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Abstract. A conformal mapping f of the unit disk D into itself is called hyperbolically
convex if the non-euclidean segment between any two points of f(D) also belongs to f(D) . In
this paper we obtain the exact order of growth for the derivative of these functions and investigate
their boundary behaviour.

1. The growth of the derivative

Let D be the unit disk and T = ∂D . The analytic univalent function f : D→
D is called hyperbolically convex (or simply h-convex) if the non-euclidean segment
between any two points of f(D) also belongs to f(D) . An h-convex function is
continuous in D .

Hyperbolically convex functions were first systematically studied by William
Ma and David Minda [MM1]. Among many other results they obtained the char-
acterization

(1.1) Re

[
1 + z

f ′′(z)

f ′(z)
+

2zf ′(z)f(z)

1− |f(z)|2
]
> 0 (z ∈ D);

see also [MM2]. The present authors [MP1], [MP2] and Alexandre Vasil′ev [MPV]
derived a number of estimates for h-convex functions. The upper bound for the
derivative remained an open problem and it was conjectured [MP2] that

(1.2) f ′(z) = O

(
1

1− |z|

(
log

1

1− |z|

)−2)
(|z| → 1);

this was proved with the exponent −1 instead of −2.
The property of being h-convex is invariant under Möbius transformations of

D onto itself. This fact can be used to achieve the normalization

(1.3) f(z) = αz + a2z
2 + · · · , 0 < α ≤ 1.
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The h-convex function

(1.4) kα(z) = 2αz/
(
1− z +

√
(1− z)2 + 4α2z

)
= αz + · · ·

often plays the role of the extremal function and it was shown in [MPV] that

(1.5) |f ′(z)| ≤ k′α(|z|) for |z| ≤
√

2 − 1,

however not for |z| close to 1.
Let λ(z, ς) denote the non-euclidean distance in D normalized such that

(1.6) λ(z, 0) =
1

2
log

1 + |z|
1− |z| (z ∈ D).

Theorem 1. Let f be hyperbolically convex. Then

(1.7)
(1− |z|2)|f ′(z)|(1− |ς|2)|f ′(ς)|

|f(z)− f(ς)|2 λ(z, ς)2 ≤ c1 for z, ς ∈ D,

where c1 is an absolute constant. In particular, if f(z) = αz + · · · , then

(1.8) (1− |z|2)|f ′(z)|λ(z, 0)2 ≤ c1
α
|f(z)|2 for z ∈ D.

The proof will be very geometric. It follows from (1.8) that the conjecture
(1.2) is true. The stronger conjecture [MP1]

an = O
(
n−1(log n)−2

)
(n→∞)

however remains open.

Theorem 2. Let f be h-convex. Then

(1.9) b(ς) = lim
r→1

(1− r2)|f ′(rς)|λ(r, 0)2 <∞ (ς ∈ T)

exists. If b(ς) > 0 then f(ς) ∈ T and

(
f(ς)− f(z)

)
L(ς̄z)→ f(ς)b(ς) as z → ς, z ∈ ∆,(1.10)

(1− ς̄2z2)f ′(z)L(ς̄z)2 → ς̄f(ς)b(ς) as z → ς, z ∈ ∆,(1.11)

where L(z) = 1
2 log

[
(1 + z)/(1− z)

]
. Here ∆ is any Stolz angle at ς .
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Martin Chuaqui and the second author [CP] have proved that a meromorphic

function f : D→ Ĉ satisfies

(1.12)
(1− |z|2)|f ′(z)|(1− |ς|2)|f ′(ς)|

|f(z)− f(ς)|2 λ(z, ς)2 ≤ 1 (z, ς ∈ D),

if and only if its Schwarzian derivative Sf satisfies

(1.13) (1− |z|2)2|Sf (z)| ≤ 2 (z ∈ D).

It was shown in [MP2, Example 5.3] that (1.13) does not hold for all h-convex
functions. Hence (1.12) does not hold for all h-convex functions and it follows that
the constant in Theorem 1 satisfies c1 > 1.

See [MP2] and [MM2] for bounds for the Schwarzian derivative of h-convex
functions. In [MP2] it is conjectured that

sup
f

sup
z

(1− |z|2)2|Sf (z)| ≈ 2.384.

2. Boundary points on the unit circle

We now study the closed set T ∩ f(T) where f(D) meets the unit circle.
It follows from the McMillan twist theorem [Mc], [P, p. 142] that f has a finite
angular derivative for almost all ς ∈ T with f(ς) ∈ T , which implies that f(T)
is tangential to T at f(ς) .

Let c2, c3, . . . denote suitable positive absolute constants.

Theorem 3. Let f(z) = αz + · · · be h-convex and let ς ∈ T , f(ς) ∈ T . If
there exists r0 < 1 such that

(2.1) (1− r2)|f ′(rς)| ≤ c2|f(ς)− f(rς)| ≤ c3α (r0 ≤ r < 1),

then, for ω ∈ T ∩ f(T) , ω 6= f(ς) ,

(2.2) |ω − f(ς)| ≥ c4|f(ς)− f(rς)| (r0 ≤ r < 1).

The assumption (2.1) roughly says that, near f(ς) , the image domain lies
in a narrow sector. The assertion (2.2) implies that f(ς) is an isolated point of
T ∩ f(T) , of which there can be only countably many.

Theorem 4. Let f(z) = αz+· · · be h-convex and let b(ς) be defined by (1.9) .
Then b(ς) = 0 except possibly for countably many ς and moreover

(2.3)
∑

b(ς)>0

b(ς) ≤ c5
α2
.
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3. Proof of Theorem 1

(a) First we prove inequality (1.8) for h-convex functions of the form f(z) =
a1z + · · · with |a1| = α . Let z ∈ D be given. By rotational invariance, we may
assume that

u = f(z) > 0.

We write

(3.1) d(s) = dist
(
s, ∂f(D)

)
for 0 ≤ s ≤ u.

Let C± be the circles orthogonal to T that are tangential to {w : |w| < α/2}
and {|w−u| < d(u)} and let A± be the arcs of C± between the points of contact.
The centers ω and ω and the radius % of C± satisfy

(3.2) |ω| = (1 + α2/4)/α, % = (1− α2/4)/α,

in particular |ω|2 − %2 = 1. We write ξ = Reω .
Let G be the domain between A+ and A− including the disks {|w| < α/2}

and {|w−u| < d(u)} touched by A± . We have {|w−u| < d(u)} ⊂ f(D) by (3.1)
and {|w| < α/2} ⊂ f(D) by [MM1, Theorem 2]. Hence G ⊂ f(D) because f is
h-convex.

Now let 0 < s < u . Geometric considerations show that the points of ∂G
nearest to s lie on the arcs A± of C± . Hence

(3.3) d(s) ≥ |ω − s| − % =
|ω − s|2 − %2

|ω − s|+ %
≥ 1− 2ξs+ s2

2 + 2%
>
α

4
(1− 2ξs+ s2).

The construction of C± shows that |ω − u| = d(u) + % , which implies

(3.4) d(u) <
d(u)2 + 2%d(u)

2%
=

1− 2ξu+ u2

2%
< α(1− 2ξu+ u2)

by (3.2).
We will show in part (b) that

(3.5) y ≡
√

1− 2ξu+ u2

∫ u

0

ds

1− 2ξs+ s2
< c5u.

It follows from (3.3), (3.4) and (3.5) that

√
d(u)

∫ u

0

ds

d(s)
<

4c5√
α
u.

Since u = f(z) and d(u) ≤ (1− |z|2)|f ′(z)| ≤ 4d(u) by (3.1), we conclude that

√
(1− |z|2)|f ′(z)|λ(z, 0) ≤ 2

√
d(u)

∫

f−1([0,u])

|f ′(ς)|
(1− |ς|2)|f ′(ς)| | dς|

≤ 2
√
d(u)

∫ u

0

ds

d(s)
≤ 8c5√

α
|f(z)|

which implies (1.8).
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(b) Now we prove (3.5). We distinguish three cases.

Case I. Let −∞ < ξ ≤ −1. We write x = −ξu and obtain

y ≤
√

1 + 2x+ u2

∫ u

0

ds

1 + 2xs/u
≤
√

2 + 2x
u

2x
log(1 + 2x) ≤ c6u.

Case II. Let −1 < ξ < 1. We can write

(3.6) 1− 2ξs+ s2 = (1− s)2 + 2(1− ξ)s ≥ 1
2 (1− s)2 + 1

2 (1− ξ).

First let (1− u)2 < 1− ξ . Then, by (3.6),

(3.7) 1− 2ξu+ u2 = (1− u)2 + 2(1− ξ)u < 3(1− ξ).

If u ≥ 1
2 then, with y defined in (3.5), we see from (3.6) that

y <

∫ u

0

2
√

3(1− ξ) ds
(1− s)2 + (1− ξ) <

∫ ∞

0

2
√

3

t2 + 1
dt ≤ 2π

√
3u.

If u < 1
2 then

√
1− ξ > 1− u > 1

2 and thus, by (3.6),

y <

∫ u

0

2
√

3(1− ξ) ds
1− ξ < 4

√
3u.

Now let (1−u)2 ≥ 1− ξ . Then 1−2ξu+u2 < 3(1−u)2 as in (3.7) and thus,
by (3.6),

y <

∫ u

0

2
√

3 (1− u)

(1− s)2
ds = 2

√
3u.

Case III. Let 1 ≤ ξ < +∞ . We define

(3.8) η =
√
ξ2 − 1, v = ξ − η = 1/(ξ + η).

Then 1− 2ξv + v2 = 0 and therefore u < v by (3.4). This time we can write

(3.9) 1− 2ξs+ s2 = (v − s)2 + 2η(v − s).

First let v − u ≤ η . Then, by (3.9),

(3.10) 1− 2ξu+ u2 = (v − u)2 + 2η(v − u) ≤ 3η(v − u).

If u ≥ 1
2 then, by (3.9),

∫ u

0

ds

1− 2ξs+ s2
≤
∫ v−η

0

ds

(v − s)2
+

∫ u

v−η

ds

2η(v − s) ≤
1

η
+

1

2η
log

η

v − u ;



52 Diego Mej́ıa and Christian Pommerenke

if v−η < 0 then the first integral is omitted. We deduce from (3.10) and v−u ≤ η
that

y ≤
√
v − u
η

(√
3 +

√
3

2
log

η

v − u

)
≤ c7 ≤ 2c7u.

On the other hand, if u < 1
2 then, by (3.8),

2
√
ξ2 − 1 = 2η = ξ − (v − η) ≥ ξ − u > ξ − 1

2 ≥ 1
2

which implies ξ ≥ ξ1 =
√

17/4 > 1. Hence (3.9) and (3.10) show that

y ≤
√

3η(v − u)

2η

∫ u

0

ds

v − s ≤
√

3

2
√
η

∫ u

0

ds√
v − s =

√
3

η

u√
v +
√
v − u <

√
3

vη
u

and (3.5) follows because, by (3.8),

1

vη
=

ξ√
ξ2 − 1

+ 1 ≤ ξ1√
ξ2
1 − 1

+ 1.

Now let v−u > η . Then (3.9) shows that 1− 2ξu+u2 < 3(v−u)2 and thus,
by (3.9),

y <
√

3 (v − u)

∫ u

0

ds

(v − s)2
=
√

3
u

v
.

We obtain from (3.8) that ξ − η = v > η + u ≥ η and therefore ξ > 2η which
implies ξ ≤

√
4/3 . Hence we have

y ≤
√

3
u

v
=
√

3
(
ξ +

√
ξ2 − 1

)
u < 4u.

This completes the proof of (3.5) and thus of assertion (1.8) of Theorem 1.

(c) Now we prove assertion (1.7). Let z ∈ D be fixed and let |b| = 1,

(3.11) ϕ(t) =
t+ z

1 + z̄t
, g(t) = b

f
(
ϕ(t)

)
− f(z)

1− f(z)f
(
ϕ(t)

) (t ∈ D).

Then g is again h-convex and moreover

g(0) = 0, g′(0) = (1− |z|2)|f ′(z)|/
(
1− |f(z)|2

)
,

if b ∈ T is suitably chosen. Applying (1.8) to g , we obtain from (3.11) that

(1− |z|2)|f ′(z)|
(
1− |ϕ(t)|2

)∣∣f ′
(
ϕ(t)

)∣∣
∣∣f(z)− f

(
ϕ(t)

)∣∣2 λ(t, 0)2 = g′(0)
(1− |t|2)|g′(t)|
|g(t)|2 λ(t, 0)2 ≤ c1

which implies (1.7) because λ(t, 0) = λ
(
ϕ(t), ϕ(0)

)
= λ

(
ϕ(t), z

)
.
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4. Proof of Theorem 2

First let f(ς) ∈ D . We prove that the limit b(ς) exists and is = 0. We may
assume that f has the form (1.3). It follows from [MP1, (2.6)] that

(1− r2)|f ′(rς)| ≤ 4|f(ς)− f(rς)| ≤ 8(1− r)α2δ/4

for r close to 1, where δ = 1− |f(ς)|2 > 0.
Now let f(ς) ∈ T . We may assume that ς = 1 and f(ς) = 1; otherwise we

consider the h-convex function f(ς)f(ςz) . For the proof of (1.9) we may further-
more assume that there exist rn → 1 such that

(4.1) (1− r2
n)|f ′(rn)|λ(rn, 0)2 → b 6= 0 as n→∞;

see (1.8). By Theorem 1, we have,

(1− |z|2)|f ′(z)|(1− r2
n)|f ′(rn)|

|f(rn)− f(z)|2 λ(rn, z)
2 ≤ c1.

Since λ(rn, z) ∼ λ(rn, 0) as n→∞ , we obtain from (4.1) that

(4.2)
(1− |z|2)|f ′(z)|
|1− f(z)|2 ≤ c1

b
for z ∈ D.

Ma and Minda [MM1, Theorem 4] have shown that the function

(4.3) p(z) =

(
1− f(z)

)2

(1− z)2f ′(z)
(z ∈ D)

satisfies Re p > 0. The Julia–Wolff lemma shows that

(4.4)

(
1− f(z)

)2

(1− z2)f ′(z)
=

1− z
1 + z

p(z)→ a as z → 1, z ∈ ∆

for every Stolz angle ∆, where 0 ≤ a < +∞ . It follows from (4.2) that a ≥ b/c1 > 0.
We obtain from (4.4) that

f ′(z)
(
1− f(z)

)2 =

(
1

a
+ o(1)

)
1

1− z2
as z → 1, z ∈ ∆,

and by integration we deduce that

(4.5)
1

1− f(z)
=

(
1

a
+ o(1)

)
L(z) as z → 1, z ∈ ∆,

where

L(z) =
1

2
log

1 + z

1− z .

Together with (4.4) this implies

(1− z2)f ′(z)L(z)2 → a as z → 1, z ∈ ∆.

Hence the limit (1.9) exists and b(1) = a . The assertions (1.10) and (1.11) now
follow from (4.5) and (4.4).
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5. Proofs of Theorems 3 and 4

Let c8, c9, . . . denote suitable positive absolute constants.

Proposition 5. Let f be h-convex and f(0) = 0 , |f ′(0)| = α . Let ς ∈ T ,
f(ς) ∈ T , and ω ∈ T ∩ f(T) with ω 6= f(ς) . For given r ∈ (0, 1) , there are only
two possibilities:

(i) |f(ς)− f(rς)| < c8|f(ς)− ω| ,
(ii) (1− r2)|f ′(rς)| > c9 min(α, |f(ς)− ω|) .

Proof. We may assume that ς = 1 and f(ς) = 1. Let G = f(D) . We write

(5.1) q = |f(ς)− ω| = |1− ω|.

There exists a smooth crosscut Q = Q(r) of G with f(r) ∈ Q that separates 0
from 1 and satisfies

(5.2) lengthQ < c10(1− r2)|f ′(r)|.

Let C be the circle orthogonal to T through 1 and ω . Since 0 ∈ G and
1, ω ∈ ∂G and since G is h-convex, the non-euclidean triangle T bounded by
[0, 1], [0, ω] and D ∩ C lies in G .

The crosscut Q has to meet [0, 1] because Q separates 0 and 1. Let A± be
the arcs of Q from the last points of intersection with [0, 1] to ∂G . Then A+ and
A− go to different sides of [0, 1] . Hence one of these arcs, say A+ , has to enter
the triangle T . Since T ⊂ G the endpoint of A+ on ∂G cannot lie in T . Hence
A+ has to meet C or [0, ω] .

First we consider the case that there exists a ∈ A+ ∩ C ⊂ Q ∩ C . Since
f(r) ∈ Q we obtain from (5.1) and (5.2) that

|1− f(r)| ≤ |1− a|+ |a− f(r)| ≤ q + c10(1− r2)|f ′(r)|.

If (1− r2)|f ′(r)| < q then (i) holds; if (1− r2)|f ′(r)| ≥ q then (ii) holds trivially
by (5.1).

Now we consider the case that there exists a ∈ A+ ∩ [0, ω] . If 0 ≤ r < 1
2 then

(1− r2)|f ′(r)| ≥ c11|f ′(0)| = c11α

by the Koebe distortion theorem. Hence (ii) holds.
Hence we may assume that 1

2 ≤ r < 1. Then |f(r)| ≥ c12α . Now A+ ⊂ Q .
Thus Q intersects [0, 1] and [0, ω] and furthermore f(r) ∈ Q . It follows that

lengthQ ≥ max
[
dist

(
f(r), [0, 1]

)
, dist

(
f(r), [0, ω]

)]
≥ c13 min(α, |1− ω|).

Hence (ii) holds by (5.2).
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Proof of Theorem 3. Let c8 and c9 be the constants of the proposition and
put c2 = c9/(2c8) , c3 = c2c8 . It follows from (i), (ii) and (2.1) that, for every
fixed r ∈ [r0, 1) there are only the two cases

(i ′ ) |f(ς)− f(rς)| < c8 min
(
α, |f(ς)− ω|

)
,

(ii ′ ) |f(ς)− f(rς)| > 2c8 min
(
α, |f(ς)− ω|

)
.

Since |f(ς) − f(rς)| is continuous in [r0, 1), we conclude that either (i ′ ) or
(ii ′ ) holds for all r ∈ [r0, 1). But (ii ′ ) is impossible for r close to 1. Hence (i ′ )
holds, which implies our assertion (2.2) with c4 = 1/c8 .

Proof of Theorem 4. Let ς, f(ς) ∈ T and b(ς) > 0. It follows from (4.2)
(where f(ς) = 1) that

(5.3) (1− r2)|f ′(rς)| ≤ c1
b(ς)
|f(ς)− f(rς)|2.

Let c2 , c3 , c4 be the constants of Theorem 3 and let

(5.4) s = s(ς) min

(
c2
c1
b(ς),

c3
c2
α, α

)
.

Since |f(ς)− f(rς)| = 1 ≥ α for r = 0 and = 0 for r = 1, there exists r0 ∈ [0, 1)
such that

(5.5) |f(ς)− f(rς)| ≤ s for r0 ≤ r < 1, = s for r = r0.

We obtain from (5.3), (5.4) and (5.5) that, for r0 ≤ r < 1,

(1− r2)|f ′(rς)| ≤ c1s

b(ς)
|f(ς)− f(rς)| ≤ c2|f(ς)− f(rς)|.

Furthermore we see from (5.4) and (5.5) that

c2|f(ς)− f(rς)| ≤ c2s ≤ c3α.

Hence it follows from Theorem 3 and (5.5) that

|ω − f(ς)| ≥ c4|f(ς)− f(r0ς)| = c4s

for ω ∈ T ∩ f(T) , ω 6= f(ς) .
The open set T\f(T) is the union of disjoint open arcs In . We have just

shown that, for every ς with b(ς) > 0, there exists n = n(ς) such that f(ς) is the
right-hand endpoint of In and

(5.6) diam In ≥ c4s(ς).
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Let X be the set of ς for which s(ς) = c2b(ς)/c1 and let Y be the set for
which s(ς) < c2b(ς)/c1 ; see (5.4). Then, by (5.6),

∑

ς∈X
b(ς) ≤ c1

c2c4

∑

n

diam In <
2πc1
c2c4

= c14,

∑

ς∈Y
c4 min

(
c3
c2
α, α

)
≤
∑

n

diam In < 2π

and thus card Y < c15/α , furthermore b(ς) ≤ c1/α by (1.8) and (1.9). Hence

∑

b(ς)>0

b(ς) < c14 +
c1c15

α2
.

This proves (2.3). In particular we can have b(ς) > 0 only for countably many ς .
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