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Abstract. For a domain  C R? we consider the second order variational problem of
minimizing J(w) = [, f(V?w) dz among functions w: © — R with zero trace respecting a side
condition of the form w > ¥ on 2. Here f is a smooth convex integrand with non-standard
growth, a typical example is given by f(V2w) = |[V2w|In(1 + |V2w|). We prove that—under
suitable assumptions on ¥-—the unique minimizer is of class C1:*(Q) for any o < 1. Our results
provide a kind of interpolation between elastic and plastic plates with obstacles.

1. Introduction and main result

Let Q denote a bounded, star-shaped Lipschitz domain in R? and suppose
we are given an N -function A having the As-property, precisely (see, e.g. [A] for
details) the function A: [0,00) — [0,00) satisfies

(N1) A is continuous, strictly increasing and convex;
At A(t
(N2) lim Alt) =0, lim Alt) = +o0;
tlo t t—oo ¢t
(N3) there exist k, tg > 0: A(2t) < kA(t) for all t > to.

The function A generates the Orlicz space L 4(£2) equipped with the Luxem-

burg norm
1
lullLa(e) = inf{l >0 / A<7|u\> dz < 1},
Q

the Orlicz—Sobolev space W (Q) is defined in a standard way (see again [A]),
finally, we let )

W4(Q) := closure of C5°(Q) in W,(Q).
For local spaces we use symbols like WAJOC(Q), L? () etc. Suppose further that

loc

we are given a function ¥ € W3 (Q) (C C¥(Q)) which satisfies

\If|aQ <0, max V¥ >0
Q
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and let .
K := {v c W3i(Q):v>Vae. on Q}

It is easy to see that K contains a function Wy of class C§°(Q): 1 = [¥ > 0]
and choose n € C§°(€2) such that n =1 on QF and 0 <7 <1 on Q. Then
Uy = nmaX{O, max g \Il} has the desired properties.

Next we formulate the hypotheses imposed on the integrand: f: R?*? —
[0,00) is of class C? satisfying

(1.1) ar{A(lE]) =1} < F(E) < ex{A(I€]) +1};
(1.2) ML+ [62) 212 < D2F(€)(n,m);

(1.3) ID2F(€)] < A < +oc;

(1.4) ID2F(O)] €2 < es{ F(€) + 1}

(1.5) A*(IDF(©)]) < ca{A(I€]) + 1}

for all £, n € R?*2. Here ¢y, c3, c3, ¢4, A and A denote positive constants, p is
some parameter in [0,2), and A* is the Young transform of A. From (1.3) we see
that f is of subquadratic growth, i.e. limsupje ., f(€)/|¢]* < +o0, (1.4) is the
so-called balancing condition being of importance also in the papers [FO], [FM]
and [BFM]. As shown for example in [FO] we can take f() := |{|In(1+|¢]) or its
iterated version fi(€) = [£[fu(€) with f1(€) = n(1+|€]), fiss () = In(1+ fu(€)).
But also power growth (1 + [£[2)P/2, 1 < p < 2, is included. Moreover, we can
consider integrands f such that c[¢P < f(&) < ClEP, €] > 1, 1 <p <2, and
which are elliptic in the sense of (1.2) for any given 0 < p < 2 (compare [BFM]
for a concrete construction). Let us now state our main result.

Theorem 1.1. Let (1.1)—(1.5) hold. Then the obstacle problem
(V) J(w) := / f(V?w) dz ~» min in K
Q

admits a unique solution u which is of class W;loc(ﬂ) for any finite p, in particular

we have u € C1%(Q) for any o < 1, thus u belongs—at least locally—to the same
Holder class as the obstacle V.

Remark 1.2. The statement clearly extends to the vectorial setting of func-
tions v: Q — RM and componentwise constraints v? > U’ provided W', ..., &M
are as above.

First of all, let us remark that Theorem 1.1 extends the power-growth case
studied in [FLM] to the whole scale of arbitrary subquadratic growth which is
described in terms of the N -function A. The main difficulty here is that we have
no analogue to the density property of smooth functions with compact support in
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the class {v € Wg(Q) : v > U} stated in Lemma 2.3 of [FLM] which in turn is
based on the deep result Theorem 9.1.3 of [AH]. In place of this we now use a more
elaborate approximation procedure involving not only the functional J but also
the obstacle U which has the advantage that the density result (see Lemma 2.2
for a precise statement) becomes more or less evident. Of course, this strategy is
also applicable in the setting of [FLM] which is included as a subcase.

The problem under consideration is of some physical interest: consider a plate
which is clamped at the boundary and whose undeformed state is represented by
the region (). If some outer forces are applied acting in vertical direction, then
the equilibrium configuration can be found as a minimizer of the energy

I(w) == / g(V*w) dz + potential terms.
Q

The physical properties of the plate are characterized in terms of the given convex
function g: R?**2 — R. In the case of elastic plates we have g(¢) = |¢|* (up to
physical constants), for perfectly plastic plates (treated for the unconstrained case
e.g. in [S] with the help of duality methods) g is of linear growth near infinity.
Since we describe ¢ in terms of the arbitrary N -function A, we can construct
any kind of interpolation between the limit cases of linear and quadratic growth.
Let us also mention that for elastic plates with obstacles the minimizer is of class
C?(Q) (see [FR]) provided that W is sufficiently regular. For unconstrained plates
with logarithmic hardening law it was shown in [F'S, Theorem 5.1], that u is of
class C*%(Q) for any 0 < a < 1.

Our paper is organized as follows: in Section 2 we introduce suitable regu-
larisations of problem (V) and prove some convergence properties. Moreover, a
density result is established. Section 3 is devoted to the proof of Theorem 1.1: we
show that for the approximative solutions u® the quantities (1 + |VZuf|?)2—#)/4
are locally uniformly bounded in WQIJOC(Q) which gives the claim with the help of
Sobolev’s embedding theorem.

2. Regularisation and a density result

From now on assume that all the hypotheses stated in and before Theorem 1.1
hold. Without loss of generality we may also assume that

U >-1 on 00 and Q:Dlz{z€R2:\z|<1}.

Proceeding exactly as in [FO, Theorem 3.1], we find that (V) has a unique so-
lution w (which of course holds for any strictly convex f with property (1.1)).
For the reader’s convenience we remark that the trace theorem 2.1 of [FO] used
during the existence proof has now to be replaced by the statement that Wf‘(Q) =
W3(Q)N W2(Q) which can be obtained with the same arguments as used in [FO,
Theorem 2.1].
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Since the statement of Theorem 1.1 is local, we fix some disc D & 2. Let us
introduce a sequence {W¢}. such that

e e W5 (),

V¢ = ¥ in a neighborhood of D,
V= —-1on Dy —D;_. and
Ve - W ae.onD; ase]O.

Of course we can also arrange ¥g > W > W€, Consider now the problems
(Ve) J(w)~min in K°:={ve W2(Q): v > ¥° a.e.}

with unique solution u® and its quadratic regularisation

J
Js(w ::—/ V2w|? dz + J(w) ~ min
v ()= [ IVl do + Jw)
in K :={v e W2(Q):v > U¢ a.e.}.

Note that ¥y € K, hence K’ # ), and (V) has a unique solution u$. We have
Js(uz) < J5(¥p) < J1(Pg) < 400, thus / A(|V?u§|) dz < const < +oo
Q

and similar to [FO, Lemma 3.1], or [FLM, Lemma 2.4], we deduce

Lemma 2.1. For any fixed € > 0 we have

(i) X in WRQ),
. 2 g2 ;.9010
(ii) 5/ \Vu3|* dx — 0,
Q
(i) TS 7).

Proof. Clearly u§ — 4 as § | 0 in WZ(Q) for some function @ which is
easily seen (compare [FO]) to belong to the class K° (obviously u§ — @° a.e. on
Qas §0). For we K we have

Js(a°) < Js(w) 2 J(w) and J(u®) < lirgll'%)nf J(us) < lirgll%nf JIs(uf);

thus it is proved for all w € K&’
(2.1) J(@°) < J(w).

By Lemma 2.2 we also know that K¢ is dense in K¢, hence (2.1) holds for any
w € K¢ and u° = u® follows. The other statements of Lemma 2.1 are obvious. o



Higher order variational inequalities 513

Lemma 2.2. The class K¢ is dense in K.

Proof. Consider v € K¢ and define (0 < p < 1)

(1 ) if |2] <
vl —x |, it |z| <o,
velz) == "\ o ¢

0, if o <z,
for z € Q; v, is of class W2(Q) and
(22) lve —vllw2@) =0 asoll

According to Poincaré’s inequality (see, for example, [FO, Lemma 2.4]) (2.2) is a
consequence of

(2.3) V20, = V20l () =0 asoTl,

and (2.3) is established as soon as we can show (compare, e.g. [FO, Lemma 2.1])
(2.4) / A(|V?v, — V?0|) dz — 0 as 01 1.
Q

To this end observe that

1
V%Q -V % 0 a.e. on €.

Moreover
A(|V?v, — V?0|) < A(IV?0,] + [V?0]) < $(A(2]V?v,]) + A(2|V?0]))

by convexity and monotonicity of A. The As-condition yields (see [FO, inequality

(2.1)])
A(mt) < A(mto) + (1 + kUnm/m2+1) A1)

for all m, t > 0. This implies for a.a. |z| < o
AQ2IV?,(2)]) = A(207%V?u(2/0)])
< A(2072tg) + (1+ k20N A(1V20(2/0)]) 1= Go(2),

hence
A(|V?v, — V20|) < 2(A(2|V?0]) 4 G,(2)) = go(z)

being valid for a.a. z € Q if we define g,(x) =0 for |z| > o. We have

ell

9o(z) = L (A(2|V?u(z)|) + A(2t0) + (1 + k*) A(|V?0(2)])) =: g(x)
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a.e. and also [, g,dr — [,gdz as ¢ 7 1. The version of the dominated conver-
gence theorem given in [EG, Theorem 4, p. 21], implies (2.4).

For small enough h > 0 let (¢); denote the mollification of a function ¢ with
radius h. Let us define

w = (vy)p, + V° — ([\Ifa]g)h, where

(09, (z) == @f(éw>,ifM\§g,

for x € Q. Of course we assume 1 — p < %5 and h < %(1 — 0) (note that we
can define the mollified functions for any = € € since v, and [¥¢], are constant
near the boundary and therefore can be extended by the same value to the whole

plane). Then
(vg)h - ([\IIE]@);Z >0

which is a consequence of v, — [V¢], > 0, thus w > ¥°. Since V¢ = —1 on
D1 —D;_. we also have w = 0 near 992, moreover, w € W3(Q), and lw—vl[wz @)
becomes as small as we want if we first choose ¢ close to 1 and then let h go to
Z€ero. O

Lemma 2.3. We have the following convergence properties

(i) i WAQ),
(ii) T(w) 2 J(w).

Proof. From ¥y € K* we get J(u®) < J(V¥p) < +00; as usual this implies
that u® —: @ in W2(Q) as £ | 0 and that @ is in the space W2(Q). We may
assume that u® — @ a.e. as € | 0, hence ¥ = lim. | ¥* < lim.|ou® = @ a.e. Thus
u € K and in conclusion

J(u) < J(@).

On the other hand
u> v > P

implies u € K®, hence

J(u®) < J(u) and in conclusion J(@) < liml%nf J(u®) < J(u).

By strict convexity J(u) = J(@) implies u = 4. o
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3. Proof of Theorem 1.1

Consider now n € C§°(D), 0 <n < 1. Following the lines of [FLM] we get
estimate (3.6) of [FLM] with g5 replaced by f5(&) = 36/¢> + f(§) and u§, ¥€ in
place of us, ®, i.e. (summation with respect to v =1,2)

/ n°D? f5(V2u§) (8, V2us, 0, V2u§) dz

D

(3.1) < c/ |D? f5 (V2u5) | (|Vusl® + [VZus|* + [VUE P + [V2E°)? + V20 ?) da.
D

By construction, ¥ = ¥ in a neighborhood of D, hence we may write ¥ in place
of W€ on the right-hand side of (3.1). Note also that the constant ¢ appearing in
(3.1) is independent of € and §. (1.3) together with the remark that ¥ = ¥ on
D implies

/ |D? f5(V2u5) | (IVEE]? + V2052 4 [V2O°)?) da < ¢ (independent of ¢, ¢).
D

From
J(;(uf;) < Jl(\lfo) < 400

we deduce
5/ |V2u§|? dr < c (independent of €, §).
D

From (1.4) we get
/ |D? f(V2u5)| |[VZus|* da < c/ (f(V?u§) +1) da
D D
<c(J(uz) +1) < c(J(¥o) +1).

From the uniform bound on J(u§) we deduce a uniform bound for the quantity
[u§llw2 (o), and since n = 2, we see that |[Vuj||r2(q) is bounded independent of
e and ¢§. Inserting these estimates in (3.1) we end up with

(3.2) / n°D? f5(Vu§) (8, V2u§, 0, V2u5) dz < ¢(n) < +o0
D
being valid for all sufficiently small £ and ¢. Consider now the auxiliary function

g — (1 + |v2u§|2)(2_ﬂ)/4

which is of class Wy .(Q) (note that p < 2 and that uj € WS’JOC(Q), the last
statement following exactly along the lines of [FLM]). (3.2) implies

(3.3) / (VA5 1208 do < e(n) < 400,
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and from p > 0 we get
hs < (14 |V2ug)?)"”.

Js(u5) < const implies [, h§dz < const < 400 and together with (3.3) we find
h§ € Wy0.(D) with local bound independent of & and §. We claim

(34) 5l0(1+|v2 e| )(2 w)/4

weakly in WQ{IOC(D). First of all, for any fixed £ > 0, we find a subsequence ¢ | 0
and a function h. in Wy, (D) such that

z&; — h® in W21,IOC(D)?
h§ — h® a.e.as 0 | 0.

For proving (3.4) let us write (observe (1.5))
Js(u5) = J) = § [ VR0 o+ I05) - Ta)
= é/ IV2u§|? da +/ Df(V?u®) : (V2u§ — V2u®) dx
/ / D*f((1 = t)V?u® + tVu5) (Vu§ — Vs, V2u§ — V) (1 — t) dt da.
The minimality of u® together with u§ € K® implies
/QDf(V2u5) (V2§ — V) dz > 0
so that by Lemma 2.1

151{8// D*f((1—t)V?u® +tV2u§) (V5 — V2u®, V2§ — V) (1 —t) dt dz = 0.

From the ellipticity condition (1.2) we get
/ D*f( V2 + tV2u§) (V2u§ — V2u®, V2§ — VZu®) (1 — t) dt

1 2 —u/2
> )\/ (1 + V2 4 (V2§ — V27| ) IV2uS — V2 2(1 — t) dt
0

> (i, N (1+ V20l + V205 2) 7219205 — V20l 2,



Higher order variational inequalities 517

hence

(3.5) (14 |22 + [V2us2) V2 — v P 2o

in L'(Q) and a.e. for a subsequence. h§ — h® a.e. on D implies

V2§ R 1 e,

{he}*/(2=1) _ 1 being finite a.e. Returning to (3.5) and observing that (1 +
IV2uf|? + |V2u$|?)~#/2 has a pointwise limit a.e. on D as & | 0 which is not zero
we get

0
V2u§ — o V2u® a.e. on D
and in conclusion (3.4) is established at least for a subsequence of § | 0. But since
the limit is unique, the statement is true for any sequence § | 0. Recall that

175l < ¢(D) < +oo

Wl(D)
for any subdomain DeD. Combining this with (3.4) we get

(1 4 [V2us]?) G772 < lim inf |5 < ¢(D)

||W1(D) Wl(D)

so that by Sobolev’s embedding theorem

1926 ], 5 < o, D) < +o0

for any finite p. Therefore u® € I/V2 1OC(D) uniformly for any finite p and
Lemma 2.3 implies u € W2 'loc(D) (u® converges weakly as ¢ | 0 to some function
in W2,..(D), by Lemma 2.3 the limit is just u). o
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