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Abstract. We show that for any given real constants a > 0 and b ≥ 0 , there exist certain
real constants λ such that the equation f ′′+ (az4 + bz2−λ)f = 0 possesses a solution f that has
an infinite number of real zeros and at most a finite number of nonreal zeros. When b > 0 , these
equations are new examples of equations of the form f ′′+P (z)f = 0, where P (z) is a polynomial,
that possess exceptional solutions of this kind. When b = 0, these equations are earlier examples
of Titchmarsh.

1. Introduction

Consider a second order linear differential equation of the form

(1) f ′′ + Pn(z)f = 0,

where Pn(z) is a nonconstant polynomial of degree n ≥ 1. It is well known that
every solution f of equation (1) is an entire function.

It is an interesting question to ask the following: For which nonconstant
polynomials Pn(z) will equation (1) admit a solution that has an infinite number
of real zeros and at most a finite number of nonreal zeros? (See [3], [4], and [2,
Problem 2.71].) To the author’s knowledge, it appears that up until now, the only
examples of this kind in the literature are Examples 1 and 2 below. The purpose
of this paper is to give new examples of this kind.

Example 1. It is well known that the classical Airy differential equation

(2) f ′′ − zf = 0

possesses a special contour integral solution f(z) = Ai(z) called the Airy integral,
where all the zeros of Ai(z) are real and negative, and where Ai(z) has an infinite
number of zeros (see [8, pp. 413–415]). Thus if a 6= 0 and b are any real constants,
then from a suitable linear change of the independent variable in (2), we obtain
that the equation

(3) f ′′ + (az + b)f = 0

possesses a solution with only real zeros and infinitely many.
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Example 2. This example comes from a simple transformation of an equation
of Titchmarsh (see [10, pp. 172–173] and [3, p. 289] for the details). There exists
an infinite sequence of positive constants λk satisfying 0 < λ0 < λ1 < λ2 < · · · <
λk < · · · , where λk →∞ as k →∞ , such that for each λk , the equation

(4) f ′′ + (z4 − λk)f = 0

possesses a solution f = fk(z) that has an infinite number of real zeros and at
most a finite number of nonreal zeros. Any nonreal zero of fk must lie on the
imaginary axis, and fk possesses exactly k zeros that lie on the imaginary axis.
When k is even, fk is an even function, and when k is odd, fk is an odd function.
It follows that f0 and f1 each have only real zeros.

From equation (4) we see that if a 6= 0 and b are any real constants, then the
equation

(5) f ′′ + [a2(az + b)4 − a2λk]f = 0

possesses the solution f = fk(az + b) which has an infinite number of real zeros
and at most a finite number of nonreal zeros. Thus when k = 0 or k = 1, equation
(5) possesses a solution that has only real zeros and infinitely many.

On the other hand, we now list several results which show that equations of the
form (1) which admit the kind of solutions in Examples 1 and 2 are exceptional.
In [5] it was shown that equation (1) cannot possess two linearly independent
solutions that each have only real zeros. More generally, we have the following
result.

Theorem A [3]. Let f1 and f2 be any two linearly independent solutions
of equation (1). Then at least one of f1 , f2 has the property that its sequence of
nonreal zeros has exponent of convergence equal to 1

2 (n+ 2) .

The next four results show that there are many equations of the form (1)
which do not admit the kind of exceptional solutions in Examples 1 and 2. The
following result shows that when the degree of the polynomial Pn(z) is one of the
numbers 2, 6, 10, . . . , then equation (1) cannot possess a solution that has an
infinite number of real zeros and at most a finite number of nonreal zeros.

Theorem B [3], [4]. Let Pn(z) be a polynomial of degree n = 2 + 4k for
some integer k ≥ 0 , and suppose that f 6≡ 0 is a solution of equation (1). Then
either f has only a finite number of zeros, or the exponent of convergence of the
sequence of nonreal zeros of f is equal to 1

2 (n+ 2) .

The next result is an immediate corollary of Theorem 3 and Lemma 5 in [3].
Here we recall that an entire function is said to be real if it is real on the real axis.
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Theorem C [3]. If equation (1) possesses a solution f that has an infinite
number of real zeros, then Pn(z) is a real polynomial and f is a constant multiple
of a real solution of (1).

The next theorem and corollary show that when an equation of the form (1)
possesses a solution that has only real zeros and infinitely many, then this puts a
restriction on the number of real zeros that Pn(z) can have.

Theorem D [9]. Suppose that equation (1) possesses a solution f that
has only real zeros and infinitely many. Then the number of real zeros of Pn(z)
counting multiplicities is less than 1

2 (n+ 2) .

Corollary [9]. If equation (1) possesses a solution f with only real zeros and
infinitely many, and if Pn(z) has only real zeros, then equation (1) is an equation
of the form (3) and f is a constant multiple of Ai(αz + β) , where Ai(z) is the
Airy integral and α and β are real constants.

2. The new examples

We now state the new examples. For any given real constants a > 0 and
b ≥ 0, we will show that there exists an infinite sequence of real constants λk
satisfying λ0 < λ1 < λ2 < · · · < λk < · · · , where λk → ∞ as k → ∞ , such that
for each λk , the equation

(6) f ′′ + (az4 + bz2 − λk)f = 0

possesses a solution f = fk(z) that has an infinite number of real zeros and at most
a finite number of nonreal zeros. By making a linear change of the independent
variable in equation (6), we can obtain more equations that possess solutions that
have an infinite number of real zeros and at most a finite number of nonreal zeros.

Remark. When b > 0, equation (6) does not have the form of equation (5).
When b = 0, we see that equation (6) is Example 2. Hence these examples in
equation (6) extend Example 2.

3. Proof of the new examples

We will prove the existence of these examples in equation (6) by combining the
classical theory of eigenvalues and eigenfunctions with the asymptotic integration
theory of equation (6).

Hille used his theory of asymptotic integration together with the Liouville
transformation to obtain many basic properties of the solutions of equations of
the form (1); see Chapter 7.4 in [6]. The following theorem contains some of these
properties.
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Theorem E [6, Chapter 7.4]. In equation (1) we set

Pn(z) = anz
n + an−1z

n−1 + · · ·+ a0,

where a0, a1, . . . , an are constants with an 6= 0 .
The critical rays θ0, θ1, . . . , θn+1 of equation (1) are defined as follows:

θj =
2πj − arg an

n+ 2
for 0 ≤ j ≤ n+ 1.

For convenience with notation, we set θn+2 = θ0 and θn+3 = θ1 .
Let f 6≡ 0 be a solution of equation (1), and let ε > 0 be a small fixed

constant. Then the following statements hold:
(i) For each j = 0, 1, 2, . . . , n+ 1 , we have either

f(z)→∞ as z →∞ in θj + ε ≤ arg z ≤ θj+1 − ε,

or
f(z)→ 0 as z →∞ in θj + ε ≤ arg z ≤ θj+1 − ε.

(ii) For each j = 0, 1, 2, . . . , n+ 1 , f(z) has at most a finite number of zeros
in θj + ε ≤ arg z ≤ θj+1 − ε .

(iii) If for some particular j ∈ {1, 2, . . . , n+ 1, n+ 2} , we have either

f(z)→ 0 as z →∞ in θj−1 + ε ≤ arg z ≤ θj − ε,

or
f(z)→ 0 as z →∞ in θj + ε ≤ arg z ≤ θj+1 − ε,

then f has at most a finite number of zeros in θj − ε ≤ arg z ≤ θj + ε .

Although [6, Chapter 7.4] contains several more properties of the solutions of
(1), the properties in Theorem E are enough for our purposes.

We now prove the existence of the examples in equation (6). To this end, we
consider the differential equation

ψ′′ + (λ− az4 + bz2)ψ = 0,

where λ , a , and b are real constants such that a > 0 and b ≥ 0. From the
classical theory of eigenvalues and eigenfunctions, it is well known that for any
given real constants a > 0 and b ≥ 0, there exists an infinite sequence of real
constants λk (the eigenvalues) satisfying λ0 < λ1 < λ2 < · · · < λk < · · · , where
λk →∞ as k →∞ , such that for each λk , the equation

(7) ψ′′ + (λk − az4 + bz2)ψ = 0



Solutions of f ′′ + P (z)f = 0 that have almost all real zeros 487

possesses a solution ψ = ψk(z) (an eigenfunction) that is real on the real axis and
has exactly k real zeros, such that ψk(z) is an even function when k is even and is
an odd function when k is odd, and where the set of eigenfunctions ψ0, ψ1, ψ2, . . .
form a complete orthonormal set for L2(R) . Proofs of these statements are con-
tained in Chapters 2 and 5 in [10].

The critical rays of equation (7) are ±π/6, ±π/2, and ±5π/6. We now
fix a nonnegative integer k and consider the solution ψk of (7). Let ε > 0 be a
small fixed constant. Since ψk is in L2(R) , we can deduce from Theorem E(i) that
ψk(z)→ 0 as z →∞ in −π/6+ε ≤ arg z ≤ π/6−ε . Thus from Theorem E(iii), we
obtain that ψk(z) has at most a finite number of zeros in each of the following two
angles: (A) −π/6−ε ≤ arg z ≤ −π/6+ε , and (B) π/6−ε ≤ arg z ≤ π/6+ε . From
Theorem E(ii), ψk(z) has at most a finite number of zeros in each of the following
three angles: (A) −π/2 + ε ≤ arg z ≤ −π/6− ε , (B) −π/6 + ε ≤ arg z ≤ π/6− ε ,
and (C) π/6 + ε ≤ arg z ≤ π/2− ε . Therefore, ψk(z) has at most a finite number
of zeros in −π/2 + ε ≤ arg z ≤ π/2− ε .

Now suppose that ζ = Reiβ is a zero of ψk(z) , where π/2 − ε < β <
π/2. Arguing as on pp. 172–173 of [10], we start with the Green’s transform of
equation (7) (see [7, p. 509]):

(8)

∫ ζ

0

(λk − az4 + bz2)|ψk(z)|2 dz = ψ′k(0)ψk(0)− ψ′k(ζ)ψk(ζ) +

∫ ζ

0

|ψ′k(z)|2 dz.

If k is even, then ψk(z) is an even function, and so ψ′k(0) = 0, while if k is odd,
then ψk(z) is an odd function, and so ψk(0) = 0. Since we also have ψk(ζ) = 0,
we obtain from (8) that

∫ ζ

0

(λk − az4 + bz2)|ψk(z)|2 dz =

∫ ζ

0

|ψ′k(z)|2 dz.

By integrating along the ray arg z = β , we obtain

∫ R

0

(λk − ar4ei4β + br2ei2β)|ψk(reiβ)|2 dr = e−i2β
∫ R

0

|ψ′k(reiβ)|2 dr.

Taking imaginary parts gives

(9)

∫ R

0

(−ar4 sin 4β + br2 sin 2β)|ψk(reiβ)|2 dr = − sin 2β

∫ R

0

|ψ′k(reiβ)|2 dr.

Since π/2− ε < β < π/2, the left-hand side of (9) is positive and the right-hand
side of (9) is negative. Hence we have a contradiction. Therefore, ψk(z) cannot
have any zeros in π/2− ε < arg z < π/2. Since we have already shown that ψk(z)
has at most a finite number of zeros in −π/2 + ε ≤ arg z ≤ π/2 − ε , we obtain
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that ψk(z) has at most a finite number of zeros in −π/2 + ε ≤ arg z < π/2. Since
ψk(z) is real on the real axis, it follows that ψk(z) has at most a finite number of
zeros in −π/2 < arg z < π/2. Furthermore, since ψk(z) is either an even function
or an odd function, it follows that ψk(z) has at most a finite number of zeros that
do not lie on the imaginary axis.

Since ψ = ψk(z) is a solution of equation (7), it follows that ψk(z) has order 3
(see [1]). If k is even, then ψk(z) is an even function, and therefore ψk

(√
z
)

is
an entire function of order 3

2 , which implies that ψk(z) has an infinite number
of zeros. If k is odd, then ψk(z) is an odd function, and therefore

√
z ψk

(√
z
)

is an entire function of order 3
2 , which also implies that ψk(z) has an infinite

number of zeros. It follows that ψk(z) has an infinite number of zeros that lie
on the imaginary axis and at most a finite number of zeros that do not lie on the
imaginary axis.

Now set fk(z) = ψk(iz) . Since ψ = ψk(z) is a solution of equation (7), we
obtain that f = fk(z) is a solution of equation (6), and fk(z) has an infinite
number of real zeros and at most a finite number of nonreal zeros. This completes
the proof of the existence of the examples in equation (6).
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