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Abstract. Let Z be a sequence of complex numbers tending to infinity having infinite
exponent of convergence. For r > 0 , let n(r) denote the number of members of Z of modulus at
most r . If

µ = lim
r→∞

log log n(r)

log log r
,

it is shown that

inf
f

lim
r→∞

logM(r, f)

n(r)
≤ min

(
π + log 2, log

µ+ 1

µ− 1

)
,

where the infimum is over all entire f vanishing precisely on Z and M(r, f) denotes the maximum
of |f(z)| on |z| = r . This bound strengthens earlier results of Bergweiler.

1. Introduction

Let Z = {zj : j = 1, 2, 3, . . .} be a sequence of complex numbers, not necessar-
ily distinct, tending to infinity and ordered so that |z1| ≤ |z2| ≤ · · · . We consider
entire functions with zero set precisely Z , i.e., entire f with a zero of multiplicity
m at a complex number β provided that zj = β for exactly m different values
of j . We compare the rate of growth of the maximum modulus function

M(r, f) = max
|z|=r

|f(z)|

of such f with n(r) , the number of distinct values of j such that |zj | ≤ r .
The exponent of convergence σ of the sequence Z is defined to be the infimum

of all α > 0 for which ∑

zj 6=0

|zj |−α <∞,

or equivalently by

(1.1) σ = lim
r→∞

log n(r)

log r
.
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It is an easy consequence of Jensen’s theorem that for any entire f vanishing
precisely on Z , the order ρ of f , defined by

ρ = lim
r→∞

log logM(r, f)

log r
,

satisfies ρ ≥ σ . We shall be concerned exclusively with sequences Z with infinite
exponent of convergence, and thus all entire f we consider will be of infinite order.

One measure of the growth of n(r) for sequences with infinite exponent of
convergence is

(1.2) µ = lim
r→∞

log log n(r)

log log r
.

It is elementary to verify that µ ≥ 1 if σ > 0 and that σ =∞ if µ > 1.
Bergweiler has studied the growth of entire functions vanishing precisely on

a sequence Z with infinite exponent of convergence. Let

L(µ) := sup
Z

inf
f

lim
r→∞

logM(r, f)

n(r)
,

where the supremum is over all sequences Z satisfying (1.2) and the infimum is
over all entire f vanishing precisely on Z . (In the case µ = 1, we additionally
require of Z that σ =∞ .) Bergweiler [2] proved the following two theorems.

Theorem A. For every Z satisfying (1.2) , there exists an entire f vanishing
precisely on Z such that

lim
r→∞

logM(r, f)

n(r)
≤ α(µ) :=





3µ

4(µ− 1)
, 1 < µ <∞,

3

4
, µ =∞.

Theorem B. For 1 < µ < ∞ there exists Z satisfying (1.2) such that for
every entire f vanishing precisely on Z ,

lim
r→∞

logM(r, f)

n(r)
≥ β(µ) := (µ− 1) log

µ− 1

µ
+ (µ+ 1) log

µ+ 1

µ
.

We note that Theorem A implies that L(µ) ≤ α(µ) and Theorem B implies
L(µ) ≥ β(µ) . We also note that α(µ) tends to infinity as µ → 1+ and that
Theorem A gives no information about L(1). It is elementary that β(µ) is a
decreasing function of µ on (1,∞) with β(µ)→ 2 log 2 as µ→ 1+ and β(µ)→ 0
as µ → ∞ . Bergweiler [1] has asked (i) whether L(µ) is a bounded function for
1 ≤ µ ≤ ∞ and in particular if L(1) is finite and (ii) whether L(µ) → 0 as
µ→∞ .

We answer these questions by proving the following two theorems. We remark
that our results give information about the minimum modulus of f as well as the
maximum modulus.
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Theorem 1. If Z satisfies (1.2) for 1 < µ ≤ ∞ , then

(1.3) inf
f

lim
r→∞

∥∥log |f(reiθ)|
∥∥
∞

n(r)
≤





log
µ+ 1

µ− 1
, 1 < µ <∞,

0, µ =∞,

where the infimum is over all entire f vanishing precisely on Z .

Theorem 2. If Z is any sequence with infinite exponent of convergence,
then

inf
f

lim
r→∞

∥∥log |f(reiθ)|
∥∥
∞

n(r)
≤ π + log 2,

where the infimum is over all entire f vanishing precisely on Z .

We note that the combination of Theorems 1 and 2 yields

L(µ) ≤





min

(
π + log 2, log

µ+ 1

µ− 1

)
, 1 ≤ µ <∞,

0, µ =∞.

We further note that Theorem 1, in conjunction with Theorem B, shows that

(1.4)
1− o(1)

µ
≤ L(µ) ≤ 2 + o(1)

µ
, µ→∞.

By a refinement of his proof of Theorem B, Bergweiler was able to show [2, p. 103]
that lim infµ→1 L(µ) > 1.6. This result together with Theorem 2 yields

(1.5) 1.6 < sup
Z

inf
f

lim
r→∞

logM(r, f)

n(r)
≤ π + log 2,

where the supremum is over all Z with infinite exponent of convergence and the
infimum is over all entire f vanishing precisely on Z . We have been unable to
narrow the gap between the upper and lower bounds in either (1.4) or (1.5).

Our results involve upper bounds for logM(r, f) in terms of n(r) on a se-
quence tending to infinity. It is observed in [2] that in general it is not possible
to obtain such bounds on a large set of r -values, for example on a set of posi-
tive logarithmic density. Suppose, for example, that Z has infinite exponent of
convergence, all members of Z are positive real numbers, and

lim
r→∞
r∈E

log n(r)

log r
<∞
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for some set E ⊂ [1,∞) of upper logarithmic density 1. It is well known [5] that
any entire f vanishing precisely on Z has infinite lower order. Thus

lim
r→∞
r∈E

logM(r, f)

n(r)
=∞

for any such f .
It is perhaps worth remarking that no results such as Theorems 1 and 2 are

possible for the ratio logM(r, f)/N(r) , where

N(r) =

∫ r

0

n(t)

t
dt

is the integrated counting function of value distribution theory. For in Bergweiler’s
examples in Theorem B, n(r)/N(r)→∞ as r →∞ and thus logM(r, f)/N(r)→
∞ for every entire f vanishing precisely on Z .

There is a vast literature concerning comparisons of the growth of logM(r, f)
for an entire function f to the distribution of its zeros. An excellent collection of
references appears in [2].

2. Preliminaries

The following lemma, used in the proof of Theorem 2, is due in its essential
form to Newman [8]. (See also [3].) We are indebted to J. Fournier for bringing the
lemma to our attention and for several helpful communications. For completeness
we include Fournier’s proof of the lemma in the precise form required for our
purposes.

Lemma 1. Suppose 0 < ε < 1 and that

P (θ) =

M∑

k=−M
cke

ikθ

is a real trigonometric polynomial with

(2.1) |ck| ≤
1

2

(
1

M + 1− ε− |k|

)
, 1 ≤ |k| ≤M,

and

(2.2) |c0| ≤
1

M + 1− ε .
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Then there exists a real trigonometric polynomial

Q(θ) =
L∑

k=−L
dke

ikθ

where L > M such that dk = ck for |k| ≤M and

‖Q‖∞ <
π

1− ε + ε.

Proof. Let

R(θ) =
−1∑

k=−M
cke

ikθ +
c0
2

and let bj = cj−M−1 for 1 ≤ j ≤ M and bM+1 = 1
2c0 . For 0 ≤ j ≤ M − 1, we

have by (2.1)

(2.3) |bj+1| = |cj−M | ≤
1

2

(
1

M + 1− ε+ j −M

)
<

1

2(1− ε)(j + 1)
.

From (2.2) we conclude

(2.4) |bM+1| =
|co|
2
≤ 1

2(M + 1− ε) <
1

2(1− ε)(M + 1)
.

We define a linear functional T : H1 → C by

T (f) = T

( ∞∑

j=0

ajz
j

)
=

M∑

j=0

ajbj+1.

By a theorem of Hardy [4, p. 48],

|T (f)| ≤
M∑

j=0

|aj |
∣∣bj+1

∣∣ ≤
M∑

j=0

|aj |
2(1− ε)(j + 1)

≤ π‖f‖1
2(1− ε) ,

where we have used (2.3) and (2.4). The Hahn–Banach theorem implies that T
extends to a bounded linear functional on L1[−π, π] with norm at most π/2(1−ε) ,
and thus there exists a function h on [−π, π] bounded by π/2(1− ε) such that

T (f) =
1

2π

∫ π

−π
f(θ)h(θ) dθ
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for all f ∈ H1 , where f(θ) = limr→1 f(reiθ) .
Letting f(θ) = ei(n−1)θ ∈ H1 for n ≥ 1, we get

T (f) =
1

2π

∫ π

−π
ei(n−1)θh(θ) dθ =

{
bn, 1 ≤ n ≤M + 1,

0, n > M + 1.

Taking conjugates we obtain

1

2π

∫ π

−π
e−inθH(θ) dθ =

{
bn, 1 ≤ n ≤M + 1,

0, n > M + 1,

where

H(θ) = eiθh(θ).

Setting H∗(θ) = e−i(M+1)θH(θ) , we have

(2.5)
1

2π

∫ π

−π
e−i(n−M−1)θH∗(θ) dθ =

{
bn, 1 ≤ n ≤M + 1,

0, n > M + 1.

Using cn−M−1 = bn for 1 ≤ n ≤M and 1
2co = bM+1 , we rewrite (2.5) as

(2.6)
1

2π

∫ π

−π
e−ikθH∗(θ) dθ =





ck, −M ≤ k ≤ −1,
1
2co, k = 0,

0, k > 0.

Clearly ‖H∗‖∞ = ‖h‖∞ ≤ π/2(1− ε) and we note by (2.6) that H∗ has the
same Fourier coefficients as does R for k ≥ −M . We set

G(θ) = H∗(θ) +H∗(θ).

Thus ‖G‖∞ ≤ π/(1 − ε) and G has the same Fourier coefficients as does P for
|k| ≤M .

For all integers k , let

Bk =
1

2π

∫ π

−π
e−ikθG(θ) dθ.

Consider the Lth Cesàro mean σL of G , i.e., let

σL(θ,G) =

L∑

k=−L

(
1− |k|

L+ 1

)
Bke

ikθ.
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Because Fejér’s kernel is positive, we have

‖σL‖∞ ≤ ‖G‖∞ <
π

1− ε .

Finally, set

Q(θ) = σL(θ,G) +

M∑

k=−M

|k|
L+ 1

cke
ikθ.

Since |ck| < 1/(1− ε) for |k| ≤M , we have

‖Q‖∞ ≤ ‖σL‖∞ +
M(M + 1)

(L+ 1)(1− ε) <
π

1− ε + ε

provided that L + 1 > M(M + 1)/ε(1 − ε) . Furthermore, for |k| ≤ M , since
Bk = ck , we see that

1

2π

∫ π

−π
e−ikθQ(θ) dθ = ck,

proving Lemma 1.

The following elementary growth lemma is used in the proof of Theorem 1.

Lemma 2. Suppose g: [0,∞)→ [0,∞) is a nondecreasing function continu-
ous from the right and suppose that 0 < α < limx→∞ g(x)/x . Then there exists
a nondecreasing sequence xj →∞ such that

g(x)− g(xj) ≤ α(x− xj), 0 ≤ x ≤ xj .

Proof. Let bj →∞ be an increasing sequence and let

xj = inf{x ≥ 0 : g(x) ≥ αx+ bj}.

Clearly xj is a well-defined sequence of real numbers such that xj+1 ≥ xj →∞ .
The continuity of g from the right ensures that g(xj) ≥ αxj + bj . The definition
of xj implies that

g(x) < αx+ bj , 0 ≤ x < xj ,

and hence

g(x)− g(xj) < α(x− xj), 0 ≤ x < xj ,

completing the proof of Lemma 2.
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The proofs of both Theorems 1 and 2 are based on an analysis of the Fourier
series of log |H(reiθ)| where H is entire. Suppose that H is entire with |H(0)| =
1. Suppose that H has zero sequence {zν} with due regard to multiplicity and
that |zν | 6= r for ν = 1, 2, 3, . . . . Let n(t) be the number of zeros of H counting
multiplicity of modulus no more than t . We write

log |H(reiθ)| =
∞∑

m=−∞
cm(r,H)eimθ,

where the Fourier coefficients, first studied by F. Nevanlinna [7] (see also [6]), are
given by the following formulas:

c0(r,H) = N(r) =

∫ r

0

n(t)

t
dt,(2.7)

cm(r,H) =
βm
2
rm +

1

2m

∑

|zν |<r

(
r

zν

)m
−
(
zν
r

)m
, m ≥ 1,(2.8)

where

(2.9) logH(z) =
∞∑

m=1

βmz
m

near 0 for some branch of the logarithm, and

c−m(r,H) = cm(r,H), m ≥ 1.

We collect certain estimates (see (2.14) and (2.15)) involving the Fourier series
of log |H(reiθ)| which are common to the proofs of Theorems 1 and 2. Suppose
zν 6= 0, zν →∞ , and H is the convergent product

(2.10) H(z) =

∞∏

ν=1

E

(
z

zν
, ν − 1

)
,

where we recall that the logarithm vanishing at z = 0 of the usual Weierstrass
factor E(z, p) is given by

(2.11) logE(z, p) = − z
p+1

p+ 1
− zp+2

p+ 2
− · · · , |z| < 1.

Suppose that H has no zero of modulus r . From (2.8), (2.9), and (2.11) we
conclude that if |zm| < r , then

(2.12) cm(r,H) =
1

2m

∑

ν>m
|zν |<r

(
r

zν

)m
− 1

2m

∑

|zν |<r

(
zν
r

)m
,
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and if |zm| > r then

(2.13) cm(r,H) = − 1

2m

∑

ν≤m
r<|zν |

(
r

zν

)m
− 1

2m

∑

|zν |<r

(
zν
r

)m
.

Since the modulus of each term on the right side of (2.13) is at most 1/2m and
there are at most m such terms, we see that if |zm| > r , then

(2.14) |cm(r,H)| ≤ 1
2 .

We now suppose that |zm| < r . Taking into account the possibility of H
having more than one zero of modulus |zm| , we see from (2.12) that

|cm(r,H)| ≤ 1

2m

∫ r

|zm|

((
r

t

)m
−
(
t

r

)m)
dn(t)

+
1

2m
(n(|zm|)−m)

((
r

|zm|

)m
−
( |zm|

r

)m)
+

1

2m

∑

ν≤m

( |zν |
r

)m
(2.15)

≤ 1

2

∫ r

|zm|

((
r

t

)m
+

(
t

r

)m)
n(t)

t
dt+

1

2
,

where we have used integration by parts and the fact that the summation in the
middle expression contains at most m terms, each of modulus no more than 1/2m .
A critical role in the proof of both of our theorems is played by (2.15).

3. Proof of Theorem 1

We first suppose 1 < µ < ∞ . With no loss of generality, we may presume
that |z1| > e , for multiplication of f by a polynomial leaves (1.3) unaffected. Let
ε in (0, 1) be such that (1 − ε)2µ > 1 + 2ε . With the convention log+ 0 = 0,
we apply Lemma 2 for t ≥ e with x = log log t , g(x) = log+ log+ n(ee

x

) , and
α = (1− ε)µ to conclude that there exists an increasing sequence r∗j such that

log+ log+ n(t)− log log n(r∗j ) ≤ (1− ε)µ(log log t− log log r∗j ), e ≤ t ≤ r∗j .

By continuity it is immediate that there exists rj > r∗j such that n(rj) = n(r∗j )
and

(3.1)
log+ log+ n(t)− log log(1 + ε)n(rj)

≤ (1− ε)µ(log log t− log log rj), e ≤ t ≤ rj .

We rearrange (3.1) to obtain

(3.2)
log+ n(t)

log(1 + ε)n(rj)
≤
(

log t

log rj

)(1−ε)µ
, e ≤ t ≤ rj .
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Hence

log+ n(t)

log t
≤
(

log t

log rj

)(1−ε)µ−1(
log(1 + ε)n(rj)

log rj

)
, e ≤ t ≤ rj ,

or

(3.3)
log+ n(t)

log t
≤ log(1 + ε)n(rj)

log rj
, e ≤ t ≤ rj .

To simplify notation, we define

(3.4) uj :=
log(1 + ε)n(rj)

log rj

and rewrite (3.3) as

(3.5) n(t) ≤ tuj , 0 ≤ t ≤ rj .

Since Z has infinite exponent of convergence we observe from (1.1) and (3.3) that
uj →∞ as j →∞ .

For a fixed α > 1, consider the function g(y) = yα − 1, 0 ≤ y ≤ 1. Clearly
g(0) = −1, g(1) = 0, and g is increasing and convex on (0, 1). If y0 in (0, 1) is
determined by yα−1

0 = 1− ε , then

g(y)− (−1)

y − 0
≤ g(y0)− (−1)

y0 − 0
= 1− ε, 0 < y < y0,

and
g(y)− 0

y − 1
≥ g(y0)− 0

y0 − 1
= αỹα−1

0 > α(1− ε), y0 < y < 1,

for some ỹ0 in (y0, 1).
Recalling that α = (1 − ε)µ > 1 and setting y = (log t)/ log rj , we conclude

that there exists r̃j in [1, rj) with log r̃j/ log rj = y0 such that

(3.6)

(
log t

log rj

)(1−ε)µ
< (1− ε) log t

log rj
, 1 < t < r̃j ,

and

(3.7)

(
log t

log rj

)(1−ε)µ
− 1 < (1− ε)2µ

(
log t

log rj
− 1

)
, r̃j < t < rj .
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From (3.2) and (3.6) we have

log+ n(t)

log(1 + ε)n(rj)
< (1− ε) log t

log rj
, e ≤ t < r̃j ,

or

(3.8) n(t) < t(1−ε)uj , 0 < t < r̃j .

From (3.2) we have

(3.9) log+ n(t)− log(1 + ε)n(rj) <
(
log(1 + ε)n(rj)

)(( log t

log rj

)(1−ε)µ
− 1

)
,

for e ≤ t ≤ rj . The combination of (3.7) and (3.9) yields

log n(t)− log(1 + ε)n(rj) < (1− ε)2µuj(log t− log rj), r̃j < t < rj ,

or

(3.10) n(t) < (1 + ε)n(rj)

(
t

rj

)(1−ε)2µuj

, r̃j < t < rj .

We define the entire function H by (2.10) and proceed to estimate |cm(rj , H)|
from above. First we note from (2.7), (3.4), and (3.5) that

(3.11)

|c0(rj , H)| =
∫ rj

0

n(t)

t
dt ≤

∫ rj

0

tuj−1 dt

=
r
uj
j

uj
=

(1 + ε)n(rj)

uj
= o
(
n(rj)

)
.

For |zm| > rj , i.e., for m > n(rj) , we have (2.14) with r = rj . Thus we
consider m such that |zm| < rj . First suppose m > (1 + ε)uj . From (2.15) and
(3.5) we have

(3.12)

|cm(rj , H)| ≤
∫ rj

|zm|

(
rj
t

)m
n(t)

t
dt+

1

2

≤ rmj
∫ rj

|zm|
tuj−m−1dt+

1

2
≤ rmj

{ |zm|uj−m
m− uj

+
1

2rmj

}

< rmj

{
1

εuj |zm|m(1−(1/(1+ε))
+

1

2rmj

}
.
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Writing

(3.13) cm(rj , H) = rmj βm(j), (1 + ε)uj < m ≤ n(rj),

we see from (3.12) that there exists δj → 0 such that

(3.14) |βm(j)|1/m < δj , (1 + ε)uj < m ≤ n(rj).

We now suppose that m ≤ [(1 + ε)uj ] . We have from (2.15) that

(3.15)

|cm(rj , H)| ≤ 1

2

∫ r̃j

|zm|

((
rj
t

)m
+

(
t

rj

)m)
n(t)

t
dt

+
1

2

∫ rj

r̃j

((
rj
t

)m
+

(
t

rj

)m)
n(t)

t
dt+

1

2

= cam(rj , H) + cbm(rj , H) + 1
2 ,

where of course the first term is omitted if |zm| ≥ r̃j . From (3.10) we have

cbm(rj , H) ≤ (1 + ε)n(rj)

2

∫ rj

r̃j

((
rj
t

)m
+

(
t

rj

)m)(
t

rj

)(1−ε)2µuj dt

t

≤ (1 + ε)n(rj)

2

(
1

(1− ε)2µuj −m
+

1

(1− ε)2µuj +m

)
.

Estimating the sums by the corresponding integrals we obtain for large j

(3.16)

[(1+ε)uj ]∑

m=1

cbm(rj , H) ≤ (1 + ε)n(rj)

2

(
1

(1− ε)2µuj + 1

+ log
(1− ε)2µuj + (1 + ε)uj
(1− ε)2µuj − (1 + 2ε)uj

)

≤ (1 + ε)n(rj)

2

(
log

(1− ε)2µ+ 1 + ε

(1− ε)2µ− (1 + 2ε)

)
+ o
(
n(rj)

)
.

By (3.15) we may write

(3.17) cm(rj , H) = cαm(rj , H) + cβm(rj , H)

where |cαm(rj , H)| ≤ cam(rj , H) and |cβm(rj , H)| ≤ cbm(rj , H) + 1
2 . Thus by (3.4)

and (3.16)

(3.18)

[(1+ε)uj ]∑

m=1

|cβm(rj , H)| ≤ (1 + ε)n(rj)

2
log

(
(1− ε)2µ+ 1 + ε

(1− ε)2µ− (1 + 2ε)

)
+ o
(
n(rj)

)
.
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We next consider cam(rj , H) for (1− 1
2ε)uj < m ≤ [(1 + ε)uj ] . Writing

(3.19) cam(rj , H) = rmj βm(j), (1− 1
2ε)uj < m ≤ [(1 + ε)uj ],

we have from (3.8) and (3.15) that

|βm(j)| ≤
∫ r̃j

|zm|

n(t)

tm+1
dt ≤

∫ r̃j

|zm|
t(1−ε)uj−m−1 dt

<
|zm|(1−ε)uj−m
m− (1− ε)uj

<
2

εuj |zm|m(1−(1−ε)/(1−ε/2))
.

Thus there exists εj → 0 such that

(3.20) |βm(j)|1/m < εj , (1− 1
2ε)uj < m ≤ [(1 + ε)uj ].

Finally, suppose m ≤ [(1 − 1
2ε)uj ] . Let m′ = [(1 − 1

4ε)uj ] . Using (3.4) and
(3.8) we have for large j

cam(rj , H) ≤
∫ r̃j

|zm|

(
rj
t

)m
n(t)

t
dt ≤

∫ r̃j

|zm|

(
rj
t

)m′
n(t)

t
dt

= rm
′

j

∫ r̃j

|zm|

n(t)

tm′+1
dt ≤ rm′j

∫ r̃j

|zm|
t(1−ε)uj−m

′−1 dt

< rm
′

j

∫ ∞

1

t(1−ε)uj−m
′−1 dt < rm

′
j

< (1 + ε)(1−ε/4)
(
n(rj)

)1−ε/4
.

Thus

(3.21)

[(1−ε/2)uj ]∑

m=1

cam(rj , H) < (1 + ε)(1−ε/4)
(
n(rj)

)1−ε/4
(1− 1

2ε)uj = o
(
n(rj)

)
.

From elementary considerations, because H has no zeros on |z| = rj , there
exists Mj > (1 + ε)uj such that

(3.22)
∑

|m|>Mj

|cm(rj , H)| < εn(rj).

We define κm(j) for (1− 1
2ε)uj < m ≤Mj by

(3.23) κm(j) =





−2cαm(rj , H)

rmj
,
(
1− 1

2ε
)
uj < m ≤ [(1 + ε)uj ],

−2cm(rj , H)

rmj
, (1 + ε)uj < m ≤Mj .
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From (2.14), (3.13), (3.14), (3.19), and (3.20) we note that there exists γj > 0
such that whether |zm| < rj or |zm| > rj ,

(3.24) |κm(j)|1/m < γj → 0, (1− 1
2ε)uj < m ≤Mj .

We consider a subsequence rjk such that

(3.25) ujk+1
> 2Mjk , 1 ≤ k <∞,

and

γjk+1
<

1

2rjk
, 1 ≤ k <∞,

ensuring by (3.24) that for k ≥ 1

(3.26) |κm(jp)| <
(

1

2rjk

)m
, (1− 1

2ε)ujp < m ≤Mjp , p > k.

We define

(3.27) Tj(z) =

Mj∑

m=1+[(1−ε/2)uj ]

κm(j)zm, T (z) =
∞∑

k=1

Tjk(z),

and note by (3.25) that the powers of z appearing in the various Tjk are distinct.
We also note by (3.24) that T is entire. We set

fk(z) = H(z)eTjk (z)

and
f(z) = H(z)eT (z).

From (2.7), (2.8), (3.17), (3.23), and (3.27) we see that
(3.28)

cm(rjk , fk) =





co(rjk , H), m = 0,

cαm(rjk , H) + cβm(rjk , H), 1 ≤ m ≤ [(1− 1
2ε)ujk ],

cβm(rjk , H), (1− 1
2ε)ujk < m ≤ [(1 + ε)uj ],

0, (1 + ε)ujk < m ≤Mjk ,

cm(rjk , H), m > Mjk .

From (3.11), (3.18), (3.21), (3.22), and (3.28) we see that
(3.29)
∞∑

m=−∞
|cm(rjk , fk)| < (1 + ε)n(rjk) log

(
(1− ε)2µ+ (1 + ε)

(1− ε)2µ− (1 + 2ε)

)
+
(
ε+ o(1)

)
n(rjk).
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Since |κm(jk)| < 1, it follows from (3.25) that

∥∥∥∥
∑

p<k

Tjp(rjke
iθ)

∥∥∥∥
∞
≤Mjk−1

r
Mjk−1

jk
< ( 1

2ujk)
(
(1 + ε)n(rjk)

)1/2
= o
(
n(rjk)

)
.

Also by (3.26) ∥∥∥∥
∑

p>k

Tjp(rjke
iθ)

∥∥∥∥
∞
≤

∑

m>Mjk

(rjk)m

(2rjk)m
< 1,

implying that

(3.30)

∥∥∥∥log

∣∣∣∣e
∑

p6=k Tjp (rjke
iθ)
∣∣∣∣
∥∥∥∥
∞

= o
(
n(rjk)

)
.

The combination of (3.29) and (3.30) yields

∥∥log |f(rjke
iθ)|
∥∥
∞ < (1 + ε)n(rjk) log

(
(1− ε)2µ+ 1 + ε

(1− ε)2µ− (1 + 2ε)

)
+
(
ε+ o(1)

)
n(rjk).

Letting ε→ 0+ , we obtain (1.3) for 1 < µ <∞ .
If µ =∞ , it is elementary from Lemma 2 that for every µ′ <∞ there exists a

sequence satisfying (3.1) with µ′ in place of µ . Thus the conclusion of Theorem 1
holds with µ′ in place of µ for every µ′ in (1,∞) , proving the theorem in the
case µ =∞ .

4. Proof of Theorem 2

In view of Theorem 1, we may restrict our attention to sequences Z for which
µ < 3

2 . With no loss of generality we may presume that |z1| > 1. Suppose
0 < ε < 1

3 .
Let mj be an increasing sequence of positive integers. Let

r∗j = inf

{
t ≥ |z1| :

log n(t)

log t
≥ mj + 1− ε

}
.

Because Z has infinite exponent of convergence, it is elementary that r∗j is a
nondecreasing sequence of real numbers tending to infinity. It is immediate that

(4.1) n(t) < tmj+1−ε, t < r∗j .

Because n(t) is continuous from the right, for each j there exists ν such that
|zν | = r∗j and

(4.2) n(r∗j ) ≥ (r∗j )mj+1−ε.
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We wish to focus on a sequence of circles containing no members of Z and
thus choose rj > r∗j such that n(rj) = n(r∗j ) and

(4.3)

(
rj
r∗j

)n(rj)

< 1 + ε.

For j ≥ 1 we define

r̃j = inf

{
t ≥ |z1| :

log n(t)

log t
≥ 1

2
(mj + 1− ε)

}
,

and note trivially that r̃j ≤ r∗j and

(4.4) n(t) < t(mj+1−ε)/2, t < r̃j .

Since log n(t) is continuous from the right, we see from the definition of r̃j that

log n(r̃j)

log r̃j
≥ mj + 1− ε

2
.

Since µ < 3
2 , for large j we have log n(r̃j) < (log r̃j)

3/2 and thus

(4.5)
log r̃j
mj

>
log r̃j

mj + 1− ε ≥
(log r̃j)

2

2 log n(r̃j)
>

(log r̃j)
1/2

2
→∞

as j →∞ .
We form the product (2.10) and now estimate |cm(rj , H)| . By (2.7), (4.1),

and (4.3) we have

(4.6) co(rj , H) =

∫ r∗j

0

n(t)

t
dt+

∫ rj

r∗
j

n(t)

t
dt <

(r∗j )mj+1−ε

mj + 1− ε + log(1 + ε).

We next suppose 1 ≤ m ≤ mj . We note from (4.2) for large j that n(rj) >
2mj > mj ≥ m and thus |zm| < rj . From (2.15), (4.1), and (4.3) we conclude

|cm(rj , H)| ≤ 1

2

∫ r∗j

|zm|

((
rj
t

)m
+

(
t

rj

)m)
n(t)

t
dt

+
1

2

∫ rj

r∗
j

((
rj
t

)m
+

(
t

rj

)m)
n(t)

t
dt+

1

2

<
(1 + ε)(r∗j )mj+1−ε

2

(
1

mj + 1− ε−m +
1

mj + 1− ε+m

)

+ (1 + ε) log(1 + ε) +
1

2
.
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We conclude for 1 ≤ m ≤ mj that there are expressions cαm(rj) and cβm(rj)
satisfying

cm(rj , H) = cαm(rj) + cβm(rj),(4.7)

|cαm(rj)| ≤
(1 + ε)(r∗j )mj+1−ε

2(mj + 1− ε−m)
,(4.8)

and

(4.9) |cβm(rj)| ≤
(1 + ε)(r∗j )mj+1−ε

2(mj + 1− ε+m)
+ 1.

We set cα−m(rj) = cαm(rj) for 1 ≤ m ≤ mj and also set cα0 (rj) = c0(rj , H) .

Now
mj∑

m=1

1

mj + 1− ε+m
< log 2,

and thus by (4.9) for large j

(4.10)

mj∑

m=1

|cβm(rj)| <
(1 + ε)(log 2)(r∗j )mj+1−ε

2
+mj

<
(1 + 2ε)(log 2)(r∗j )mj+1−ε

2
.

We now suppose mj < m ≤ n(rj) and note that |zm| < rj . From (2.15),
(4.1), (4.3), and (4.4) we have (with the omission of an obvious term if |zm| > r̃j)

(4.11)

|cm(rj , H)| ≤
∫ r̃j

|zm|

(
rj
t

)m
n(t)

t
dt+

∫ r∗J

r̃j

(
rj
t

)m
n(t)

t
dt

+

∫ rj

r∗
j

(
rj
t

)m
n(t)

t
dt+

1

2

<
rmj

|zm|m−(mj+1−ε)/2(m− 1
2 (mj + 1− ε)

)

+
rmj

r̃
m−mj−1+ε
j (m−mj − 1 + ε)

+ (1 + ε) log(1 + ε) + 1
2

= rmj
(
βam(j) + βbm(j) + βcm(j) + βdm(j)

)
.
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Trivially

(4.12)
(βcm(j) + βdm(j))1/m =

(
(1 + ε) log(1 + ε) + 1

2

)1/m
/rj

<
1

rj
→ 0, mj < m ≤ n(rj), j →∞.

Likewise for mj < m ≤ n(rj) we have for large j

(4.13)
(
βam(j)

)1/m
<

1

|zm|1−(mj+1−ε)/2m <
1

|zmj |1/4
→ 0

as j →∞ .
For mj < m ≤ n(rj) we have

βbm(j) ≤ 1

εr̃
m−mj−1+ε
j

and thus

(4.14) log
(
βbm(j)

)1/m ≤ − log ε

m
− m−mj − 1 + ε

m
log r̃j .

We consider two cases. If mj < m ≤ 2mj , then

(4.15) log
(
βbm(j)

)1/m
< − log ε

mj
− ε

2mj
log r̃j → −∞, j →∞,

by (4.5). For m > 2mj we have by (4.14)

(4.16)

log
(
βbm(j)

)1/m ≤ − log ε

m
+

(
−1 +

mj

m
+

1− ε
m

)
log r̃j

< − log ε

2mj
+

(
−1

2
+

1− ε
2mj

)
log r̃j → −∞, j →∞.

For m > mj , including those for which |zm| > rj , the combination of (2.14),
(4.11), (4.12), (4.13), (4.15), and (4.16) implies the existence of δj → 0 such that
if

(4.17) cm(rj , H) = βm(j)rmj ,

then

(4.18) |βm(j)|1/m < δj → 0, j →∞.
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Using (4.6) and (4.8) we apply Lemma 1 with M = mj to conclude for large
j that there exists a trigonometric polynomial Qj(θ) with

Qj(θ) =

Lj∑

m=−Lj
dm(rj)e

imθ,

where Lj > mj , such that

(4.19) dm(rj) = cαm(rj), |m| ≤ mj ,

and

(4.20) ‖Qj‖∞ <

(
π

1− ε + ε

)
(1 + ε)(r∗j )mj+1−ε.

We write

(4.21) dm(rj) = γm(rj)r
m
j , mj < m ≤ Lj ,

yielding by (4.20)

|γm(rj)| ≤
(

π

1− ε + ε

)
(1 + ε)r

mj+1−ε−m
j

and hence

log |γm(rj)|1/m ≤
log
(
π/(1− ε) + ε

)
+ log(1 + ε)

m
− m+ ε−mj − 1

m
log rj .

For mj < m ≤ min(Lj , 2mj) , we have

(4.22) log |γm(rj)|1/m <
log
(
π/(1− ε) + ε

)
+ log(1 + ε)

mj
− ε

2mj
log rj → −∞

as j →∞ by (4.5). If Lj > 2mj , for 2mj < m ≤ Lj we have
(4.23)

log |γm(rj)|1/m <
log
(
π/(1− ε) + ε

)
+ log(1 + ε)

2mj
+

(
−1

2
+

1− ε
2mj

)
log rj → −∞

as j → ∞ . Combining (4.22) and (4.23), we conclude there exists κj > 0 such
that

(4.24) |γm(rj)|1/m < κj → 0, mj < m ≤ Lj ,
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as j →∞ .
By elementary considerations, there exists Mj > Lj such that

(4.25)
∑

|m|>Mj

|cm(rj , H)| < εn(rj).

For mj < m ≤Mj , we define

(4.26) bm(j) =





−2cm(rj , H) + 2dm(rj)

rmj
, mj < m ≤ Lj ,

−2cm(rj , H)

rmj
, Lj < m ≤Mj .

From (4.17), (4.18), (4.21), and (4.24), we conclude that there exists ηj > 0 such
that

(4.27) |bm(j)|1/m < ηj → 0, mj < m ≤Mj , j →∞.

Let
Tj(z) =

∑

mj<m≤Mj

bm(j)zm

and
fj(z) = H(z)eTj(z).

By (2.8), (4.7), and (4.26)

(4.28) cm(rj , fj) =





co(rj , H) = cαo (rj), m = 0,

cαm(rj) + cβm(rj), 1 ≤ m ≤ mj ,

dm(rj), mj < m ≤ Lj ,
0, Lj < m ≤Mj ,

cm(rj , H), m > Mj .

We also of course have c−m(rj , fj) = cm(rj , fj) for m ≥ 1.
From (4.2), (4.10), (4.19), (4.20), (4.25), and (4.28), we have for all θ in

[−π, π] and large j that

(4.29)

∣∣log |fj(rjeiθ)|
∣∣ ≤

∣∣∣∣
∑

|m|≤Lj
dm(rj)e

imθ

∣∣∣∣

+
∑

1≤|m|≤mj
|cβm(rj)|+

∑

|m|>Mj

|cm(rj , H)|

<

(
π

1− ε + ε

)
(1 + ε)n(rj) + (log 2 + 3ε)n(rj).
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We consider a subsequence mjk satisfying

(4.30) mjk+1
> Mjk , k ≥ 1,

and

(4.31) |bm(jp)| <
(

1

2rjk

)m
, k ≥ 1, p ≥ k + 1, mjp < m ≤Mjp ,

where we have used (4.27).
We set

T (z) =
∞∑

k=1

Tjk(z),

and note by (4.30) that the powers of z in the various Tjk are distinct. From (4.27)
we see that T is entire and from (4.31) it follows that the Maclaurin coefficients
of T have modulus less than 1. Thus by (4.2), (4.3), and the fact that µ < 3

2 , for
−π ≤ θ ≤ π and large k we have

(4.32)
k−1∑

p=1

|Tjp(rjke
iθ)| ≤Mjk−1

r
Mjk−1

jk
< mjkr

mjk
jk

< εn(rjk).

From (4.31) we have for −π ≤ θ ≤ π that

(4.33)

∣∣∣∣
∑

p>k

Tjp(rjke
iθ)

∣∣∣∣ ≤
∞∑

p=k+1

∑

mjp<m≤Mjp

|bm(jp)|rmjk

≤
∞∑

p=k+1

∑

mjp<m≤Mjp

(
1

2

)m
< 1.

We set
f(z) = H(z)eT (z)

and note by (4.32) and (4.33) for large k and −π ≤ θ ≤ π that

∣∣log |f(rjke
iθ)| − log |fjk(rjke

iθ)|
∣∣ < εn(rjk) + 1.

We conclude by (4.29) that for large k

∥∥log |f(rjke
iθ)|
∥∥
∞ <

((
π

1− ε + ε

)
(1 + ε) + log 2 + 5ε

)
n(rjk).

Since ε in (0, 1
3 ) is arbitrary, we obtain the conclusion of Theorem 2.
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