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Abstract. We show that for any K -quasiconformal map of the upper half plane to itself
and any ε > 0 , there is a (K + ε) -quasiconformal map of the half plane with the same boundary
values which is also biLipschitz with respect to the hyperbolic metric.

1. Introduction

If f is a K -quasiconformal map of the upper half space, H , to itself, then it
is well known that one can find a quasiconformal g: H→ H which agrees with f
on the real line and which is also biLipschitz with respect to the hyperbolic metric.
Moreover, the quasiconformal constant of g can be bounded in terms of K (e.g.,
[1], [5]). The purpose of this note is to show that the quasiconformal constant of
g may be taken as close to K as we wish.

Theorem 1.1. Given K < ∞ and ε > 0 , there is a C < ∞ so that if f
is a K -quasiconformal map of the upper half-plane H to itself, then there is a
(K + ε) -quasiconformal map g: H → H which is C -biLipschitz with respect to
the hyperbolic metric on H and which agrees with f on R = ∂H .

One cannot take ε = 0 in this result. A K -quasiconformal self-map of the
upper half-plane is called uniquely extremal if it is the only K -quasiconformal
extension of its boundary values. If the result above held with ε = 0 then every
uniquely extremal map would be hyperbolically biLipschitz with constant depend-
ing only on K . But Theorem 11 of [4] implies that any K -quasiconformal map
can be uniformly approximated by K -quasiconformal uniquely extremal maps.
Since not every quasiconformal map is hyperbolically biLipschitz, neither can ev-
ery uniquely extremal map, and hence the result above cannot hold for ε = 0. I
thank V. Marković for showing this argument to me.

Theorem 1.1 arose from [3]. That paper considered finding the best constant in
a theorem of Dennis Sullivan involving quasiconformal maps from a plane domain
Ω to the disk and the question arises of whether the best constant is the same if we
also require these maps to be biLipschitz with respect to the hyperbolic metrics.
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Theorem 1.1 shows that this is the case. I thank Al Marden for his comments
on [3] which led me to formulate and prove the result.

Now, we sketch the proof of Theorem 1.1, leaving certain estimates to be
proven later. We start by factoring f = fn ◦ · · · ◦ f1 as a composition of n
maps, each with quasiconformal constant K1/n ≈ 1 + logK/n (Lemma 2.1). If
µj = (fj)z̄/(fj)z is the Beltrami coefficient associated to fj , then we smooth µj
out to get a new Beltrami coefficient µ̃j , by convolving with a smooth, radial bump
function with respect to the hyperbolic metric in H which is supported in a disk
of hyperbolic radius δ (and similarly for the lower half-plane). We will show that
‖µ̃j‖∞ ≤ ‖µj‖∞(1 +Cδ2) (Corollary 2.8) and so the corresponding map, denoted

f̃j , is quasiconformal with constant K1/n(1+C logKδ2/n) . We will also show f̃j is
biLipschitz for the hyperbolic metric with constant 1+C logK/δn (Lemma 2.12).
Although f̃j might not equal fj on the boundary, we shall show that gj = fj ◦
f̃−1
j is quasisymmetric with constant 1 + C(logK/n)2 , independent of δ , if n

is large enough (Corollary 2.11). Thus gj can be extended to a quasiconformal
mapping (also denoted gj ) of the plane which is quasiconformal and hyperbolically
biLipschitz both with constant 1 + C(logK/n)2 (Lemma 2.3). Thus the map
Gn = (gn ◦ f̃n) ◦ · · · ◦ (g1 ◦ f̃1) agrees with f on the boundary, has quasiconformal
constant

Kn =
[
K1/n(1 + C logKδ2/n)

(
1 + C(logK/n)2

)]n
= K1+Cδ2(

1 +O(1/n)
)
,

and biLipschitz constant

Bn =
[(

1 + C logK/(nδ)
)(

1 + C(logK/n)2
)]n

= KC/δ
(
1 +O(1/n)

)
.

Taking n large enough and δ small enough, we can make Kn as close to K as we
wish. This proves the theorem, except for proving the lemmas mentioned above.
Throughout the paper C will denote a generic constant which may be different at
different places. We will use subscripts when it is important to recall a particular
value.

I thank the referee for a most careful reading of the paper and numerous
comments, corrections and suggestions which greatly improved it.

2. Proof of the lemmas

Most of the facts we need are proven in Ahlfors’ book [1]. In several cases we
need a result with a sharper estimate than is stated there, so we give the necessary
argument. We begin with some notation.

We let Br = B(0, r) ⊂ C and define

‖f‖p,r =

(∫

Br

|f |p dx dx
)1/p

;

P denotes the Cauchy transform

(1) Ph(w) =
−1

π

∫
h(z)

(
1

z − w −
1

z

)
dx dy,
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and T denotes the Beurling transform

Th(w) = − 1

π
lim
ε→0

∫

|z−w|>ε

h(w)

(z − w)2
dx dy,

which is known to be bounded on Lp with norm Kp for each 1 < p < ∞ .
Moreover, Kp → 1 as p → 2 and for any k < 1, we define k(p) > 2 so that
kKp < 1 for 2 ≤ p ≤ k(p) .

Given a measurable function µ on the plane with ‖µ‖∞ ≤ k < 1, there is a
K -quasiconformal map (with K = (k + 1)/(k − 1)) of the plane to itself which
satisfies the Beltrami equation fz̄ = µfz . We may normalize so that 0, 1,∞ are
fixed points of the map and call this solution fµ . If µ has compact support
then we may also normalize so that f(0) = 0 and fz − 1 ∈ Lp for some p > 2
(depending on k ). This solution will be denoted Fµ .

Lemma 2.1. If f is a K -quasiconformal mapping of the plane then we can
write f = fn ◦ · · · ◦ f1 where each map is K1/n -quasiconformal.

For a proof, see page 99 of Ahlfors’ book [1]. A map h: R → R is called
k -quasisymmetric if

1

k
≤ h(x+ t)− h(x)

h(x)− h(x− t) ≤ k.

The following are standard results.

Lemma 2.2. Suppose f is a K -quasiconformal map of the plane to itself
which maps H to itself. Then the restriction to R is a k -quasisymmetric map
for some k depending only on K . There is a K0 > 1 and a C0 < ∞ , so that if
K = 1 + ε ≤ K0 then we may take k ≤ 1 + C0ε .

The first part is Theorem 1 of Chapter IV of [1]. The small constant case is
proven in [2].

Lemma 2.3. Suppose f : R → R is a k -quasisymmetric map. Then f has
an extension to a K -quasiconformal mapping of H to itself which is K -biLipschitz
with respect to the hyperbolic metric, where K depends only on k . There is a
k1 > 1 and C1 <∞ so that if k = 1 + ε ≤ k1 , then we may take K ≤ 1 + C1ε .

Proof. The first part is in Chapter IV of [1]. To prove the small constant
case, associate to each dyadic interval I = [j2−n, (j + 1)2−n] = [a, b] on the line
the “Whitney box” QI = I × [2−n−1, 2−n] in the upper half plane. Think of this
a pentagon with the five vertices

(a, |I|), (b, |I|), (b, 1
2 |I|), ( 1

2 (a+ b), 1
2 |I|), (a, 1

2 |I|).

To each dyadic interval I = [a, b] we define the point zI = (a, |I|) (the “upper left
corner” of the Whitney box QI ) and define the extension f at the point zI by

f(zI) =
(
f(j2−n), |f(I)|

)
.
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This defines f at every vertex of every Whitney box and we may extend it into
the boxes in a piecewise linear way if k is close enough to 1. It is easy to check
from the definition of quasisymmetry that the image of QI is a five sided polygon
with angles and side lengths differing only O(ε) from those of Q , and this proves
the result.

Recall from page 99 of [1] that if µ satisfies the symmetry condition µ(z̄) =
µ(z) then the corresponding map fµ maps the real line into itself. From now on,
we will assume we are dealing with such maps.

Lemma 2.4. Given α < 1 , R < ∞ , there is a k < 1 and a constant
C2 = C2(α,R) < ∞ so that the following holds. Suppose ‖µ‖∞ ≤ k < 1 and µ
is supported in the ball BR = {z : |z| < R} and that µ(z̄) = µ(z) . Then for any
point z ∈ BR ,

|Fµ(z)− z| ≤ C2‖µ‖∞|z|α

and for any z ∈ B1 ,
1

C2
|z|1/α ≤ |Fµ(z)| ≤ C2|z|α.

Proof. Equation (10) of Section V.B of [1] implies that

(2) |Fµ(z1)− Fµ(z2)| ≤ C(k,R)‖µ‖∞|z1 − z2|α + |z1 − z2|,
for some α < 1 which depends only on k and such that α → 1 as k → 0 (one
may take α = 1 − 2/p where p is such that kKp < 1 with Kp the norm of the
Beurling transform T on Lp , p > 2). Applying this to z2 = 0 for both Fµ and
its inverse clearly implies the second estimate, so we need only prove the first.

If we apply (2) to z1 = 0 and z2 = x ∈ [−R,R] and set ε = ‖µ‖∞|z|α , we
see that

|Fµ(x)| ≤ C(k,R)ε+ |x| ≤ |x|+ Cε.

Since Fµ is an orientation preserving homeomorphism on R , and applying the
same argument to the inverse map, we get |Fµ(x)− x| ≤ Cε , as desired.

Now consider a point z = x + iy ∈ BR ∩ H . The estimate above implies
|Fµ(z)| ≤ |z|+ Cε . Considering the inverse map shows

−Cε ≤ |Fµ(z)| − |z| ≤ Cε.
Let t = |z|(x/|x|) . As above, we can deduce

−Cε ≤ |Fµ(z)− Fµ(t)| − |z − t| ≤ Cε,
and hence by the previous paragraph,

−2Cε ≤ |Fµ(z)− t| − |z − t| ≤ 2Cε.

Since the circles {w : |w| = |z|} and {w : |w − t| = |z − t|} intersect at an angle
which is bounded away from zero, we see that the 2Cε neighborhoods of these
circles in H intersect in a set of diameter at most 20Cε and this intersection
contains both z and Fµ(z) . This proves the lemma.
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Lemma 2.5. If k < 1 is small enough then there is a constant C3 = C3(k)
so that the following holds. Suppose ‖µ‖∞ ≤ k < 1 . Then

‖fµz − 1‖p,1 ≡
(∫

B1

|fµz − 1|p dx dy
)1/p

≤ C3‖µ‖∞

for all 2 ≤ p ≤ p(k) .

Proof. This is the Lemma in Section V.C of [1], although the statement there
only claims that ‖fµz − 1‖p → 0 as ‖µ‖∞ → 0. We sketch the proof making the
necessary changes.

First assume µ is supported in BR and let ε = ‖µ‖∞ . It is proven on page 100
of [1] that ‖Fµz − 1‖p ≤ C‖µ‖p ≤ CεR2/p if p < p(k) . Since fµ = Fµ/Fµ(1),
Lemma 2.4 implies

‖fµz − 1‖p,1 =

∥∥∥∥
Fµz
Fµ(1)

− 1

∥∥∥∥
p,1

=

∣∣∣∣1−
1

Fµ(1)

∣∣∣∣+
1

Fµ(1)
‖Fµz − 1‖p,1

≤ 2C2ε+
C(R)

1− Cεε ≤ Cε.

Now write f̌(z) = 1/f(1/z) . We want to show

(3) ‖f̌µz − 1‖p,R ≤ C(R)ε,

when µ has support in BR . Just as above, it suffices to show ‖F̌µz − 1‖p,R ≤ Cε .
Note that F̌µ is analytic on {z : |z| < 3r} where r = 1/(3R) . For an analytic
function f on a ball B(x, r) it is easy to see by the mean value property and
Hölder’s inequality that

|f(x)| ≤ 1

πr2

∫

B(x,r)

|f | ≤ 1

(πr2)1/p
‖f‖Lp(B(x,r)).

Thus by the maximum principle,∫

|z|<r
|F̌µz (z)− 1|p dx dy ≤ C(r) sup

|z|=2r

|F̌µz (z)− 1|p

≤ C(r)

∫

r<|z|<3r

|F̌µz (z)− 1|p dx dy.

On the other hand, changing variables from z to 1/z gives
∫

r<|z|<R
|F̌µz (z)− 1|p dx dy =

∫

1/R<|z|<1/r

∣∣∣∣
z2Fµz (z)

Fµ(z)2
− 1

∣∣∣∣
p
dx dy

|z|4

=

∫

1/R<|z|<1/r

∣∣∣∣
z2
(
Fµz (z)− 1

)

Fµ(z)2
+
z2 − Fµ(z)2

Fµ(z)2

∣∣∣∣
p
dx dy

|z|4

≤ C
∫

1/R<|z|<1/r

∣∣∣∣
z2
(
Fµz (z)− 1

)

Fµ(z)2

∣∣∣∣
p

+

∣∣∣∣
z2 − Fµ(z)2

Fµ(z)2

∣∣∣∣
p
dx dy

|z|4

≤ C(R)

∫

1/R<|z|<1/r

|Fµz (z)− 1|p dx dy + C(R)

∫

1/R<|z|<1/r

|z − Fµ(z)|p dx dy

≤ C(R)εp.
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Since the integral over {|z| < 3r} was dominated by a constant (depending only
on R) times this estimate, we have proven (3).

The general case now follows just as in [1]. Write f = ǧ ◦ h where µh = µf
inside the unit disk and µh = 0 outside the unit disk. Then

‖fz − 1‖p,1 ≤
∥∥[(ǧz − 1) ◦ h

]
hz
∥∥
p,1

+ ‖hz − 1‖p,1.

The second term is bounded by Cε by the first paragraph and the first term is
bounded using

∥∥[(ǧz − 1) ◦ h
]
hz
∥∥p
p,1

=

∫

B1

|(ǧz − 1) ◦ h|p|hz|p dx dy

≤ 1

1− k2

∫

h(B1)

|ǧz − 1|p|hz ◦ h−1|p−2 dx dy

≤ 1

1− k2

(∫

h(B1)

|ǧz − 1|2p dx dy
∫

B1

|hz|2p−4 dx dy

)1/2

Clearly h(B1) ⊂ {|z| < R} for some R depending only on k . Thus using (3), the
first integral is bounded by

∫

BR

|ǧz − 1|2p dx dy ≤ Cε2p,

(assuming 2p < p(k) ; but since p(k)→∞ as k → 0 this holds for some p > 2 if
k is small enough). On the other hand

∫

B1

|hz|2p−4 dx dy ≤ C
(∫

B1

|hz|2p dx dy
)1−2/p

≤ ‖µh‖p,1 + ‖1‖p,1 ≤ C,

since ‖hz − 1‖p ≤ C‖µh‖p .

Lemma 2.6. There is a 0 < k < 1 and a C4 <∞ so that the following holds.
Suppose that f is a quasiconformal mapping of the plane to itself which preserves
H , fixing 0 , 1 and ∞ and the Beltrami coefficient of f is µ with ‖µ‖∞ ≤ k .
Then ∣∣∣∣f(w)−

[
w − 1

π

∫

C

µ(z)R(z, w) dx dy

]∣∣∣∣ ≤ C4‖µ‖2∞,

for all |w| ≤ 1 , where

R(z, w) =
1

z − w −
w

z − 1
+
w − 1

z
=

w(w − 1)

z(z − 1)(z − w)
.

Proof. Again, we follow the proof in [1, Section V.C], simply inserting more
explicit estimates at a few points. It is shown there that

f(w) = w − 1

π

∫

B1

fz̄(z)R(z, w) dx dy − 1

π

∫

B1

f̌z̄(z)

f̌(z)2
zS(z, w) dx dy,
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where

S(z, w) =
w2

1− wz −
w

1− z
and as before f̌(z) = 1/f(1/z) . Using fz̄ = µfz = µ+µ(fz − 1), the first integral
equals

∫

B1

µ(z)R(z, w) dx dy +

∫

B1

µ(z)
(
fz(z)− 1

)
R(z, w) dx dy

=

∫
µ(z)R(z, w) dx dy +O

(
‖µ‖∞‖fz − 1‖p,1‖R‖q,1

)

=

∫
µ(z)R(z, w) dx dy +O(‖µ‖2∞),

by Lemma 2.5 and the fact that R ∈ Lq , for every q < 2 (with a bound depending
on q , but not on w for |w| ≤ 1).

The second integral is estimated by writing f̌z̄ = µ̌+ µ̌(f̌z − 1) where µ̌(z) =
(z/z̄)2µ(1/z) . Repeating the argument above shows the second integral is equal
to

∫

B1

µ̌(z)

f̌(z)2
+
µ̌(z)

(
f̌z(z)− 1

)

f̌(z)2
zS(z, w) dx dy

=

∫

B1

µ

(
1

z

)[
1

z̄2
+
z2 − f̌(z)2

z̄2f̌(z)2

]
zS(z, w) dx dy +

∫

B1

µ̌(f̌z − 1)

f̌(z)2
zS(z, w) dx dy

=

∫

B1

µ

(
1

z

)
1

z̄2
zS(z, w) dx dy + I + II.

Using Lemma 2.4, we see

1

C
|z|1/α ≤ |f̌(z)| ≤ C|z|α, |z − f̌(z)| ≤ C‖µ‖∞|z|α,

so we can estimate I by

I ≤
∣∣∣∣
∫

B1

µ(1/z)
z2 − f̌(z)2

z̄2f̌(z)2
zS(z, w) dx dy

∣∣∣∣

≤ C‖µ‖2∞
∫

B1

|z|2α−1−2/αS(z, w) dx dy ≤ C‖µ‖2∞C(α),

if 2α− 1− 2/α > −2 (recall that we may take α as close to 1 as we wish, if k is
small enough). To estimate II , note that for 1/p+ 1/q = 1. Lemma 2.5 implies

II =

∫

B1

µ̌(z)
(
f̌z(z)− 1

)

f̌(z)2
zS(z, w) dx dy ≤ C‖µ‖∞‖f̌z − 1‖p

∥∥∥∥
zS(z, w)

f̌(z)2

∥∥∥∥
q

≤ ‖µ‖2∞‖z1−2/αS(z, w)‖q.
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Fix some q < 2, and take k so small that α > 2q/(2 + q) , which implies the Lq

norm is finite (with bound depending only on α , hence only on k ). Thus,

f(w) = w − 1

π

∫

B1

µ(z)R(z, w) dx dy − 1

π

∫

B1

µ

(
1

z

)
1

z̄2
zS(z, w) dx dy +O(‖µ‖2∞).

Changing variables from z to 1/z in the second integral converts the integrand
to the same form as the first (but now over {|z| > 1}). Hence,

f(w) = w − 1

π

∫

R2

µ(z)R(z, w) dx dy +O(‖µ‖2∞),

as desired.

Lemma 2.7. There is a δ0 > 0 and a C5 <∞ such that the following holds.
Suppose 0 < δ ≤ δ0 and that ϕ is a decreasing continuous function of compact
support on [0, δ) . Then

∫

H

ϕ
(
ρ(z, i)

) dx dy
y2

≤
∫

H

ϕ
(
ρ(z, i)

)
dx dy ≤ (1 + C5δ

2)

∫

H

ϕ
(
ρ(z, i)

) dx dy
y2

.

Proof. If we can prove this when ϕ(t) = χ[0,s](t) , 0 < s ≤ δ , is the character-
istic function of an interval, then by linearity it holds for decreasing step functions.
By passing to uniform limits it holds for all decreasing continuous functions of com-
pact support. Thus it suffices to prove that if H(s) denotes the hyperbolic area of
a hyperbolic ball B ⊂ H is a hyperbolic ball of radius s centered at i , and E(s)
is its Euclidean area, then H(s) ≤ E(s) ≤ (1 + Cδ2)H(s) .

Considering where B hits the imaginary axis, and using dρ = |dz|/y , it is
easy to see the Euclidean diameter of B is (1/y) − y where y = e−s and hence
its Euclidean area is

E(s) =
π

4

(
1

y
− y
)2

=
π

4
(es − e−s)2 = π

(
s2 +

1

3
s4 +O(s6)

)
.

To compute the hyperbolic area we move to the disk and assume B is a hyperbolic
ball of radius s centered at the origin. Since dρ = 2|dz|/(1−|z|2) , we see that the
Euclidean radius of B is r = (es − 1)/(es + 1). Thus the hyperbolic area of B is

H(s) = 4

∫ 2π

0

∫ r

0

t

(1− t2)2
dt dθ = 8π

∫ r2

0

1

(1− u)2

du

2

= 4π
r2

1− r2
= π(es − 2 + e−s) = π

(
s2 +

s4

12
+O(s6)

)
,

and hence
E(s)

H(s)
=

s2 + 1
3s

4 +O(s6)

s2 + 1
12s

4 +O(s6)
= 1 +

1

4
s2 +O(s4),
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which proves the lemma.
Now suppose f is a K -quasiconformal selfmap of H which fixes 0, 1 and ∞ .

Let µ = µf be the associated symmetric Beltrami coefficient. Given a 0 < δ < 1,
choose a ϕ on [0, δ] so that ϕ(z, i) = ϕ

(
ρ(z, i)

)
is a smooth, positive function and∫

H

ϕ(z, i)
dx dy

y2
= 1.

This can clearly be done so that ϕ also satisfies

|ϕ| ≤ C

δ2
, |ϕ′| ≤ C

δ3
,

for some C <∞ which is independent of δ . Suppose z = x+ iy and define

ψ(z, w) =
1

y2
ϕ
(
ρ(z, w)

)
.

If w = u+ iv then a simple linear change of variables shows∫

H

ψ(z, w) dx dy =

∫

H

ϕ(z, i)
dx dy

y2
= 1,

∫

H

ψ(z, w) du dv =

∫

H

ϕ(i, w) du dv ≤ 1 + Cδ2.

Now for y > 0, define

µ̃(z) =

∫

H

µ(w)ψ(z, w) dw,

and symmetrically for y < 0.

Corollary 2.8. With µ and µ̃ as above, ‖µ̃‖∞ ≤ ‖µ‖∞(1 + C6δ
2) .

This is immediate from the preceding remarks. Also note for later

Lemma 2.9. µ̃ is a smooth function off R with

|∇µ̃(x+ iy)| ≤ ‖µ‖∞
C

δ

1

|y| .

Proof. To prove this, let z1 = x1 + iy1 , z2 = x2 + iy2 , ε = |z1 − z2| and
assume, without loss of generality, that y1 ≤ y2 and ε < δy1 . Then (as a function
of w ) |ψ(z1, w) − ψ(z2, w)| is supported on a hyperbolic 3δ ball B around z1

(and hence has Euclidean area ≤ Cδ2y2
1 ). Hence

|µ̃(z1)− µ̃(z2)| ≤ ‖µ‖∞
∫

H

|ψ(z1, w)− ψ(z2, w)| dw

= ‖µ‖∞
∫

H

|y−2
1 ϕ(z1, w)− y−2

2 ϕ(z2, w)| dw

≤ ‖µ‖∞
[∫

B

y−2
1 |ϕ(z1, w)− ϕ(z2, w)| dw +

∫

B

|y−2
1 − y−2

2 |ϕ(z2, w) dw

]

≤ ‖µ‖∞
[
Cεδ−3y−1

1

∫

B

y−2
1 dw + Cδ−2

∫

B

εy−3
1 dw

]

≤ ‖µ‖∞
[
Cεδ−1y−1

1 + Cεy−1
1

]
.

Dividing by ε = |z1 − z2| gives the desired estimate.
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Let f̃ = f µ̃ be the quasiconformal map with Beltrami coefficient µ̃ which
fixes 0, 1,∞ .

Lemma 2.10. There is a 0 < k < 1 and C7 <∞ so that the following holds.
Suppose f is a K -quasiconformal selfmap of H with ‖µ‖∞ ≤ k < 1 and let f̃ be
the map obtained by smoothing µ = µf as above. Then

(4) max
x∈[0,1]

|f(x)− f̃(x)| ≤ C7‖µ‖2∞.

Proof. To prove (4) we use Lemma 2.6. The main point is that for a fixed
w ∈ R , R(z, w) is analytic in z (off the real line) and hence harmonic. In 2
dimensions, Euclidean harmonic functions are the same as hyperbolically harmonic
functions (e.g. [6]). Thus R is hyperbolically harmonic and thus satisfies the mean
value property with respect to averaging over hyperbolic balls. Thus if ζ ∈ [0, 1] ,

∫

H

R(z, ζ)ψ(z, w) dx dy =

∫

H

R(z, ζ)ϕ
(
ρ(z, w)

) dx dy
y2

= R(w, ζ).

Hence
∫

H

µ̃(z)R(z, ζ) dx dy =

∫

H

[∫

H

µ(w)ψ(z, w) du dv

]
R(z, ζ) dx dy

=

∫

H

µ(w)

[∫

H

R(z, ζ)ψ(z, w) dx dy

]
du dv =

∫

H

µ(w)R(w, ζ) du dv.

Thus if we apply Lemma 2.6 to both f and f̃ , the integral terms are identical
and hence cancel, giving

|f(ζ)− f̃(ζ)| ≤ 2C4‖µ‖2∞,
for all ζ ∈ [0, 1] .

Corollary 2.11. With f and f̃ as above, g = f ◦ f̃−1 is (1 + C8‖µ‖2∞) -
quasisymmetric on the real line.

Proof. For any two real numbers a < b , we want to estimate

g(b)− g
(

1
2 (a+ b)

)

g
(

1
2 (a+ b)

)
− g(a)

.

After re-normalizing by linear maps, we may as well assume a = g(a) = 0 and
b = g(b) = 1, so we want to show

1

1 + C‖µ‖2∞
≤ 1− g( 1

2 )

g( 1
2 )− 0

≤ 1 + C‖µ‖2∞.

Thus it is enough to show that

|g( 1
2 )− 1

2 | =
∣∣f
(
f̃−1( 1

2 )
)
− 1

2

∣∣ = O(‖µ‖2∞).

This follows by taking x = f̃−1( 1
2 ) in (4).
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Lemma 2.12. There is a 0 < k < 1 and a C9 < ∞ so that the follow-
ing holds. Suppose f is a quasiconformal map of H to itself and its Beltrami
coefficient µ satisfies ‖µ‖∞ ≤ ε ≤ k and

|∇µ(x+ iy)| ≤M ε

y
.

Then f is (1 + C9Mε) -biLipschitz with respect to the hyperbolic metric.

Proof. Since the inverse of f satisfies the same hypotheses, it suffices to show
f is Lipschitz. Also, after rescaling by linear maps, we may just give a Lipschitz
estimate at i .

Write f = g ◦ h where on H we have µh = µf on B1 = B(i, 1
4 ) , µh = 0

off B2 = B(i, 1
2 ) and |∇µh(x + iy)| ≤ 2Mε/y (and symmetrically on the lower

half-plane). Thus g is analytic on h(B1) , which contains a ball B3 of fixed radius
(depending only on k ) around h(i) . Thus by the mean value theorem for analytic
functions

∣∣gz
(
h(i)

)∣∣ ≤ 1

|B3|

∫

B3

|gz| dx dy ≤ 1 + C

∫

B3

|gz − 1| dx dy ≤ 1 + C‖µ‖∞,

by Lemma 2.5.
To estimate the Lipschitz constant for h , we follow the proof from [1, Lemma 3,

Section V.B] that continuity of µ implies differentiability of h . It is shown there
that hz = λ = eσ and hz̄ = µλ = µeσ , with

(5) σ = P
(
µhv + (µh)z

)
+K,

where P denotes the Cauchy transform, K is a constant chosen so that σ(w)→ 0
as w → ∞ and v satisfies v = T (µhv) + T

(
(µh)z

)
, where T is the Beurling

transform. Since µh and (µh)z are in every Lp , p < ∞ , this equation can be
solved via the geometric series

v = T
(
(µh)z

)
+ T

(
µT
(
(µh)z

)
+ TµT

(
µT
(
(µh)z

)
+ . . . ,

and v satisfies

‖v‖p ≤
C‖(µh)z‖p

1− C‖µh‖∞
.

Thus if 1/p+ 1/q = 1, p > 2,

|σ| ≤
(∥∥∥∥

1

z − w

∥∥∥∥
q

+

∥∥∥∥
1

z

∥∥∥∥
q

)(
‖µv‖p + ‖(µh)z‖p

)
≤ Cq(ε‖v‖p + CMε) ≤ CMε.

Thus
|hz| ≤ eσ ≤ 1 + CMε,
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and similarly for |hz̄| = |µhhz| ≤ CMε .
Finally we have to estimate K in (5). Taking w →∞ in (1), we see that

K =
1

π

∫ (
µhv + (µh)z

) dx dy
z

.

Hence, using the same estimates as above, we get

|K| ≤
∥∥∥∥

1

z

∥∥∥∥
q

‖µh‖∞‖v‖p +

∥∥∥∥
1

z

∥∥∥∥
q

‖(µh)z‖p ≤ Cε.

This proves the desired estimate.

We have now proven all the estimates used in the proof of Theorem 1.1, so
the result is established.
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