
loc −Capp(A,B,Ω) is defined similarly to the other capacity definitions,

with the test functions u being required to be in N1,p
loc (Ω). Theorem 1.1 is then

proved if N1,p
loc − Capp(A,B,Ω) can be replaced by Cont-Capp(E,F,Ω). This is

done as follows: If E and F are non-empty, disjoint compact subsets of Ω, com-
pact neighbourhoods Aε and Bε of E and F are considered. The test functions
u used to calculate the number N1,p

loc − Capp(Aε, Bε,Ω) are “smoothed out” by
locally Lipschitz approximations. These approximations take on the same value
as u at the “centers” E and F of Aε and Bε , and hence are functions that can
be used to calculate upper bounds for Cont-Capp(E,F,Ω). The argument is com-

pleted by using a continuity property of N1,p
loc − Capp(Aε, Bε,Ω), that is, as the

sets Aε and Bε shrink to the sets E and F respectively N1,p
loc −Capp(Aε, Bε,Ω)

tends to the number N1,p
loc − Capp(E,F,Ω).

By the proof in [HeK1, Proposition 2.15], it is true that if A and B are non-
empty disjoint compact subsets of Ω with X ϕ -convex and Ωj is a subdomain of
Ω such that A ∪B ⊂ Ωj b Ω, then

(5) Cont-Capp(A,B,Ωj) ≤ Capp(A,B,Ω) = Modp(A,B,Ω).

Here Cont-Capp(A,B,Ωj) is defined similarly to Cont-Capp(A,B,Ω). In order

to prove that Modp(A,B,Ω) is equal to N1,p
loc − Capp(A,B,Ω), the domain Ω is

exhausted by such subdomains Ωj (which is possible since X is proper), and it is
shown that

lim
j→∞

Cont-Capp(A,B,Ωj) ≥ N1,p
loc − Capp(A,B,Ω).

In order to do so, it is necessary to build up N1,p
loc (Ω)-test functions admissible

for calculating N1,p
loc − Capp(A,B,Ω) from the test functions used in calculat-

ing Cont-Capp(A,B,Ωj) . To overcome the restrictions imposed by not knowing
whether N1,p(Ωj) is reflexive or not in this general setting, it is necessary to ob-

tain the N1,p
loc -test function via Mazur’s lemma applied to convex combinations of

functions and upper gradients in Lp(Ω).

Lemma 3.1. Let Y be a metric measure space. If {fj}j∈N is a sequence of
functions in Lp(Y ) with upper gradients {gj}j∈N in Lp(Y ) , such that fj weakly
converges to f in Lp and gj weakly converges to g in Lp , then g is a weak
upper gradient of f after modifying f on a set of measure zero, and there is
a convex combination sequence f̃j =

∑nj
k=j λkjfk and g̃j =

∑nj
k=j λkjgk with∑nj

k=j λkj = 1 , λkj > 0 , so that f̃j converges in Lp to f and g̃j converges in Lp

to g .
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Proof. Applying Mazur’s lemma (see [Y]) to each sequence {fj}∞j=1 and
{gj}∞j=1 simultaneously, a sequence of convex combinations of fj ’s and gj ’s that
converge in the Lp(Y )-norm to f and some function g can be formed. Denote
these convex combination sequences {f̃i} and {g̃i} . It is easy to see that g̃i is a
weak upper gradient of f̃i .

To see that g is an upper gradient of f in Y , note by a theorem of Fuglede
[F] that if g̃i is a sequence of Borel-measurable non-negative functions in Lp(Y )
converging in Lp(Y ) to a function g , then there exists a subsequence of {g̃i} ,
also denoted {g̃i} for brevity, and a collection Γ of rectifiable paths in Y with
Modp(Γ) = 0, so that whenever γ is a rectifiable path not in Γ, then

∫
γ
g̃i →

∫
γ
g ,

and
∫
γ
g <∞ . One can redefine f on a set of measure zero in Y so that

(6) f(x) = 1
2

{
lim sup
i→∞

f̃i(x) + lim inf
i→∞

f̃i(x)
}
,

wherever it makes sense; see [Sh]. Now just as in [Sh], it can be shown that g is
a weak upper gradient of f .

Lemma 3.2. Let Ωj be a sequence of bounded domains such that Ωj ⊂ Ωj+1 ,
Ωj b Ω , Ω =

⋃
j Ωj , and E , F are compact subsets of Ωj for each j . Then

lim
j→∞

Cont-Capp(E,F,Ωj) ≥ N1,p
loc − Capp(E,F,Ω).

Proof. If limj→∞ Cont-Capp(E,F,Ωj) = ∞ , then there is nothing to prove,

and because Cont-Capp(E,F,Ωj) is an increasing function of j , it can be as-

sumed that the limit of Cont-Capp(E,F,Ωj) exists and is equal to M <∞ . Now

Cont-Capp(E,F,Ωj) ≤ M for each j . For each positive integer j , a continuous

function fj can be chosen, together with its upper gradient gj in Ωj , so that
0 ≤ fj ≤ 1, ‖gj‖pLp(Ω) ≤ Cont-Capp(E,F,Ωj) + ε , and fj |A = 1, fj |B = 0.

Fix j ∈ N . For each integer k ≥ j , fk is defined on Ωj and has gk as an
upper gradient on Ωj , ‖fk‖Lp(Ωj)

≤ µ(Ωj)
1/p , and ‖gk‖Lp(Ωj)

≤ ‖gk‖Lp(Ωk) ≤
(M + ε)1/p . Thus both sequences {fk}k≥j and {gk}k≥j are bounded sequences
in Lp(Ωj) , and by the weak compactness property of Lp(Ωj) , there exist func-
tions f j and gj in Lp(Ωj) to which subsequences of the two sequences weakly

converge respectively. By Lemma 3.1, there is a convex combination f̃k,j and
the corresponding convex combination g̃k,j converging in Lp(Ωj) to f j and gj

respectively, and gj is a weak upper gradient of f j in Ωj . Moreover, by definition
(6), f j |E = 1, f j |F = 0, and 0 ≤ f j ≤ 1. Now for every k ∈ N , by a diagonal-
ization argument it can be ensured that fk|Ωk−1

= fk−1 outside of a set of zero
p -capacity in Ωk−1 (see [Sh, Corollary 3.3]), and gk|Ωk−1

= gk−1 almost every-
where in Ωk−1 . Hence the function f can be defined by f(x) = fk(x) whenever
x ∈ Ωk and g can be defined by g(x) = gk(x) whenever x ∈ Ωk\Ωk−1 . Then



462 Sari Kallunki and Nageswari Shanmugalingam

f ∈ Lploc(Ω), and g is a weak upper gradient of f since every rectifiable curve in Ω
lies in some Ωk and g = gk almost everywhere in Ωk . Since ‖gk‖pLp(Ωj)

≤M + ε ,

extending each gi by zero to all of Ω,

(∫

Ω

|gk|p
)1/p

=

(∫

Ω

( nj∑

s=j

λjsgs

)p)1/p

≤ (M + ε)1/p.

Hence ‖g‖pLp(Ω) ≤ M + ε and therefore f ∈ N1,p
loc (Ω) is an admissible function in

calculating N1,p
loc − Capp(E,F,Ω). Hence,

M + ε ≥ N1,p
loc − Capp(E,F,Ω),

where we use the fact that M = limj→∞ Cont-Capp(E,F,Ωj) .

Remark 3.3. By Lemma 3.2 and by inequality (5), if p > 1 then

Modp(E,F,Ω) = Capp(E,F,Ω)

≥ Cont-Capp(E,F,Ωj)→M ≥ N1,p
loc − Capp(E,F,Ω)

as j →∞ . Since N1,p
loc − Capp(E,F,Ω) ≥ Capp(E,F,Ω), it follows that

(7) Modp(E,F,Ω) = N1,p
loc − Capp(E,F,Ω) = Capp(E,F,Ω)

whenever E and F are non-empty disjoint compact subsets of a domain Ω in a
proper ϕ -convex metric measure space.

Lemma 3.4. If E and F are non-empty disjoint compact subsets of Ω , there
exist for each 0 < ε < 1

2 disjoint compact sets Aε , Bε of Ω such that for some
δ > 0

(i)
⋃
x∈E B(x, δ) = Aε ,

(ii)
⋃
x∈F B(x, δ) = Bε , and

(iii) N1,p
loc −Capp(Aε, Bε,Ω) ≤ (1− 2ε)−pN1,p

loc −Capp(E,F,Ω) + ε(1− 2ε)−p + 2ε .

Proof. We just give a brief sketch of the proof here. The idea is to use the
test functions considered in calculating N1,p

loc − Capp(E,F,Ω) to construct test

functions for calculating N1,p
loc −Capp(Aε, Bε,Ω). A priori we only know that the

test functions u used in calculating N1,p
loc − Capp(E,F,Ω) take on the value of 1

on E and the value of 0 on F . We need test functions that take on the value
of 1 in a neighborhood of E and the value of 0 in a neighborhood of F . This
is done by noting that by Proposition 1.2 we have that u is p -quasi-continuous,
and hence by modifying u on a set of small p -capacity we obtain the required test
function for calculating N1,p

loc − Capp(Aε, Bε,Ω).
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By Lemma 3.4 and the equality (7), for each 0 < ε < 1
2 there exist non-empty

disjoint compact sets Aε , Bε as in Lemma 3.4 so that

(8)
1

(1− 2ε)p
Modp(E,F,Ω) + η(ε) ≥ N1,p

loc − Capp(Aε, Bε,Ω),

where limε→0 η(ε) = 0.

Lemma 3.5. With X and Ω as in Theorem 1.1 and ε , δ , Aε , Bε , E , F ,
and Ω as in Lemma 3.4, it is true that

N1,p
loc − Capp(Aε, Bε,Ω) ≥ locLip-Capp(E,F,Ω).

Here the definition of locLip-Capp(E,F,Ω) is the same as the definition of
Cont-Capp(E,F,Ω), but with functions u being required to be locally Lipschitz
in Ω rather than merely continuous.

Proof. If u is an admissible function for calculating N1,p
loc −Capp(Aε, Bε,Ω),

then u|⋃
x∈E B(x,δ)

= 1 and u|⋃
x∈F B(x,δ)

= 0. Therefore if g is an upper gradient

of u , then so is
g̃ = gχ

Ω\
⋃
x∈E∪F B(x,δ)

.

Then if x ∈ E ∪ F , denoting U = Ω \⋃x∈E∪F B(x, δ) ,

Mg̃p(x) = sup
r>0

∫
−
B(x,r)

gpχU = sup
r≥δ

∫
−
B(x,r)

gpχU ≤
1

µ
(
B(x, δ)

)‖g‖pLp(Ω).

Since the measure µ is doubling, for all 0 < r ≤ R and for all x1 ∈ X and
x0 ∈ B(x1, R) ,

µ
(
B(x0, r)

)

µ
(
B(x1, R)

) ≥ C
(
r

R

)s

where C is a constant independent of x0 , x1 , r , and R , and s = log2 C2 (C2

being the doubling constant associated with µ). As E∪F is compact, there exists
a positive number % > δ > 0 and x1 ∈ X so that E ∪ F ⊂ B(x1, %) . Hence if x0

is a point in E ∪ F , then

µ
(
B(x0, δ)

)
≥ C

(
δ

%

)s
µ
(
B(x1, %)

)
=: CE∪F .

Therefore for x ∈ E ∪ F ,

Mg̃p(x) ≤ 1

CE∪F
‖g‖pLp(Ω).

In the use of [Sh, Theorem 4.1] in the proof of Proposition 1.2, we can choose
the Lipschitz constant λ for the approximating function to be sufficiently large,
namely, choose λ so that λ > ‖g‖pLp(Ω)/CE∪F , so that the approximating function

uε agrees with the function u being approximated on E ∪ F . Hence uε is an
admissible function for calculating locLip-Capp(E,F,Ω):

locLip-Capp(E,F,Ω) ≤ ‖g + gε‖pLp(Ω) ≤ ‖g‖
p
Lp(Ω) + ε.

Thus locLip-Capp(E,F,Ω) ≤ N1,p
loc − Capp(Aε, Bε,Ω).
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Now combining inequalities (8) and Lemma 3.5 and then letting ε tend to
zero, we obtain a proof of Theorem 1.1.

Remark 3.6. In the event that the domain Ω is all of X , using Semmes’ idea
[S1] and [Sh, Theorem 4.1], globally Lipschitz approximations can be obtained in
Proposition 1.2 instead of merely locally Lipschitz approximations. Hence a better
result is obtained: Cont-Capp(E,F,Ω) = Lip− Capp(E,F,Ω) = Modp(E,F,Ω).
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