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Abstract. In this work, we consider anticonformal automorphisms of closed Riemann sur-
faces and Schottky groups. We study the problem of deciding when an anticonformal automor-
phism can be lifted for some Schottky covering (Schottky type automorphisms). This can be seen
as generalization of the results due to Sibner [19], Heltai [8] and Natanzon [15] on anticonformal
involutions. Also, for the conformal automorphisms, we study the relation between the condition
of being the square of an anticonformal automorphism and of being of Schottky type.

1. Introduction and main results

The retrosection theorem (see [1], [12] and [13]) asserts that for every closed
Riemann surface S there is a Schottky group G (a purely loxodromic Kleinian
group isomorphic to a free group of finite rank), with region of discontinuity Ω,
and a holomorphic covering P : Ω → S with G as covering group. We say that
(Ω, G, P : Ω→ S) is a Schottky uniformization of S .

A conformal or anticonformal automorphism f : S → S of a closed Riemann
surface S is called of Schottky type if there is a Schottky uniformization of S , say
(Ω, G, P : Ω→ S) , such that f can be lifted by P (then such a lifting is the restric-
tion of a Möbius transformation or the composition of a Möbius transformation
with the conjugation).

A necessary and sufficient condition for a conformal automorphism to be of
Schottky type, called condition (A), was given in [9].

Theorem 1. Let f : S → S be a finite order conformal automorphism of a
closed Riemann surface S . Then f is of Schottky type if and only if it satisfies
condition (A).
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The condition (A). Let f : S → S be a conformal automorphism of finite
order and H be the cyclic group generated by f . Denote by F the set of fixed-
points of the non-identity elements of H . For each p ∈ F and h ∈ H − {I} with
h(p) = p , we have a well defined number α(h, p) ∈ [−π, π) , called the rotation
number of h at p . Set H(p) = {h ∈ H : h(p) = p} . We say that f satisfies the
condition (A) if there is a collection C = {Aα = {pα, qα} : α ∈ A } of pairwise
disjoint subsets of F such that:

(1) pα 6= qα , for all α ∈ A ;
(2)

⋃
α∈A Aα = F ;

(3) For each α ∈ A , we have:

(3.1) H(pα) = Hα = H(qα) ,
(3.2) α(h, p) = −α(h, q) for each h ∈ Hα of order greater than two,
(3.3) there is no h ∈ H satisfying h(pα) = qα .

A first approach to the study of anticonformal automorphisms is using its
conformal square. If an anticonformal automorphism is of Schottky type then its
square is also of Schottky type and then it satisfies condition (A).

In Section 2 we study the relation between the fact of being of Schottky type
and to be the square of an anticonformal automorphism. The following results
hold:

Theorem 2. Let f : S → S be a conformal automorphism of a closed Rie-
mann surface S . If there is an anticonformal automorphism g: S → S such that
g2 = f , then f is of Schottky type, equivalently, f satisfies the condition (A).

Corollary 1. Let f : S → S be a conformal automorphism of some closed
Riemann surface S . If f does not satisfy the condition (A), then there is no
orientation-reversing homeomorphism σ: S → S such that f = σ2 .

Theorem 3. Let f : S → S be a conformal automorphism of Schottky type
of odd order. Then there is an orientation-reversing homeomorphism g: S → S
such that g2 = f .

As application we provide a proof of a result of [5]: every embeddable (as the
restriction of a rotation of the Euclidean 3-space) fixed point free automorphism
of odd order is the square of an orientation-reversing homeomorphism.

There is an interesting complementation between the considerations in [18]
and the above results. For example, the square of anticonformal automorphisms
have unique liftings to matrices (cf. [18]) and they are of Schottky type by Theo-
rem 2.

Next, we are interested in finding Schottky uniformizations for anticonformal
automorphisms. In the case of anticonformal automorphisms of order two, results
due to Heltai [8], Sibner [19] and Natanzon [15] assert the following:

Theorem 4. Let σ: S → S be an anticonformal automorphism of order two
of a closed Riemann surface S . Then σ is of Schottky type.
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The above result has been applied in the study of Schroedinger operators, by
S.M. Natanzon in [15]. Now we study the anticonformal automorphisms with order
> 2, we prove the following complete results for special situations in Sections 3
and 4:

Theorem 5. Let σ: S → S be an anticonformal automorphism of order four
of a closed Riemann surface S . Then σ is of Schottky type.

Theorem 6. Let σ: S → S be an anticonformal automorphism of a closed
Riemann surface S . Set R the quotient surface obtained by the action of f = σ2 ,
and τ the anticonformal involution induced by σ on R . If τ has fixed points,
then σ is of Schottky type.

Remark. If the order of σ is 2N , then the condition for τ to have fixed
points (in the above theorem) implies that N is necessarily odd. The fixed point
condition on τ is equivalent to the condition for σN to have fixed points.

At this point, we have that any anticonformal automorphism σ of order 2N
(with N odd) such that σN has fixed points is necessarily of Schottky type.

In Section 5 we give a necessary condition, called condition (B), for an anti-
conformal automorphism to be of Schottky type. We proceed to see that there are
anticonformal automorphisms which are not of Schottky type. In fact, we obtain
a necessary condition to be satisfied by an anticonformal automorphism to be of
Schottky type, called the condition (B).

The condition (B). Let σ: S → S be an anticonformal automorphism of
order 2r , H the cyclic group generated by f = σ2 , and F the set of fixed points
of the non-trivial elements of H . We say that σ satisfies the condition (B) if there
is a collection C = {Aα = {pα, qα} : α ∈ A } of pairwise disjoint subsets of F
satisfying the properties of condition (A) for the group H , and

(∗) If there is some δ in the group generated by σ and a pair Aα = {pα, qα} ∈ C
such that δ(pα) = qα , then δ is an odd power of σ and δ(qα) = pα .

Remarks. (1) If no non-trivial power of f has fixed points, then σ satisfies
trivially the condition (B).

(2) Example 1 in Section 5 shows that every anticonformal automorphism of
order 2N , where N is odd, satisfies condition (B).

Theorem 7 (Condition (B) is necessary). Let S be a closed Riemann surface
and σ: S → S be an anticonformal automorphism of finite order. If σ is of
Schottky type, then it satisfies condition (B).

As a consequence of Theorem 7, we have that anticonformal automorphisms as
in Theorems 4, 5 and 6, condition (B) is equivalent to the Schottky type condition.
The actual question is if condition (B) is sufficient for the case when τ : R → R
has no fixed points. Example 3, at the end of Section 5, shows that in general
condition (B) is not sufficient in this case. In Section 6 we establish a sufficient
condition, condition (B1), in order for σ to be of Schottky type.
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Condition (B1). Assuming the same notation as in the definition of con-
dition (B), we say that σ satisfies the condition (B1) if there is a collection
C = {Aα = {pα, qα} : α ∈ A } satisfying condition (B) and the following ex-
tra property:

(∗∗) For all α ∈ A and for all odd powers δ of σ , δ(pα) 6= qα .

Theorem 8. Let σ: S → S be an anticonformal automorphism of finite
order. Set R the quotient Riemann surface obtained by the action of σ2 on S ,
and let τ : R → R the anticonformal involution induced by σ . If τ has no fixed
points, then condition (B1) is sufficient for σ to be of Schottky type.

In Example 4 of Section 6 we give an automorphism satisfying condition (B1)
and being of Schottky type. Also the description of a Schottky uniformization is
given.

Corollary 2. Let σ: S → S be a fixed point free anticonformal automor-
phism of finite order of the closed Riemann surface S . Then σ is of Schottky
type.

Remark. In [6] it is shown that there are fixed point free anticonformal
automorphisms that are non-embeddable and, by Corollary 2, of Schottky type.

Theorem 8 can be also written in the following way:

Theorem 8 ′ . Let σ: S → S be an anticonformal automorphism of finite
order of a closed Riemann surface S . Condition (B1) is sufficient for σ to be of
Schottky type if S/σ is a closed and non-orientable surface.

Finally, using Theorems 5, 7 and 8, we can give a complete answer to the
main problem of this work for automorphisms of order 6:

Theorem 9. Let σ: S → S be an anticonformal automorphism of order 6
of the closed Riemann surface S . Then σ is of Schottky type.

Remark. Conditions (B) and (B1) can be rewritten for any finite group of
conformal and anticonformal automorphisms of a closed Riemann surface, giving
necessary conditions for lifting it to some Schottky covering.

2. The squares of anticonformal automorphisms are of Schottky type

Theorem 2. Let f : S → S be a conformal automorphism, f 6= I of a closed
Riemann surface S . If there is an anticonformal automorphism g: S → S such
that g2 = f , then f is of Schottky type, equivalently, f satisfies the condition (A).

Proof. From the results in [9], we only need to see that the fixed points of
the non-trivial powers of f = g2 can be arranged into pairs satisfying the condi-
tion (A). Since the trivial automorphism is always of Schottky type, we assume
f 6= I .
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The idea is the same given in the proof of Theorem 1 in [5]. We will use the
same notation α(fk, p) ∈ [−π, π) given there.

Assume that x ∈ S is the fixed point of some non-trivial power fk and
{fr ∈ 〈f〉 : fr(x) = x} = 〈fk〉 .

We have that k necessarily divides the order r of f , and the equality

(∗) gf lg−1 = gg2lg−1 = g2l = f l,

asserts that for g(x) = y we have {fr ∈ 〈f〉 : fr(y) = y} = 〈fk〉 .
We claim that x 6= y . In fact, if we have x = y , that is, g(x) = x , then g

has order two (see [2]) and, as a consequence, f = I a contradiction.
The equality (∗) also shows that

(∗∗) α(fk, x) = −α(fk, y)

if fk has order greater than two, and α(fk, x) = α(fk, y) = −π if fk has order
two.

There is no element f l with f l(x) = y with l ≤ order of f . In fact, if this
happens, then α(fk, x) = α(fk, y) . This together with (∗∗) asserts that either fk

has order two or fk = I . Since we have k less than the order of f , it follows that
fk has order two. Now we have that the order of g is 4k .

The orbit of the point x is {fm(x) : m = 0, 1, 2, . . . , k − 1} . In particular,
we may assume l ∈ {1, 2, . . . , k − 1} . We have then the equality g(x) = f l(x) or
equivalently g2l−1(x) = x . This gives us two possibilities for g2l−1 : either it is
the identity or has order two. But 2(2l−1) < 4k implies it cannot have order two
and, for the other case, 2l − 1 = 0 (since 2l − 1 < 4k ) is a contradiction.

Corollary 1. Let f : S → S be a conformal automorphism of some closed
Riemann surface S . If f does not satisfy the condition (A), then there is no
orientation-reversing homeomorphism σ: S → S such that f = σ2 .

Proof. In fact, if there is some orientation-reversing homeomorphism σ: S →
S such that σ2 = f , then there is a Riemann surface R and a quasiconformal
homeomorphism h: S → R so that hσh−1 is an anticonformal automorphism
of R . By Theorem 2, we have that hfh−1 is of Schottky type and, in particular,
it satisfies the condition (A). It forces f to satisfy the condition (A).

It is well known (see [7] and [16]) that every Riemann surface S is embeddable
in R3 , that is, there is a smooth surface X ⊂ R3 and a conformal homeomor-
phism T : S → X . A conformal or anticonformal automorphism f : S → S is
called embeddable if there are X and T as above so that TfT−1: X → X is the
restriction of a rigid motion. Necessary and sufficient conditions for a conformal
automorphism to be embeddable were given by R. Rüedy in [17], the conditions
for an anticonformal automorphism to be embeddable were given in [6].
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Rüedy’s conditions for an automorphism to be embeddable are a particular
case of condition (A) and, in particular, every embeddable conformal automor-
phism is of Schottky type. The reverse is not true (in [5] there is an example of a
Schottky type automorphism that is not embeddable, see also [20]).

Necessary and sufficient conditions for the square of an anticonformal auto-
morphism of order 2r , r a prime, to be embeddable are given in [5]. It is not hard
to see that one may remove the condition r to be a prime, but then adding the
following condition: if p ∈ S is a fixed point of a non-trivial power of f , then p
is also fixed by f .

Every involution is both embeddable [17] and of Schottky type [9]. In [5]
it is shown that not every involution is the square of an orientation-reversing
homeomorphism. In fact, necessary and sufficient conditions are given on the
genus of the surface and the number of fixed points of the involution to have such
a property.

For an embeddable automorphism f : S → S of odd order, Theorem 2 in [5]
asserts the existence of an orientation-reversing homeomorphism g: S → S such
that g2 = f . The proof given in that paper requires the existence of fixed points
of the automorphism, but with a suitable modification of the argument the fixed
point free case follows. In the following, we give another proof of the case when
the automorphism acts without fixed points by using Schottky groups.

Let S be a closed Riemann surface of genus g and f : S → S be a fixed
point free conformal automorphism, of odd order n > 1. The Riemann–Hurwitz
formula asserts that g = n(γ − 1) + 1, where γ denotes the genus of the quotient
surface R .

From the results in [9], there is a Schottky group G of genus g , a set of
generators of G , say A1, . . . , Ag , and an elliptic transformation F of order n
such that:

(1) FAg = AgF ,
(2) FAkn+iF

−1 = Akn+i+1 , i = 1, . . . , n − 1, and FA(k+1)nF
−1 = Akn+1 ,

for k = 0, 1, . . . , γ − 2.
Conjugating the above group by a suitable quasiconformal homeomorphism

W : Ĉ→ Ĉ , we may assume that there is a reflection J with fixed points so that
(3) JWAjW

−1J = WA−1
j W−1 , all j = 1, . . . , g , and

(4) JWFW−1J = WFW−1 .
If we take L = WF (n−1)/2W−1J , then

L2 = WF (n+1)/2W−1JWF (n+1)/2W−1J

= WFn+1W−1 = WFW−1.

The orientation-reversing homeomorphism W−1LW descends to an orienta-
tion-reversing homeomorphism on S with square equal to f , obtaining in this way
the desired result.
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Similar arguments as above permit us to show that Theorem 2 in [5] is also
valid for the category of Schottky type automorphisms. At this point, we remark
that there are conformal automorphisms of Schottky type that are not embeddable.

Theorem 3. Let f : S → S be an automorphism of Schottky type of odd
order. Then there is an orientation-reversing homeomorphism g: S → S such that
g2 = f .

Proof. Let us denote by R the Riemann surface quotient by the action of the
cyclic group generated by f , of odd order r .

We have a natural quotient map P : S → R induced by the action of f . If we
consider a pairing B = {(p1, q1), . . . , (pn, qn)} obtained from the condition (A),
then the surface R can be uniformized, from the results in [9], by a Kleinian group
K with:

(i) K has as generators loxodromic elements A1, . . . , Aγ , and elliptic elements
E1, . . . , En , F , where F has order r , and Ei has order li a divisor of r (the
branching number of P (pi)), with a fundamental domain as shown in Figure 1,

(ii) the group G given by the smallest normal subgroup of K containing the
elements A1, . . . , Aγ , F r/liE−1

i , is a Schottky group uniformizing S , and
(iii) the transformation F is a lifting of the automorphism f .

i

jE

A

F

Figure 1.

We can conjugate K by a quasiconformal homeomorphism W : Ĉ → Ĉ so
that, if J denotes the reflection on the unit circle, the following hold (see Figure 2):

(1) JWEiW
−1 = Ei ,

(2) JWAjW
−1 = WA−1

j W−1 ,

(3) JWFW−1J = WFW−1 .
Let us consider L = JWF (r+1)/2W−1 . In this case, W−1LW gives an

orientation-reversing homeomorphism with square equal to F . The projection
of it to S gives the desired orientation-reversing homeomorphism.
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Figure 2.

3. Anticonformal automorphisms of order four

Theorem 5. Let σ: S → S be an anticonformal automorphism of order four
of a closed Riemann surface S . Then σ is of Schottky type.

Proof. We can observe in this case, since f = σ2 has order two, that σ2

satisfies condition (A) and that property (B) holds trivially.
We assume the genus g of S to be at least two (the low genera cases can be

checked by direct inspection).
Let us denote by P : S → R the holomorphic (possible branched) 2-fold

covering, induced by the action of the cyclic group of order two H .
On R we have a natural anticonformal automorphism of order two τ : R→ R

with τP = Pσ .
Since σ has order four then τ is fixed point free (see for instance [2]). From

Harnack’s theorem and its extension in [14], there is a set of pairwise disjoint
simple curves in R , αi : i = 1, . . . , r , such that

(1) τ(αi) = αi , all i = 1, . . . , r , the curves αi are invariant but not fixed by τ ,
in fact τ acts as a rotation of angle π .

(2) R −⋃ni=1 αi consists of two surfaces, R+ and R− , each one of genus γ and
exactly n boundary components, and

(3) τ permutes the two surfaces R+ and R− .

If we consider a simple closed curve β , for instance in R+ , such that divides R
in two components, one of them containing all the singular points and all the curves
αi , then such a curve lifts by P to a closed curve (it is the boundary of a surface
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without branch points). Hence the following formula holds: # Fix(σ2)/2 + r =
0 (mod 2). We have that the square of each one of the curves αi lifts to a loop.

The fact that the loops α1, . . . , αr , is a collection of pairwise disjoint simple
loops on R asserts that F = P−1({αi : i = 1, . . . , n}) is a collection of pairwise
disjoint simple loops on S .

Following the results in [10], we are able to construct a set of 2γ disjoint
homologically independent simple loops on R+ , say η1, . . . , η2γ , each one disjoint

from β , such that each loop lifts to a loop on S̃ .

Now consider the simple closed curves δi , i = 1, . . . ,
⌊
(r + 1)/2

⌋
enclosing in

R+ two curves α2i , α2i+1 , and the curves εi , i = 1, . . . , b# Fix(σ2)/4c enclosing
two singular points in R+ ; see Figure 3(i). Finally, if r is odd, we construct one
more closed curve ω enclosing the last singular point and αr ; see Figure 3(ii).

Figure 3(i).

Now the collection of curves on S , obtained by lifting all of the loops α1, . . . ,
αr , β , η1, . . . , η2γ , δi , i = 1, . . . , b(r + 1)/2c , εi , i = 1, . . . , b# Fix(σ2)/4c , ω
above and their images by τ , is invariant under the action of σ and cut-off S into
genus zero surfaces. This is enough to imply that σ is of Schottky type.

4. Anticonformal automorphisms with a power
that is an anticonformal involution with fixed curves

Theorem 6. Let σ: S → S be an anticonformal automorphism of a closed
Riemann surface S . Set R the quotient surface obtained by the action of f = σ2 ,
and τ the anticonformal involution induced by σ on R . If τ has fixed points,
then σ is of Schottky type.
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Figure 3(ii).

Proof. Harnack’s theorem and its extension in [14], asserts that on R we have
a set of pairwise disjoint simple loops θ1, . . . , θk , η1, . . . , ηl , such that

(i) Fix(τ ) = θ1 ∪ · · · θk , and k ≥ 1;
(ii) τ(ηj) = ηj ;

(iii) R is divided by the above loops into two connected components, say R1 and
R2 , which are permuted by σ .

The surface R1 has genus t and k + l holes. We draw a set of simple loops
and arcs α1, . . . , αt , β1, . . . , βt , γ1, . . . , γt, γ , δ1, . . . , δr , κθ2 , . . . , κηl , as shown in
Figure 4.

.

.

.

R 1 θ 1

θ 2

η

δ

κ

α

α

γ
γ

γ

1

1

t

 t

i

l

η

κ
θ

l

2

P i

Figure 4.

Since we have a regular cyclic covering π: S → R , we have that the loops
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γ1, . . . , γt and γ must lift to a loop (this is simple consequence of the fact that
each γi is free homotopic to the commutator between αi and βi , and γ is free
homotopic to the product γ1 · · · γt ). Moreover, we have that any connected com-
ponent of the lifting of any of the three-holed sphere determined by αi and γi
is a sphere with holes. The sphere with holes bounded by γ1, . . . , γt and γ lifts
homeomorphically to a sphere with same number of holes.

Each loop δ̃j = δj ∪ τ(δj) also lifts to loops (this is the condition (A) assump-
tion, which holds trivially in our case), and the bounded topological disc lifts to
spheres with holes.

In a similar way, each loop κ̃M = κM∪τ(κM ) determines a torus (τ invariant)
with a hole. Since this loop is a commutator, it lifts to a loop on S , and the three-
holed sphere determined by this loop and M lifts to spheres with holes, where
M ∈ {θ2, . . . , ηl} .

The sphere with holes determined by γ , τ(γ) and the loops δ̃1, . . . , δ̃r , κ̃θ2 , . . . ,
κ̃ηl , lifts homeomorphically to spheres with the same number of holes.

The family F of pairwise disjoint simple loops on S , obtained by lifting the
loops α1, . . . , αt , γ1, . . . , γt , γ , τ(α1), . . . , τ(αt) , τ(γ1), . . . , τ(γt) , τ(γ) , θ2, . . . ,
θk , η1, . . . , ηl , δ̃1, . . . , δ̃r , κ̃θ2 , . . . , κ̃ηl , is invariant under the action of σ , and the
connected components of S −F are all of genus zero.

It follows that on F there is a subfamily G consisting of g homologically
independent pairwise disjoint simple loops (g is the genus of S ) determining a
Schottky uniformization of S for which σ lifts.

5. A necessary condition: Condition (B)

As consequence of Theorem 6, the case we need to consider from now on is
when the induced anticonformal involution τ : R→ R is fixed point free. We start
this section giving a necessary condition for an anticonformal automorphism of
finite order (with or without fixed points) to be of Schottky type.

The condition (B). Let σ: S → S be an anticonformal automorphism of
order 2r , H the cyclic group generated by f = σ2 , and F the set of fixed points
of the non-trivial elements of H . We say that σ satisfies the condition (B) if there
is a collection C = {Aα = {pα, qα} : α ∈ A } of pairwise disjoint subsets of F
satisfying the properties of condition (A) for the group H , and

(∗) if there is some δ in the group generated by σ and a pair Aα = {pα, qα} ∈ C
such that δ(pα) = qα , then δ is an odd power of σ and δ(qα) = pα .

Theorem 7 (Condition (B) is necessary). Let S be a closed Riemann surface
and σ: S → S be an anticonformal automorphism of finite order. If σ is of
Schottky type, then it satisfies condition (B).

Proof. We follow the same ideas as in [9]. Let us consider a closed Riemann
surface S and an anticonformal automorphism σ: S → S of order 2r . Denote by
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H̃ the cyclic group generated by σ , by H the cyclic group generated by f = σ2 ,
and by η = σr .

Assume there is a Schottky covering (Ω, G, P : Ω → S) for which σ lifts.
Let Σ: Ω → Ω be a lifting of σ (which is the restriction of an anticonformal
automorphism of the Riemann sphere since Ω is of type OAD ). Set J the group

obtained by lifting the cyclic group H̃ . We have that J is a finite normal extension
of index 2r of G (in particular, J cannot have parabolic elements).

Let p ∈ S be a fixed point of some non-trivial power h = f l in H . We assume
that h generates the cyclic group H(p) . The transformation Σ2l is a lifting of h .

Take some x ∈ Ω with P (x) = p . Then there is some g ∈ G with Σ2l(x) =
g(x) . Let us consider the transformation T = g−1Σ2l which belongs to the in-
dex two subgroup of orientation-preserving transformations of J (a finite normal
extension of index r of G).

Since h 6= I , we have that T is an elliptic transformation, different from the
identity, with x ∈ Ω as a fixed point. The results in [11] assert that its other fixed
point y must also be in Ω.

We claim that y cannot be equivalent by G to x . In fact, if P (x) = P (y) ,
then there is some k ∈ G − {I} with k(x) = y . The elliptic transformations
kTk−1 and T both fix the point x . The absence of parabolic transformations in
J asserts that both have the same fixed points. It follows that k(y) = x , and
k2 = I . This is a contradiction to the fact that Schottky groups have no elliptic
transformations (different from the identity).

Set q = P (y) and assume that there is some δ ∈ H̃ − {I} so that δ(p) = q ,
and let us consider a lifting θ ∈ J of δ . We have that there is some k ∈ G with
θ(x) = k(y) or, equivalently, k−1θ(x) = y . Again we argue as above to obtain
that the absence of parabolic transformations forces L = k−1θ to permute x and
y and, in particular, we have that δ permutes p and q .

Since δ(p) = q and δhδ−1 = h , we must have either

(a) α(h, p) = α(h, q) , if δ ∈ H ; or

(b) α(h, p) = −α(h, q) , if δ /∈ H .

If δ ∈ H , then (a) asserts that H(p) has order two. From this, we must
have r even and, in particular, that δ ∈ H . It follows that L is an orientation-
preserving Möbius transformation of order two permuting the points x and y , and
it follows that L and T generate the abelian dihedral group of order 4. But this
is a contradiction to the fact that δ and h commute.

Now the construction of a collection C satisfying the properties of condi-
tion (B) follows from the above.

Remarks. (1) As a consequence of Theorems 6 and 7, we have that any
anticonformal automorphism σ of order 2N , with N odd, and for which σN

has fixed points, must satisfy the condition (B). In general, the only property for
condition (B) to hold automatically is to have N odd (see Example 1 below).
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(2) Theorem 7 gives us a restriction on the class of anticonformal automor-
phisms to be of Schottky type. Example 2 below shows that there are in fact
anticonformal automorphisms that cannot satisfy the condition (B) and, in par-
ticular, cannot be of Schottky type.

(3) Condition (B) may be translated in terms of the branch values of the
orbifold S/σ . Let us assume Γ is a NEC group that uniformizes S/σ . Let us
denote by F the finite index normal subgroup of Γ that uniformizes S/f , where
f = σ2 . Let us assume that Γ has signature

(
g,±; [m1, . . . ,mr]; {(−), . . . , (−)}

)
.

If {(−), . . . , (−)} is different from {−} (that is, S/σ has boundary), then the
order N of f = σ2 is odd. In this case, condition (B) is nothing but condition (A)
as already observed in (1). In the other situation, that is N = 2as , with s odd,
the signature of Γ has the form (g,±; [m1, . . . ,mr]) . The branch values associated
with mi 6= 2a−1t with t odd are paired so that condition (A) holds.

Example 1. Every anticonformal automorphism of order 2N , with N odd,
satisfies trivially the condition (B). In effect, let us assume we have σ: S → S
an anticonformal automorphism of order 2N , with N odd. Set R the quotient
Riemann surface obtained by the action of f = σ2 on S , and by τ : R → R
the anticonformal involution induced by σ . If p ∈ R is a branch value, then set
q = τ(p) . If we denote by π: S → R the natural holomorphic branched covering,
then π−1(p) = {x1, . . . , xl} and π−1(q) = {y1, . . . , yl} , where l is odd. We may
assume that f(xi) = xi+1 , f(yi) = yi+1 , i modulo l , and σ(x1) = y1 . If we
proceed to pair the point fk(x1) with fk(y(1+l)/2) , with k = 0, 1, . . . , l − 1, then
we get a pairing satisfying the condition (B).

In particular, assume we have an anticonformal automorphism σ: S → S of
finite order such that the induced anticonformal involution τ : R → R has fixed
points. In this case, necessarily the order of σ must be of the form 2N , with N
odd. It follows from the above that σ satisfies the condition (B).

Example 2. The above example shows that if the order of the anticonformal
automorphism σ is 2N , with N odd, then σ always satisfies the condition (B).
On the other hand, if the order of σ is 2N , with N even, the situation is different
as can be seen in the following.

Consider the NEC group

Γ = 〈A,B,C : A3 = B4 = I, CBC = A〉,

uniformizing a projective plane with two singular points of order 3 and 4, respec-
tively.

Let us consider the surjective homomorphism Φ: Γ → 〈x〉 ∼= Z/24Z defined
by Φ(A) = x8 , Φ(B) = x6 and Φ(C) = x .

Denote by F the kernel of Φ. Then F is a torsion-free normal subgroup of
Γ containing only orientation-preserving isometries.

By Riemann–Hurwitz, H2/F is a closed Riemann surface of genus 6, and C
descends to an anticonformal automorphism σ of order 24.
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If we set f = σ2 , then we obtain that f and f2 do not leave fixed points, f3

has exactly 6 fixed points and f4 has exactly 8 fixed points.
Let us look at the 8 fixed points of f4 . We must have that they are given by

{a, f(a), f2(a), f3(a)} and {b, f(b), f2(b), f3(b)} .
We cannot have σ(a) ∈ {a, f(a), f2(a), f3(a)} since the rotation number of

f4 (an element of order three) is the same at each of these points and σ would
reverse it. It follows that σ(a) ∈ {b, f(b), f2(b), f3(b)} .

Without loss of generality we may assume that σ(a) = b . Now, if we want
to have a pairing satisfying the condition (B), we must pair a with some of the
points in {b, f(b), f2(b), f3(b)} .

(1) If we pair a and b , then b = σ(a) and condition (B) imply that a =
σ(b) = f(a) , a contradiction.

(2) If we pair a and f(b) , then f(b) = σ3(a) and condition (B) imply that
a = σ3

(
f(b)

)
= f3(a) , a contradiction.

(3) If we pair a and f2(b) , then f2(b) = σ5(a) and condition (B) imply that
a = σ5

(
f2(b)

)
= σ10(a) = f5(a) = f(a) , a contradiction.

(4) If we pair a with f3(b) , then f3(b) = σ7(a) and condition (B) imply that
a = σ7

(
f3(b)

)
= σ14(a) = f7(a) = f3(a) , a contradiction.

The above asserts the impossibility to pair the fixed points of f4 to satisfy the
condition (B). We can also use part (3) of the remark after Theorem 7 to obtain
that σ cannot satisfy condition (B).

Example 3. The following is an example of an anticonformal automorphism
of order 30 acting on a Riemann surface of genus 8, with induced anticonformal
involution acting fixed point free, satisfying condition (B) but not of Schottky
type. This shows that condition (B) is not sufficient under this assumption.

Let us consider the NEC group Γ generated by A , B and C , with A3 =
B5 = B−1CAC = I (C is a glide reflection), acting on the hyperbolic plane H2

with quotient the projective plane having exactly two singular points p and q of
orders 3 and 5, respectively.

We consider the surjective homomorphism Φ: Γ → 〈x : x30 = 1〉 , defined by
Φ(A) = x10 , Φ(B) = x12 and Φ(C) = x .

Set G the kernel of Φ. Then G is a torsion-free Fuchsian group of genus 8. On
the closed Riemann surface S = H2/G there is an anticonformal automorphism
(induced by C ) of order 30, say σ .

We denote by π: S → M = H2/Γ the natural di-analytic branched covering
induced by the action of σ on S .

Set π−1(p) = {x1, . . . , x5, y1, . . . , y5} , and π−1(q) = {z1, . . . , z3, w1, . . . , w3} ,
where σ(xi) = yi , σ(yi) = xi+1 , σ(zi) = wi and σ(wi) = zi+1 .

As seen in Example 1, this anticonformal automorphism trivially satisfies
the condition (B). More precisely, if we pair x1 with y3 and z1 with w2 , and
we translate them by the powers of σ , then we obtain a pairing satisfying the
condition (B).
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Now we proceed to see that σ cannot be of Schottky type. Assume this is the
case. Then we have a Schottky uniformization (Ω, G, P : Ω→ S) for which σ lifts.
The existence of an anticonformal Möbius transformation T follows, satisfying:

(1) PT = σP ;
(2) TGT−1 = G ;
(3) T 30 ∈ G .

The group Ĝ , generated by G and T , uniformizes the projective plane RP2

with exactly two singular points of order 3 and 5, respectively. The index two
subgroup Ĝ+ of orientation-preserving transformations uniformizes the Riemann
sphere Ĉ with four singular points of order 3, 3, 5 and 5. Let us denote by τ
the anticonformal involution induced by σ on the Riemann sphere.

We have a simple loop γ ⊂ Ĉ invariant by τ , so that each of the two discs
determined by γ contains exactly one singular point of order 3 and other of
order 5. Denote by D one of these two discs, that is, ∂D = γ , and by D̂ a
connected component of the lifting of D on Ω.

Assume that γ does not lift to a loop on Ω. In this case let us consider the
subgroup Ĝ+(D̂) = {g ∈ Ĝ+ : g(D̂) = D̂} . Since Ĝ+ is a subgroup of Ĝ , whose
limit set is a totally disconnected set, we have that it is a function group (also
with totally disconnected limit set).

We have that Ĝ+ uniformizes a sphere with exactly three singular points (two
of them of order 3 and 5 and the other of order 2 ≤ n ≤ ∞ , where n is either the
minimal positive power so that γn lifts to a loop on Ω or ∞ if it does not exist).

This asserts that Ĝ+(D̂) is a finitely generated subgroup of the geometrically finite

Kleinian group Ĝ+ and, by a result due to Thurston, it must also be geometrically
finite.

In resume, Ĝ+(D̂) is a geometrically finite function group uniformizing a
sphere with three branch values. It follows by results due to I. Kra that this group
must be a triangular Fuchsian group. This is a contradiction to the fact that the
limit set is totally disconnected as observed above.

The above arguments then ensure that γ must lift to a loop on Ω and, in
particular, on S . Let us consider a connected component X ⊂ S of a lifting of D .
We have that X must be a closed Riemann surface of genus g1 < 8 with some
holes.

Denote by H the cyclic group, of order 15, generated by σ2 . Set H(X) =
{h ∈ H : h(X) = X} and N the order of it. It follows that N ∈ {1, 3, 5, 15}
and that the number of holes of X is exactly N . We must have the equality
8 = 2g1 +N − 1. The fact that in D we have singular points of orders 3 and 5,
asserts that N = 15, a contradiction to the above equality.

It follows that σ cannot be of Schottky type.

6. A sufficient condition: Condition (B1)

Let σ: S → S be an anticonformal automorphism of order 2N so that the
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induced anticonformal involution τ : R→ R , where R = S/σ2 , does not have fixed
points. Example 3 shows that condition (B) is not always sufficient to ensure σ
to be of Schottky type. In this section, we add an extra property to condition (B)
to obtain condition (B1) which turns out to be sufficient in this case.

Condition (B1). Assuming the same notation as in the definition of con-
dition (B), we say that σ satisfies the condition (B1) if there is a collection
C = {Aα = {pα, qα} : α ∈ A } satisfying condition (B) and the following ex-
tra property:

(∗∗) For all α ∈ A and for all odd powers δ of σ , δ(pα) 6= qα .

Theorem 8. Let σ: S → S be an anticonformal automorphism of finite
order. Set R the quotient Riemann surface obtained by the action of σ2 on S ,
and let τ : R → R the anticonformal involution induced by σ . If τ has no fixed
points, then condition (B1) is sufficient for σ to be of Schottky type.

Proof. We have that τ : R → R acts without fixed points. In this case, we
have two possibilities:

Case (a) There is a dividing simple loop α on R , which is τ invariant, so
that R is divided by α into two surfaces, say R1 and R2 . On R1 we can,
by condition (B1), construct a set of pairwise disjoint simple loops, each one
surrounding exactly two branch points coming from a pair. Each of these loops
lifts to a loop.

We construct (as in the proof of Theorem 6) a set of pairwise disjoint simple
loops, each one lifting to a loop on S , so that they cut off R1 into a sphere
bounded by α and these loops. Denote it by E .

This new surface E has no branch values, in which case α lifts to a loop.
The stabilizer (in the cyclic group generated by σ ) of any of the lifts of α

is always trivial or always a cyclic group of order two (generated by η = σr ).
Proceeding as in the proof of Theorem 6, we get the desired result.

Case (b) There are two disjoint non-dividing simple loops, each one τ invari-
ant, so that both together divide R into two components. Let us denote by α1

and α2 the above two disjoint simple loops. Following as in case (a), we have that
the stabilizer of any lifts of α1 is the same as for any lift of α2 .

We consider a simple loop α on R1 (one of the two surfaces obtained from
R after cutting along α1 and α2 ) so that these three loops bound a three-holed
sphere and no branch point is in it.

We have that α must lift to a loop. The liftings of the three-holed sphere are
spheres with holes.

The other part of R1 is bounded by α and we can proceed as in case (a).

Example 4. Let us consider the closed Riemann surface S of genus two
given by the following algebraic equation

y2 = (x− a)

(
x− w

a

)
(x− w2a)

(
x+

1

a

)
(x+ wa)

(
x+

w2

a

)
,
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where a > 1 and w = e2πi/6 . This one has an anticonformal automorphism σ of
order six given by

σ :

{
x 7−→ w

x
,

y 7−→ −y.
The quotient Klein surface obtained by the action of σ on S is the projective

plane with exactly two branch points of order 3. The quotient Riemann surface
obtained by the action of f = σ2 is the sphere with four points of order 3.
Theorem 7 asserts that σ is of Schottky type. In effect, consider the Kleinian
group J freely generated by two transformations B and C , with B3 = C2 =
I , where C is a symmetry with no fixed points. The Schottky group G , with
generators B−1CBC , B−2CBCB and CBCB−1 (which are not free generators
of G), uniformizes S with the property that σ lifts. The lifting of σ is given by
BC and a lifting of f is given by B2 .

Corollary 2. Let σ: S → S be a fixed point free anticonformal automor-
phism of finite order of the closed Riemann surface S . Then σ is of Schottky
type.

Proof. Let us denote by R the quotient Riemann surface, of genus γ , obtained
by the action of σ2 on S and by τ : R→ R the anticonformal involution induced
by σ . The fact that σ is fixed point free asserts that (i) σ satisfies trivially
condition (B1) and (ii) τ has no fixed points. Now we are in the hypothesis of
Theorem 8.

Example 5. Assume in Corollary 2 that the order of σ is 2q , with q an odd
positive integer, and the genus γ of S/σ to be at least two. We proceed to describe
explicitly the Schottky uniformization that lifts σ . Let us consider the group
J generated by a glide-reflection B and (γ − 2) fixed point free anticonformal
involutions τ1, . . . , τγ−2 , so that a fundamental domain is as shown in Figure 5.
We have that J is isomorphic to the free product of Z and (γ − 2) copies of Z2 .

B

τ
1

τ
2

τ
γ−2

Figure 5.

The index two subgroup J+ of orientation preserving elements of J is free
generated by the loxodromic transformations B2 , Bτ1, . . . , Bτγ−2 . In fact, J+ is
a Schottky group of genus γ − 1.
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We consider G the subgroup generated by the transformations Bq , Bqτ1, . . . ,
Bqτγ−2 , Bq+1τ1B

−1, . . . , Bq+1τγ−2B
−1, . . . , B2q−1τ1B

1−q, . . . , B2q−1τγ−2B
1−q .

Then we have that G is a normal subgroup of J of index 2q , so that J/G
is isomorphic to the cyclic group Z2q , and it is a Schottky group of genus g =
q(γ − 2) + 1.

Using quasiconformal deformation theory and a theorem in [3], which asserts
that the topological action of σ is unique, we get that the above group is the desired
(up to quasiconformal conjugation) Schottky group. This is also an argument for
the proof in the restricted case that the order of σ is 2q , with q odd.

In the case that the order of σ is 2q , with q even, we must necessarily have
that γ is even. This fact is a consequence of the following. We have a surjective
homomorphism from the (orbifold) fundamental group Γ that uniformizes S/σ
onto the cyclic group Z2q , say Ψ: Γ → Z2q . If γ is odd, then Γ is generated by
a1, . . . , ag , b1, . . . , bg and c , with 2g = γ−1, and defining relation c2Πg

i=1[ai, bi] =
1, where [a, b] denotes the commutator between a and b . From this, we have
that Ψ(c)2 = 1. The only possibilities are that Ψ(c) ∈ {1, [q]} . In either case,
we will have that c must preserve orientation (because q is even) and, this is a
contradiction.

B 1

B 2

B n

Figure 6.

Now, we write γ = 2n . We consider the group J generated by the glide-
reflections B1, . . . , Bn , with fundamental domain as shown in Figure 6. The
index two subgroup J+ of orientation preserving elements of J is a Schottky
group of genus γ − 1, free generated by the loxodromic transformations B2

1 ,
B1B2, . . . , B1Bn , B2B

−1
1 , . . . , BnB

−1
1 . To get a Schottky group G as desired

(up to quasiconformal conjugation) we need to consider all possible surjective ho-
momorphisms Φ: J → Z2q so that Φ(Bi) = [ti] and

(i) each ti is odd, and
(ii) Z2q is generated by [t1], . . . , [tn] .
For then the kernel G of each isomorphism Φ as above gives the desired

Schottky group.
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7. Anticonformal automorphisms of order six

We want to end with the following result concernig anticonformal automor-
phisms of order six. The particularity in order 6 is that the branch values on the
quotient surface R all are of order 3.

Theorem 9. Let σ: S → S be an anticonformal automorphism of order 6
of the closed Riemann surface S . Then σ is of Schottky type.

Proof. If the induced anticonformal involution τ on the quotient surface
R = S/f , where f = σ2 acts with fixed points, then the result follows from
Theorem 5. Let us assume now that τ is fixed point free.

If the genus of R is even, then we choose a dividing simple loop γ , invariant
under τ . If the genus of R is odd, then we choose two non-dividing simple loops
γ1 and γ2 , each one invariant under τ . In either case, denote by R1 and R2 the
two components of R− γ or R− (γ1 ∪ γ2) , respectively.

We know from Theorem 2 that the number of branch values in R must be
even. If that number is a multiple of four, it is possible to see that we can choose
the above loops in such a way that all branch values in R1 (respectively, R2 ) can
be paired in order that each pair consists of projections of a fixed point of f and
one of f−1 (here it is important that f has order three). In this situation we have
that σ then satisfies condition (B1) and the result follows from Theorem 7.

Let us assume that the number of branch values has the form 4q + 2. In
this case, we can arrange the loops γ (or γ1 and γ2 ) in order to have in R1

(respectively, R2 ) 2q of these values paired as above. In particular, we can proceed
to choose simple loops around each of these pairs (together with their images
under τ ) pairwise disjoint. The lifting of each of them consists exactly of three
loops. We can proceed as in the proof of Theorem 8, together with the following
lemma to complete the proof.

Lemma. Let σ: S → S be an anticonformal automorphism of order 6 acting
on a Riemann surface of genus 3 so that R = S/σ2 has genus one with exactly
two branch values and σ3 is fixed point free. Then σ is of Schottky type.

Proof. There is only one topological type satisfying the conditions of the
lemma (see Theorem 0.2 of [4]). We only need to find a Schottky group of
genus 3, say G , and an anticonformal Möbius transformation T such that T 6 = I ,
TGT−1 = G , the group generated by G and T uniformizes the connected sum of
two projective planes and exactly one branch value of order 3.

For this, we choose T (z) = eπi/3/z̄ and a loxodromic transformation A1 with
fixed points of the form r and −1/r , for some r > 1. We can choose r close
enough to 1 in order to have that the group G generated by A1 , A2 = TA1T

−1

and A3 = TA2T
−1 is a Schottky group of rank three.
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