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Abstract. In this paper we investigate the second power moment of symmetric square L -
functions on the critical line, which are associated with primitive cusp forms. We establish an
upper bound which is sharp with respect to the level.

1. Introduction

Estimates for L -functions on the critical line appear in many applications
in number theory. The Riemann hypothesis, if true, provides essentially the best
possible results. Quite often estimates on average over suitable families of L -
functions are sufficient for practical purpose and the results are as good as the
Riemann hypothesis can do.

In this paper we are interested in estimating the second power moment of
L -functions associated with the symmetric square representations of GL2 auto-
morphic forms in the conductor aspect. According to the Gelbart–Jacquet lift
[GJ] these correspond to automorphic forms on GL3 . Our main result is

Theorem 1.1. Let k , N be positive integers, k even, N squarefree. Let
B∗k(N) be the set of primitive cusp forms of weight k with respect to the group
Γ0(N) . For each f ∈ B∗k(N) let L(sym2 f, s) be the corresponding symmetric
square L -function. Let Re s = 1

2 . We have

(1.1)
∑

f∈B∗
k
(N)

|L(sym2 f, s)|2 ¿ |s|8N1+ε

for any ε > 0 , the implied constant depending only on ε and k .
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Note that the number of primitive forms satisfies (see (2.72) of [ILS])

(1.2) |B∗k(N)| ∼ k − 1

12
ϕ(N)

so that (1.1) implies

(1.3) L(sym2 f, s)¿ Nε

for almost all f (the implied constant depending on ε , k and s), while the
Riemann hypothesis would imply this for every f . Ignoring all but one form
in (1.1) we get

(1.4) L(sym2 f, s)¿ N (1/2)+ε

for every f ∈ B∗k(N) . This last estimate is nearly as good as the convexity bound
which follows from the functional equation (2.23).

Inspite of three gamma factors in the functional equation for L(sym2 f, s)
(which fact is consistent with sym2 f being a GL3 form) in the N aspect (the
conductor) L(sym2 f, s) behaves like L2(s, χN ) for the real primitive Dirichlet
character χN of conductor N . In that sense Theorem 1.1 can be compared with
the estimate of Heath-Brown [HB] for the fourth power moment of Dirichlet L
functions over the real characters on the critical line

(1.5)
∑[

q≤Q
|L(s, χq)|4 ¿ |s|AQ1+ε

where (and throughout this paper)
∑[

indicates restriction to positive odd square-
free integers. Here A is an absolute positive constant, ε is any positive number,
and the implied constant depends only on ε . This analogy is justified because
both L(sym2 f, s) and L2(s, χN ) can be well approximated by the corresponding
partial sums of comparable length relative to the conductor N . However the case
of the symmetric square is somewhat harder. The point of distinction is that we
are having the Fourier coefficients λf (n2) in place of the characters χN (n)τ(n)
for n¿ N , and the squares are sparse while the divisor function is quite regular
by comparison. Heath-Brown derives (1.5) (among some other results) directly
from his more general

Theorem 1.2. For any complex numbers an we have

(1.6)
∑[

m≤M

∣∣∣∣
∑[

n≤N
an

(
n

m

)∣∣∣∣
2

¿ (MN)ε(M +N)
∑[

n≤N
|an|2

with any ε > 0 , the implied constant depending only on ε .
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This is a deep and indeed powerful estimate. In the proof of our Theorem 1.1
we shall also use (1.6), but not as directly. Our method does not yield an asymp-
totic formula for the second power moment of L(sym2 f, s) because the estimate
(1.6) is not precise enough.

Since our result (1.1) just yields the convexity bound (1.4) one is encouraged
to use the amplification method to get an improvement for individual L(sym2 f, s) .
This would be possible if we could prove that

(1.7)
∑

f∈B∗
k
(N)

λf (l2)|L(sym2 f, s)|2 ¿ l−βN1+ε

for every l ≤ Nα with some small α, β > 0. Investigating this question, some
preliminary analysis led us to character sums of type

(1.8)
∑[

c≤C

∑∑

a≤A, b≤B
ab6=¤

(
ab

cN

)
χ(a)ψ(b)

with any χ, ψ (mod l) . One needs this triple sum (and other slightly more general
sums) for A,B,C ¿ N to be bounded by O(N2−η) for some absolute η > 0,
which seems to be plausible due to extra cancellation from summation in c , but
the current technology fails.

Acknowledgement. We began working on this paper in May 1999 during
the visit of the first author to Université d’Orsay, and continued in the Institute
for Advanced Study during the year 1999–2000. We thank both institutions for
invitations and support. We would also like to thank Matti Jutila for his interest
in our work and the referee for careful reading and corrections.

2. A brief account of automorphic L-functions

To fix notation and normalizations we recall standard facts about automorphic
forms and their L -functions. The linear space Sk(N) of cusp forms of weight k
and level N is a finite-dimensional Hilbert space with respect to the Petersson
inner product

〈f, g〉 =

∫

Γ0(N)\H
f(z)g(z)yk−2 dx dy.

We have

(2.1) dimSk(N) = ν(N)
k − 1

12
+O

(
(kN)2/3

)

where

(2.2) ν(N) = [Γ0(1) : Γ0(N)] = N
∏

p|N

(
1 +

1

p

)
.
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Expand f ∈ Sk(N) into Fourier series

(2.3) f(z) =
∑

n≥1

ψf (n)n(k−1)/2e(nz).

Concerning the size of the Fourier coefficients ψf (n) on can show that

(2.4)
∑

n≤X
|ψf (n)|2 ≤ 3ωf

(
1 +

80πX

kN

)

where

(2.5) ωf =
(4π)k−1

Γ(k − 1)
〈f, f〉.

Although the proof is elementary (we do not use (2.4) here) the result is quite
good (only the constants in the bound (2.4) can be improved). The ωf given by
(2.5) appears to be a natural normalizing factor in the spectral trace

(2.6) ∆(m,n) =
∑

f∈Bk(N)

ω−1
f ψf (m)ψf (n).

Here Bk(N) is any orthogonal basis of Sk(N) and the sum (2.6) is basis indepen-
dent. We have (cf. Theorem 3.6 of [I]) the following formula of Petersson

Proposition 2.1. For any m,n ≥ 1

(2.7) ∆(m,n) = δ(m,n) + 2πi−k
∑

c≡0(N)

c−1S(m,n; c)Jk−1

(
4π
√
mn

c

)

where δ(m,n) is the diagonal symbol, Jk−1(x) is the Bessel function and

(2.8) S(m,n; c) =
∑

ad≡1(c)

e

(
am+ dn

c

)

is the classical Kloosterman sum.

The Hecke operators Tn: Sk(N)→ Sk(N) are defined by

(2.9) (Tnf)(z) =
1√
n

∑

ad=n
(a,N)=1

(
a

d

)k/2 ∑

b (mod d)

f

(
az + b

d

)
.
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For any m,n ≥ 1 we have

(2.10) TmTn =
∑

d|(m,n)
(d,N)=1

Tmn/d2 .

Hence the Hecke operators commute. Moreover the operators Tn with (n,N) = 1
are self-adjoint, i.e., 〈Tnf, g〉 = 〈f, Tng〉 for all f , g in Sk(N) if (n,N) = 1.
Therefore we can choose the orthogonal basis Bk(N) which consists of common
eigenfunctions of all the Hecke operators with (n,N) = 1, i.e., for any f ∈ Bk(N)
we require

(2.11) Tnf = λf (n)f, if (n,N) = 1.

We shall call any f which satisfies (2.11) a Hecke cusp form.
By (2.9), (2.10) and (2.11) one derives the formula

(2.12) ψf (m)λf (n) =
∑

d|(m,n)

ψf (mn/d2)

for any m,n ≥ 1 with (n,N) = 1. In particular we obtain ψf (n) = ψf (1)λf (n)
if (n,N) = 1. Moreover, it follows from (2.10) and (2.11) that

(2.13) λf (m)λf (n) =
∑

d|(m,n)

λf (mn/d2), if (mn,N) = 1.

We assume that the Hecke eigenbasis contains the subset B∗k(N) of primitive
forms (in the sense of Atkin–Lehner theory, see [I]). A primitive form f has many
useful properties. First of all f is an eigenfunction of all the Hecke operators
and the formulas (2.10), (2.12), (2.13) hold for all m,n ≥ 1. Moreover f can be
normalized so that

(2.14) ψf (1) = 1,

and the Fourier expansion becomes

(2.15) f(z) =
∑

n≥1

λf (n)n(k−1)/2e(nz).

The associated Hecke L -function

(2.16) L(f, s) =
∑

n≥1

λf (n)n−s
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has Euler product L(f, s) =
∏
p Lp(f, s) with the local factors

(2.17) Lp(f, s) =
(
1− λf (p)p−s + χ0(p)p−2s

)−1

where χ0 denotes the principal character to modulus N . Define the local factor
at p =∞ by

(2.18) L∞(f, s) = π−sΓ

(
s

2
+
k − 1

4

)
Γ

(
s

2
+
k + 1

4

)
.

Then the complete product Λ(f, s) = Ns/2L∞(f, s)L(f, s) is entire and it satisfies
the functional equation

(2.19) Λ(f, s) = εfΛ(f, 1− s)

with the root number εf = ikµ(N)λf (N)N1/2 = ±1.
The symmetric square L -function is defined by

(2.20) L(sym2 f, s) = ζ(N)(2s)
∑

n≥1

λf (n2)n−s,

here and hereafter ζ(N)(2s) stands for the partial zeta function with local factors at
primes of N removed. This has the Euler product L(sym2 f, s) =

∏
p Lp(sym2 f, s)

with the local factors

(2.21) Lp(sym2 f, s) =
(
1− λf (p2)p−s + λf (p2)p−2s − p−3s

)−1

if p - N and
Lp(sym2 f, s) = (1− p−s−1)−1

if p|N .

Remark. For p - N the Lp(f, s) factors into
(
1−αf (p)p−s

)−1(
1−βf (p)p−s

)−1

with αf (p) + βf (p) = λf (p) and αf (p)βf (p) = 1, and then

Lp(sym2 f, s) =
(
1− α2

f (p)p−s
)−1(

1− αf (p)βf (p)p−s
)−1(

1− β2
f (p)p−s

)−1
.

Define the local factor at p =∞ by

(2.22) L∞(sym2 f, s) = π−3s/2Γ

(
s+ 1

2

)
Γ

(
s+ k − 1

2

)
Γ

(
s+ k

2

)
.

Then the complete product Λ(sym2 f, s) = NsL∞(sym2 f, s)L(sym2 f, s) is entire
and it satisfies the functional equation

(2.23) Λ(sym2f, s) = Λ(sym2f, 1− s).
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For a primitive form one has (see Lemma 2.5 of [ILS])

(2.24) ωf =
k − 1

2π2
NL(sym2 f, 1).

By the Ramanujan conjecture (proved by P. Deligne [D])

(2.25) |λf (n)| ≤ τ(N)

and the functional equation (2.23) we derive by convexity arguments that

(2.26) L(sym2 f, 1)¿ (log kN)3

where the implied constant is absolute. Hence

(2.27) ωf ¿ kN(log kN)3.

3. Representation of L(sym2 f, s) by partial sums

The main Theorem 1.1 will be reduced to corresponding estimates for partial
sums of (2.20). To this end we use the following formula which is obtained by
standard contour integration of the functional equation (2.23).

Lemma 3.1. Let A be a positive integer and G(t) = cos(πt/4A)−3A . For
any s with 0 ≤ Re s ≤ 1 we have

L(sym2 f, s) =
∑

n≥1

λf (n2)

ns
Vs

(
n

N

)
+ ε(s)

∑

n≥1

λf (n2)

n1−s V1−s

(
n

N

)

where

Vs(y) =

∫

(2)

G(t)
L∞(sym2 f, s+ t)

L∞(sym2 f, s)
ζ(N)(2s+ 2t)y−t

dt

t

and ε(s) = N1−2sL∞(sym2 f, 1− s)/L∞(sym2 f, s) .

Of course, the function Vs(y) is independent of f ∈ B∗k(N) so our notation
is justified. We suppose from now on that Re s = 1

2 so |ε(s)| = 1. If y is large
we shift the contour of integration in Vs(y) to Re t = A , if y is small we shift the
contour to Re t = − 1

2 , meeting poles at t = 0 and t = 1
2 − s (eventually a double

pole if s = 1
2 ) . Then by Stirling’s formula we derive

(3.1) Vs(y)¿ τ(N)

(
1 +

y

|s|3/2
)−A

log(2 + y−1).
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Moreover, taking the derivatives we derive

(3.2) V (j)
s (y)¿ τ(N)y−j

(
1 +

y

|s|3/2
)−A

log(2 + y−1).

Now we apply a smooth partition of unity

1 =
∞∑

α=−∞
h

(
x

2α/2

)
, for x > 0,

and obtain from Lemma 3.1, (3.1) and (3.2) that for f ∈ B∗k(N)

(3.3) L(sym2 f, s)¿ τ(N)
∑

X

|Sf (X)| log 4NX√
X

(
1 +

X

N |s|3/2
)−A

where X = 2α/2 with α ≥ −1, and Sf (X) is a sum of type

(3.4) Sf (X) =
∑

n

ψf (n2)g

(
n

X

)

where g is a smooth function supported in the interval [1, 2] which satisfies

(3.5) g(j)(x)¿ |s|j , for j ≥ 0

and the implied constant depends on j and k only. By Theorem 5.1 for the
particular sums (3.4) we have

∑

f∈Bk(N)

ω−1
f |Sf (X)|2 ¿ |s|5(NX)ε(N−1X2 +X).

We need this only for the primitive forms. Dropping the other forms we derive
by (3.3) ∑

f∈B∗
k
(N)

ω−1
f |L(sym2 f, s)|2 ¿ |s|8Nε.

Finally applying the upper bound (2.27) for the weight ωf we conclude Theo-
rem 1.1. It remains to prove Theorem 5.1 for which we spend the rest of this
paper.
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4. Some properties of Bessel functions

In the sequel the following expression for the Bessel function will be useful
(see [W, p. 206])

(4.1) Jκ(x) = eixW (x) + e−ixW (x)

where

W (x) =
ei((πκ/2)−π/4)

Γ(κ+ 1
2 )

√
2

πx

∫ ∞

0

e−y
(
y

(
1 +

iy

2x

))κ−1/2

dy.

When κ is a positive integer, we derive (using the Taylor expansion for Jκ(x) if
0 < x ≤ 1, or the above integral expression for W (x) if x ≥ 1) the following
bounds for the derivatives of W

(4.2) xjW (j)(x)¿ x

(1 + x)3/2

for any j ≥ 0, the implied constant depending on j and κ .

5. The mean-square of a partial sum

We consider g a smooth function supported in the interval [1, 2] which satisfies

(5.1) g(j)(x)¿ P j

for some P ≥ 1 and any j ≥ 0, the implied constant depending on j only.
For X ≥ 1 we define the partial sums

Sf (X) =
∑

n

ψf (n2)g

(
n

X

)

and their mean-square

S(X) =
∑

f∈Bk(N)

ω−1
f |Sf (X)|2.

Our goal is the following

Theorem 5.1. For X ≥ 1

S(X)¿ P 3(NPX)ε(N−1X2 +X)

for any ε > 0 , the implied constant depending on ε only.
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6. Application of Petersson’s formula

By Petersson’s formula (2.6) we transform S(X) into sums of Kloosterman
sums

(6.1) S(X) = R0(X) + 2πik
∑

c≡0(N)

Rc(X)

with

(6.2) R0(X) =
∑

n

∣∣∣∣g
(
n

X

)∣∣∣∣
2

¿ X

and

Rc(X) =
1

c

∑

m

∑

n

S(m2, n2; c)Jk−1

(
4πmn

c

)
g

(
m

X

)
g

(
n

X

)
.

Our next step will be to apply the Poisson summation formula for Rc(X) to the
n variable. However, this operation would produce poor results for c very large,
so first we split the sum of Rc(X) into sums of the type

(6.3) R(C;X) =
∑

C<c≤2C
c≡0(N)

Rc(X)

for C ≤ N2000 and estimate the tail (the sum over the c > 2N2000 ) by Weil’s
bound for individual Kloosterman sums getting O(X4N−1000) . From now on we
deal with each remaining R(C;X) separately with c ∼ C ≤ N2000 .

Applying Poisson’s formula on the n variable in Rc(X) , we get

(6.4) Rc(X) =
∑

m

∑

h

G(m,h; c)g

(
m

X

)∫ ∞

0

Jk−1(4πmx)g

(
cx

X

)
e(−hx) dx

where

G(m,h; c) =
1

c

∑

a(c)

e

(
ah

c

)
S(m2, a2; c).

The complete sum G(m,h; c) is computed in Section 8; it is shown there that
G(m,h; c) = G(D; c) , where D = h2 − 4m2 and G(D; c) is defined in (8.3).
In particular we see that G(m,h; c) depends on D = h2 − 4m2 rather than on
h and m separately. Moreover an important feature is the factorization D =
(h− 2m)(h+ 2m) = ab , say, with a ≡ b (mod 4). Making the change of variables
h = 1

2 (a+ b) , m = 1
4 (b− a) , we arrive at

Rc(X) =
∑

D≡0,1(4)

G(D; c)
∑

ab=D
a≡b(4)

Ic(a, b)

where

Ic(a, b) = g

(
b− a
4X

)∫
Jk−1

(
π(b− a)x

)
g

(
cx

X

)
e

(
− (a+ b)x

2

)
dx.
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7. Separation of the variables a, b

In order to separate the variables a and b we proceed by Fourier transform,
and a very clean way to do it is to make use of the properties of the Bessel function
which we have recalled in Section 4. From (4.1) we have a decomposition

(7.1)

Ic(a, b) = g

(
b− a
4X

)∫
e(−ax)W

(
π(b− a)x

)
g

(
cx

X

)
dx

+ g

(
b− a
4X

)∫
e(bx)W

(
π(b− a)x

)
g

(
cx

X

)
dx

= I+

c (a, b) + I−c (a, b),

say. According to (7.1) we decompose R(C;X) = R+(C;X) + R−(C;X) . We
treat R+(C;X) , the other term being similar.

First of all we need to localize the range of a , b . By repeated integration by
parts using (4.2) and (5.1) we obtain

Proposition 7.1. We have,

(7.2) Ic(a, b)¿
∣∣∣∣g
(
b− a
4X

)∣∣∣∣
X

C

(
1 +
|a|X
CP

)−α

for any α ≥ 0 , the implied constants depending on α only.

Using this estimate we see that, for any ε > 0, the contribution to R+(C;X)
from the a , b such that |a| ≥ Y (NX)ε (where Y = CPX−1 ) is negligible, in fact
¿ N−A for all A > 0 (the implied constant depending on ε and A). Note that
the range of b is controlled by a since |b− a| ¿ X . For the remaining portion we
split the a, b sum into dyadic ranges and assume from now on that

(7.3) |a| ∼ A, |b| ∼ B, for some A ≤ Y (NX)ε, B ≤ (NX)ε(X + Y ).

Accordingly we denote by R+(A,B,C;X) the corresponding portion of R+(C;X) .
We have for x ∼ X/C ,

g

(
z

4X

)
W (πzx) =

∫

R

h(t, x)e(tz) dt

with (using twice partial integration and (4.2))

h(t, x) =

∫

R

g

(
z

4X

)
W (πzx)e(−tz) dz ¿ X

(
1 +
|t|X
P

)−2
xX

(1 + xX)3/2

so that ∫

R

|h(t, x)| dt¿ PxX

(1 + xX)3/2
¿ PX2/C

(1 +X2/C)3/2
.
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Hence we have

(7.4)

R+(A,B,C;X) =

∫ 2X/C

X/2C

∫ +∞

−∞
h(t, x)

×
∑

c∼C
c≡0(N)

g

(
cx

X

)∑

D

G(D; c)
∑∑

a∼A, b∼B
ab=D, a≡b(4)

e
(
−(t+ x)a

)
e(tb) dt dx

¿ X

C

PX2/C

(1 +X2/C)3/2

∑

c∼C
c≡0(N)

∣∣∣∣∣
∑

D≡0,1(4)

G(D; c)
∑∑

a∼A, b∼B
ab=D, a≡b(4)

xayb

∣∣∣∣∣

where xa , yb are complex numbers of modulus bounded by 1. Finally we detect
the congruence a ≡ b(4) by means of additive characters, and at the expense of
changing the xa and yb we may remove this congruence condition. This finishes
the process of separation of the variables a, b .

Now we may apply Proposition 10.1 to (7.4) which gives us

(7.5)

R+(A,B,C;X)¿ (PNX)ε
PX3/C2

(1 +X3/C2)3/2

×
[
Y (X + Y )

(
C

N
+ Y

)(
C

N
+X + Y

)]1/2

¿ (PNX)εP 3(N−1X2 +X).

Summing over relevant A , B we get R+(C;X)¿ (PNX)εP 3(N−1X2 +X) . The
same bound can be proved for R−(C;X) . Finally summing these bounds over
relevant C ≤ N2000 by (6.1) and (6.2) we conclude the proof of Theorem 5.1. It
remains to prove Proposition 10.1 for which we spend the rest of this paper.

8. Evaluation of an exponential sum

Our objective in this section is to compute the following exponential sum

(8.1) G(m,h; c) =
1

c

∑

a(c)

e

(
ah

c

)
S(m2, a2; c).

Our computations will be completed in the next section. In Section 10 we will use
the results to provide bounds for certain sums of bilinear forms involving G(m,h; c) .

Opening the Kloosterman sum and changing the variables we get

G(m,h; c) =
1

c

∑

a (mod c)

S(0, a2 + ah+m2; c)
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where S(0, w; c) is the Ramanujan sum. This sum has a simple formula

S(0, w; c) =
∑

bd=c
b|w

µ(d)b.

Hence we find that

G(m,h; c) =
∑

bd=c

µ(d)νb(h
2 − 4m2)

where νb(h
2 − 4m2) is the number of solutions to the congruence

a2 + ah+m2 ≡ 0 (mod b)

in a (mod b) . Note that by completing square this is also equal to half the number
of solutions to the congruence

(8.2) x2 ≡ D (mod 4b)

in x (mod 4b) with D = h2 − 4m2 . Therefore G(m,h; c) = G(D; c) for D =
h2 − 4m2 , where

(8.3) G(D; c) :=
∑

bd=c

µ(d)νb(D)

with νb(D) = 1
2 |{x (mod 4b) , x2 ≡ D (mod 4b)}| . From now on we consider the

sum (8.3) for any integer D ≡ 0, 1 (mod 4). Note that G(D; c) is multiplicative
in c so

(8.4) G(D; c) =
∏

pγ‖c
G(D; pγ) =

∏

pγ‖c

(
νpγ (D)− νpγ−1(D)

)
.

(In particular note that G(D; 1) = 1 since D ≡ 0, 1(4).) Let γ ≥ 1. If p 6= 2
then νpγ (D) is the number of solutions to x2 ≡ D (mod pγ) while ν2γ (D) is half
the number of solutions to x2 ≡ D (mod 2γ+2) . Suppose p 6= 2 and pα ‖ D . If
γ ≤ α , then νpγ (D) = p[γ/2] . If γ > α then

νpγ (D) =

(
1 +

(
Dp−α

p

))
pα/2

when α is even, and νpγ (D) = 0 when α is odd. Hence we conclude from (8.4)
that G(D; pγ) is given by

(8.5)

0, if γ > α+ 1,
(
Dp−α

p

)
p(γ−1)/2, if γ = α+ 1 odd,

−p(γ−2)/2, if γ = α+ 1 even,
(

1− 1

p

)
pγ/2, if α ≥ γ even,

0, if α ≥ γ odd.
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Now let p = 2. If γ > α even then

ν2γ (D) = 1
2

(
1 + χ4(D2−α)

)(
1 + χ8(D2−α)

)
2α/2,

if γ > α odd then ν2γ (D) = 0, if α = γ even then

ν2γ (D) = 1
2

(
1 + χ4(D2−α)

)
2α/2,

if α = γ odd then ν2γ (D) = 0, if α = γ + 1 even then

ν2γ (D) = 1
22α/2,

if α = γ + 1 odd then ν2γ (D) = 0, and finally if α ≥ γ + 2

ν2γ (D) = 2[γ/2].

Here χ4 , χ8 are primitive characters of moduli 4 and 8 respectively. From the
above results we conclude that G(D; 2γ) is given by

(8.6)

(
1 + χ4(D2−α)

)
χ8(D2−α)2(γ−3)/2, if γ = α+ 1 odd,

χ4(D2−α)2(γ/2)−1, if γ = α even,

−2(γ/2)−1, if γ = α− 1 even,

2(γ/2)−1, if γ < α− 1 even,

and G(D; 2γ) = 0 in the remaining cases. From the above computations we deduce
the following

Proposition 8.1. Let D ≡ 0, 1 (mod 4) and c ≥ 1 . Let G(D; c) be the
sum defined in (8.3). It is a multiplicative function of c and for c = pγ a prime
power it is given by (8.5) for p 6= 2 and by (8.6) for p = 2 . Factoring uniquely c
into qr , where q is squarefree, 4r is squareful and (q, 2r) = 1 , we have

G(D; c) = G(D; q)G(D; r) =

(
D

q

)
G(D; r).

9. Computation of G(D; r)

We now give a synthetic formula for G(D; r) when 4r is squareful. For that
we consider the (unique) factorization of D into D = D1D2 , with D1 squarefree
odd, 4D2 squareful and (D1, D2) = 1. Next we factor r accordingly into r = r′1r2

with r′1|D∞1 , (r2, D1) = 1 (again this decomposition is unique), so that

G(D; r) = G(D1D2; r′1r2) = G(D1D2; r′1)G(D1D2; r2).
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Using (8.5) one sees that G(D; r) = 0, unless r′1 = r2
1 with r1|D1 (so r1 is

squarefree) in which case we have

(9.1) G(D; r) = µ(r1)G(D1D2; r2).

Finally we see from (8.5) and (8.6) that G(D1D2; r2) = 0, unless D2 and r2 admit
simultaneously factorization of the form

(9.2) r2 = 2γb∗1b
2
1b

2
2b

2
3, D2 = 2αb21(b22/b

∗
2)b23b

′
3 = 2αd1d2d3

with 2, b1, b2, b3 pairwise coprime, γ ≤ α+ 1, b′3|b∞3 and b∗1 being the product of
distinct prime divisors of b1 (if this simultaneous factorization exists, it is unique).
Then we have

(9.3)

G(D; r2) = G(D1D2; 2γ)G(D1D2; b∗1b
2
1)G(D1D2; b22)G(D1D2; b23)

= G(D1D2; 2γ)

(
2αD1d2d3

b∗1

)
b1µ(b∗2)

b2
b∗2
ϕ(b3)

=

(
2αD1

b∗1

)
ϕ(D1, D2, r2),

say, with

(9.4) ϕ(D1, D2, r2) = G(D1D2; 2γ)

(
2αd2d3

b∗1

)
b1µ(b∗2)

b2
b∗2
ϕ(b3).

If the factorization (9.2) does not hold we define ϕ(D1, D2, r2) to be zero. Sum-
marizing what we have found so far we obtain

Proposition 9.1. Let D ≡ 0, 1 (mod 4) and r be such that 4r is squareful.
Let D = D1D2 and r = r′1r2 be the factorizations such that D1 is squarefree,
4D2 is squareful, (D1, 2D2) = 1 , r′1|D∞1 and (D1, r2) = 1 . Then G(D; r) = 0 ,
unless r′1 = r2

1 with r1|D1 and r2, D2 admit the factorizations (9.2). In this case
one has

G(D; r) = µ(r1)

(
D1

b∗1

)
ϕ(D1, D2, r2)

where b∗1 is defined by (9.2) and ϕ(D1, D2, r2) is given by (9.4).

Remark. It will be useful to know that for D2, r2 fixed ϕ(D1, D2, r2) de-
pends only on the congruence class of D1 mod 8, see (8.6).
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10. An upper bound for a sum of quadratic forms

Given A,B ≥ 1, C ≥ N , and two sequences {xa}a≥1 , {yb}b≥1 of complex
numbers of modulus bounded by one, our goal is to obtain an upper bound for the
average of the quadratic forms

B(A,B,C) =
∑

c≤C
c≡0(N)

∣∣∣∣∣
∑

D≡0,1(4)

G(D; c)
∑∑

a≤A,b≤B
ab=D

xayb

∣∣∣∣∣.

To this end we use the computations of G(D; c) from the previous sections.

Proposition 10.1. For xa , yb any complex numbers of modulus bounded
by one,

B(A,B,C)¿ (ABC)ε(AB)1/2

(
C

N
+A

)1/2(
C

N
+B

)1/2

for all ε > 0 , the implied constant depending on ε .

Proof. In view of Propositions 8.1 and 9.1, we have

B(A,B,C) =
∑∑∑

q, r1, r2
qr2

1r2∼C
qr2

1r2≡0(N)

∣∣∣∣∣
∑∑

D1,D2,(D1,D2)=1
D1D2≡0,1(4), r1|D1

(
D1

b∗1

)
ϕ(D1, D2, r2)

×
∑∑

a≤A, b≤B
ab=D1D2

xayb

(
ab

q

)∣∣∣∣∣

where q and D1 are squarefree and odd, 4r2 and 4D2 are squareful and have
the same prime factors, and b∗1 is a certain positive number depending on the
pair {D2, r2} . We write a = a1a2 , b = b1b2 with a1 = (a,D1) , b1 = (b,D1) (recall
that D1 is squarefree) so that a1b1 = D1 . We decompose the sum according to
the congruence classes of a1, b1 modulo 8 (see the remark at the end of Section 9)
and so our sum is bounded by 16 sums each one of the type

∑

D2

∑∑

r1,r2
(r1,D2)=1

|ϕ(uv,D2, r2)|
∑

a2b2=D2

∑[

q≡0(N/(N,r1r2))

∣∣∣∣∣
∑[∑[

a,b, r1|ab
(a,b)=(ab,2D2)=1

xaa2ybb2

(
ab

q

)∣∣∣∣∣

where u , v are odd congruence classes modulo 8 and the last three sums are
restricted by qr2

1r2 ≤ C , aa2 ≤ A , bb2 ≤ B , respectively. Here the xa, yb may
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differ from the original ones by multiplication by complex numbers of modulus 0
or 1 (in particular we transfer the congruence conditions a ≡ u(8), b ≡ v(8) into
the coefficients xa , yb ). Next we estimate the last three sums by τ(r1) sums of
the form

∑[

q≤Q

∣∣∣∣∣
∑[∑[

a,b
(a,b)=1

xayb

(
ab

q

)∣∣∣∣∣

with Q = C(N, r1r2)/Nr2
1r2 , a ≤ A/c , b ≤ B/d , cd = r1D2 . Then we use the

following result which is an immediate consequence of Theorem 1.6.

Proposition 10.2. For any complex numbers xa , yb we have

∑[

q≤Q

∣∣∣∣∣
∑[∑[

a≤A, b≤B
(a,b)=1

xayb

(
ab

q

)∣∣∣∣∣¿ (ABQ)ε(Q+A)1/2(Q+B)1/2‖x‖ ‖y‖

for all ε > 0 , the implied constant depending on ε only.

Using Proposition 10.2 we infer that B(A,B,C) satisfies

B(A,B,C)¿ε (ABC)ε(AB)1/2
∑

D2≤AB

∑∑

r2
1r2≤C

|ϕ(u,D2, r2)|
D

1/2
2 r

1/2
1

×
[
C(N, r1r2)

Nr2
1r2

+
C1/2(N, r1r2)1/2

N1/2r1r
1/2
2

(A1/2 +B1/2) +
(AB)1/2

D2r1

]

where u is an odd congruence class modulo 8. First we sum over r1 , using the
following three estimates

∑

r1≤C1/2

(N, r1)

r
5/2
1

,
∑

r1≤C1/2

(N, r1)1/2

r
3/2
1

,
∑

r1≤C1/2

1

r
3/2
1

¿ τ(N),

we arrive at

∑∑

D2≤AB, r2≤C
|ϕ(u,D2, r2)|

(
(N, r2)

D
1/2
2 r2

+
(N, r2)1/2

D
1/2
2 r

1/2
2

+
1

D
3/2
2

)
.

Now appealing to the definition of ϕ(u,D2, r2) (see (9.4)) we find that this is
bounded by Oε

(
(ABCN)ε

)
for all ε > 0 (to see this we recall that the vari-

ables D2 , r2 run over lacunary sets of integers, essentially squarefull numbers).
Combining the above estimates we complete the proof of Proposition 10.1.
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