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Abstract. For transcendental meromorphic solutions of the fourth Painlevé equation, we
estimate deficiencies of small functions. For every rational solution, we find all the transcendental
meromorphic solutions whose solution curves do not intersect that of the rational solution.

1. Introduction

Consider the fourth Painlevé equation

(IV) ww′′ =
(w′)2

2
+

3

2
w4 + 4zw3 + 2(z2 − α)w2 + β

(′= d/dz), where α and β are complex parameters. N. Steinmetz [15] examined
value distribution properties of solutions meromorphic in C . For an arbitrary
transcendental meromorphic solution φ(z) of (IV), the deficiency of a complex
number a ∈ C is estimated as follows:

Theorem A ([15; Sätze 1 und 2]). (1) If (β, a) 6= (0, 0) , then δ(a, φ) = 0 .
(2) If β = 0 and if φ(z) does not satisfy the Riccati equation w′ = ∓(w2 +

2zw) , then δ(0, φ) ≤ 1
2 .

For the standard notation of the value distribution theory, see [6]. It is known
that (IV) with β = 0 admits a family of solutions V ±0 = {v±c (z) | c ∈ C ∪ {∞}}
with

v±c (z) = exp(∓z2)

(
c±

∫ z

0

exp(∓t2) dt

)−1

satisfying w′ = ∓(w2 + 2zw) as well, if and only if α = ±1 ([15]). Then, for every
v±c (z) ∈ V ±0 , c ∈ C , we have N(r, 1/v±c ) = 0. Note that v±∞(z) ≡ 0 is a rational
solution of (IV) with β = 0. (For all the rational solutions of (IV), see [8], and
for special transcendental solutions satisfying Riccati equations simultaneously,
see [3] and [9].) In case β = 0, the result above says that the solution curves of
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φ(z) /∈ V ±0 and the rational solution v±∞(z) ≡ 0 intersect infinitely many times.
For every c ∈ C , the solution curves of v±c (z) ∈ V ±0 and v±∞(z) ≡ 0 have no
intersecting points. From such a point of view, we pose the following problem.

Let q(z) be an arbitrary rational solution (or rational function). For an
arbitrary transcendental meromorphic solution φ(z) , estimate the frequency of
the intersecting points of the solution curves of φ(z) and q(z) . Furthermore,
find all the transcendental meromorphic solutions whose solution curves do not
intersect that of q(z) .

Let f(z) and g(z) be meromorphic functions in C . We say that g(z) is small
with respect to f(z) if T (r, g) = S(r, f) . The deficiency of the small function g(z)
is defined by

δ(g, f) = lim inf
r→∞

m
(
r, 1/(f − g)

)

T (r, f)
.

For Painlevé transcendents of the first and the second kind, deficiencies of small
functions were estimated in [11]. In this paper, we treat the problem above for
small functions in place of rational functions.

For each ν ∈ C , the equation

(1.1)
d2u

dt2
+

(
− t

2

4
+ ν +

1

2

)
u = 0

possesses linearly independent solutions Dν(t) , D−ν−1(it) , where Dν(t) is the
parabolic cylinder function with the asymptotic expression

(1.2) Dν(t) = tν exp(−t2/4)
(
1 +O(t−2)

)

as t → ∞ through the sector | arg t| < 3
4π . Especially, if ν ∈ N ∪ {0} , then

Dν

(√
2 z
)

= 2−ν/2 exp(−z2/2)Hν(z) , where Hν(z) is the Hermite polynomial

(1.3) Hν(z) = (−1)ν exp(z2) (d/dz)ν exp(−z2)

(cf. [1; Sections 8.2, 8.4 and 10.13], [12; Section 8]). Our main results are stated
as follows:

Theorem 1.1. Suppose that (α, β) =
(
−(n + 1

2 ± 1
2 ),−2(n + 1

2 ∓ 1
2 )2
)

for

some n ∈ Z . Then (IV) admits a family of solutions
{
χ∓n,c(z)

∣∣ c ∈ C ∪ {∞}
}

with the properties:
(1) for each c = c1/c2 , c = (c1, c2) ∈ C2 \ {(0, 0)} , the solution χ∓n,c(z) is

expressible in the form

(1.4) χ∓n,c(z) = −z ∓ η′n,c(z)

ηn,c(z)
, ηn,c(z) = c1Dn

(√
2 z
)

+ c2D−n−1

(√
2 iz
)
,
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and it satisfies the Riccati equation

w′ = ±
(
w2 + 2zw + (2n+ 1)

)
− 1;

(2) especially,

(1.5) g∓n (z) =





χ∓n,∞(z) = −z ∓
(
−z +

H ′n(z)

Hn(z)

)
if n ∈ N ∪ {0},

χ∓n,0(z) = −z ∓
(
z +

iH ′−n−1(iz)

H−n−1(iz)

)
if n ∈ N−

are rational solutions, where N− = {−l | l ∈ N};
(3) if (n, c) ∈P =

(
(N ∪ {0})×C

)⋃(
N− × (C ∪ {∞} \ {0})

)
, then

C1r
2 ≤ T (r, χ∓n,c) ≤ C2r

2,(1.6)

N
(
r, 1/(χ∓n,c − g∓n )

)
= 0,(1.7)

where Cj = Cj(n, c) , j = 1, 2 , are some positive constants.

Theorem 1.2. Let φ(z) be an arbitrary transcendental meromorphic so-
lution of (IV). Suppose that g(z) is a meromorphic function small with respect
to φ(z) , and that the pair

(
φ(z), g(z)

)
coincides with none of

(
χ∓n,c(z), g∓n (z)

)
,

(n, c) ∈P . Then

δ(g, φ) ≤ 1
2 if β 6= 0,(1.8)

δ(g, φ) ≤ 3
4 if β = 0.(1.9)

2. Preliminaries

From [6; Lemma 2.4.2] and [7; Theorem 6], we derive the following two lem-
mas.

Lemma 2.1. Let f be a transcendental meromorphic function such that
fp+1 = Q(z, f) , p ∈ N , where Q(z, u) is a polynomial in u and its derivatives
with meromorphic coefficients

{
aµ(z)

∣∣ µ ∈M
}

. Suppose that m(r, aµ) = S(r, f)
for all µ ∈ M , and that the total degree of Q(z, u) as a polynomial in u and its
derivatives does not exceed p . Then, m(r, f) = S(r, f) .

Lemma 2.2. Let F (z, u) be a polynomial in u and its derivatives with mero-
morphic coefficients

{
bκ(z)

∣∣ κ ∈ K
}

. Suppose that u = f is a transcendental
meromorphic function satisfying F (z, f) = 0 , and that T (r, bκ) = S(r, f) for all
κ ∈ K . If F (z, 0) 6≡ 0 , then m(r, 1/f) = S(r, f) .
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Consider a differential equation of the form

(2.1) P (z, w,w′, . . . , w(N)) = R(z, w) (N ∈ N).

Here P (z, w,w′, . . . , w(N)) is a polynomial in w and its derivatives, R(z, w) is ra-
tional in w , and the coefficients of P and R are meromorphic functions

{
cλ(z)

∣∣
λ ∈ Λ

}
. The following result is known by [13], [2; Satz 5] (see also [6; Theo-

rem 13.1]).

Lemma 2.3. Suppose that w = f(z) is a meromorphic solution of (2.1),
and that T (r, cλ) = S(r, f) for all λ ∈ Λ . Then R(z, w) is a polynomial in w .

Among parabolic cylinder functions the following relations hold (see [1; Sec-
tion 8.2]).

Lemma 2.4. We have

Dν(t) = e−νπiDν(−t) +
(2π)1/2

Γ(−ν)
e−(ν+1)πi/2D−ν−1(it),(2.2)

D−ν−1(it) = −eνπiD−ν−1(−it) +
(2π)1/2

Γ(ν + 1)
eνπi/2Dν(−t).(2.3)

For a movable pole of a solution of (IV) we have the following ([15]).

Lemma 2.5. For an arbitrary meromorphic solution φ(z) of (IV), around a
movable pole z = z∞ , φ(z) = ∓(z − z∞)−1 − z∞ +O(z − z∞) .

Multiplying (IV) by 2w′/w2 , we have

(2.4)
d

dz

(
(w′)2

w
− w3 − 4zw2 − 4(z2 − α)w +

2β

w

)
= −4w2 − 8zw.

Using (2.4), we obtain the following lemma.

Lemma 2.6. Suppose that both φ(z) and g(z) are solutions of (IV). Then
Φ(z) = φ(z)− g(z) satisfies

(2.5) U ′(z) = −4Φ(z)2 − 8
(
g(z) + z

)
Φ(z)

with

U(z) =
Φ′(z)2 + 2g′(z)Φ′(z)−

(
g′(z)2/g(z)

)
Φ(z)

Φ(z) + g(z)
(2.6)

− Φ(z)3 −G2(z)Φ(z)2 −G1(z)Φ(z)− 2βΦ(z)

g(z)
(
Φ(z) + g(z)

) ,

G2(z) = 3g(z) + 4z, G1(z) = 3g(z)2 + 8zg(z) + 4(z2 − α).(2.7)
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3. Evaluation of m(r, 1/Φ)

In this section we use the following notation: for a meromorphic function f(z)
and for a set A ⊂ C ,

N(r, f)|A =

∫ r

0

(
n(ρ, f)|A − n(0, f)|A

) dρ
ρ

+ n(0, f)|A log r,

n(ρ, f)|A =
∑

σ∈A, |σ|≤ρ
f(σ)=∞

µ(σ, f),

where µ(σ, f) denotes the multiplicity of the pole z = σ of f(z) .
Suppose that φ(z) is an arbitrary transcendental meromorphic solution of

(IV), and that g(z) is a meromorphic function small with respect to φ(z) not
necessarily satisfying (IV). Then W = Φ(z) = φ(z) − g(z) is a solution of the
equation

2WW ′′+2g(z)W ′′−(W ′)2−2g′(z)W ′ = 3W 4+g3(z)W 3+g2(z)W 2+g1(z)W+g0(z),

where

g3(z) = 12g(z) + 8z,

g2(z) = 18g(z)2 + 24zg(z) + 4(z2 − α),

g1(z) = 12g(z)3 + 24zg(z)2 + 8(z2 − α)g(z)− 2g′′(z),

g0(z) = −2g(z)g′′(z) + g′(z)2 + 3g(z)4 + 8zg(z)3 + 4(z2 − α)g(z)2 + 2β.

By T (r, g) = S(r, φ) and Lemma 2.2, we have the following.

Proposition 3.1. If g0(z) 6≡ 0 , then m(r, 1/Φ) = S(r, φ) .

In what follows we estimate m(r, 1/Φ) under the supposition

(3.1) g0(z) ≡ 0.

This relation means that g(z) is also a solution of (IV).

3.1. Case β 6= 0. By (3.1) and Lemma 2.6,

(3.2) U(z) = U(z0)−
∫ z

z0

(
4Φ(s)2 + 8

(
g(s) + s

)
Φ(s)

)
ds

for z0 ∈ C satisfying U(z0) 6= ∞ , where U(z) is given by (2.6). (Note that
g(z) 6≡ 0, since β 6= 0.) Consider the function

(3.3) Ω(z) = U(z)/Φ(z).
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Note that φ(z)4 = Q
(
z, φ(z)

)
, where

3Q(z, u) = 2uu′′ − (u′)2 − 8zu3 − 4(z2 − α)u2 − 2β.

By Lemma 2.1 with p = 3,

(3.4) m(r,Φ) = O
(
m(r, φ) +m(r, g)

)
= S(r, φ).

Furthermore, applying Lemma 2.2 to (IV) under the condition β 6= 0, we have
m
(
r, 1/(Φ + g)

)
= m(r, 1/φ) = S(r, φ) . Hence, from (2.6), it follows that

(3.5)
m(r,Ω) = O

(
m(r,Φ′/Φ) +m(r,Φ) +m

(
r, 1/(Φ + g)

)
+ T (r, g) + log r

)

= S(r, φ).

By Lemma 2.5 and (3.1), every pole of Φ(z) is simple and belongs to either of the
sets

Π =
{
σ
∣∣ φ(σ) =∞, g(σ) 6=∞

}
, Π′ =

{
σ
∣∣ g(σ) =∞

}
.

Note that, around z = z∞ ∈ Π, Φ(z) = ∓(z − z∞)−1 + O(1). Substituting this
into (3.3) and using the right-hand side of (3.2), we have Ω(z∞) = ∓4 for every
z∞ ∈ Π. Suppose that

(3.6) Ω(z) 6≡ ∓4.

Then, taking (3.5) into consideration, we have

(3.7) N(r,Φ)|Π ≤ N
(
r, 1/(Ω2 − 42)

)
≤ 2T (r,Ω) +O(1) ≤ 2N(r,Ω) + S(r, φ).

By (3.1) and Lemma 2.5, every pole of g(z) is simple, which implies

(3.8) N(r,Φ)|Π′ ≤ N(r, g) = S(r, φ).

Let z′∞ be an arbitrary pole of Ω(z) . By (3.3), z′∞ satisfies either (i) Φ(z′∞) = 0
or (ii) U(z′∞) = ∞ . Recall that every pole of Φ(z) belongs to Π ∪ Π′ , and that
Ω(z) is analytic around each point of Π. By these facts and (3.2), the case (ii)
implies that z′∞ ∈ Π′ . Hence every pole of Ω(z) belongs to {σ | Φ(σ) = 0} ∪ Π′ ,
and

(3.9) N(r,Ω) ≤ N(r, 1/Φ) +O
(
N(r, g)

)
= N(r, 1/Φ) + S(r, φ).

From (3.7), (3.8) and (3.9), it follows that

N(r,Φ) ≤ N(r,Φ)|Π +N(r,Φ)|Π′ ≤ 2N(r,Ω) + S(r, φ)

≤ 2N(r, 1/Φ) + S(r, φ) = 2
(
T (r, 1/Φ)−m(r, 1/Φ)

)
+ S(r, φ).

Observing that N(r,Φ) = T (r,Φ)+S(r, φ) = T (r, φ)+S(r, φ) (cf. (3.4)), and that
T (r, 1/Φ) = T (r, φ) + S(r, φ) , we have

Proposition 3.2. Under the condition β 6= 0 , if (3.6) holds, then m(r, 1/Φ) ≤
1
2T (r, φ) + S(r, φ) .
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3.2. Case β = 0. Observing (3.1), we write (3.2) in the form

(3.10)

V (z) = 2g′′(z)Φ(z)− 2g′(z)Φ′(z)

+
(
Φ(z) + g(z)

)[
U(z0)−

∫ z

z0

(
4Φ(s)2 + 8(g(s) + s)Φ(s)

)
ds

]
,

where

(3.11) V (z) = Φ′(z)2−Φ(z)4−
(
G2(z) + g(z)

)
Φ(z)3−

(
G1(z) +G2(z)g(z)

)
Φ(z)2

(for G1(z) and G2(z) cf. (2.7)). Put

(3.12) Θ(z) =
(
g′(z) + 2

)−1
V (z)/Φ(z)2.

(By (3.1), g′(z) + 2 6≡ 0.) Observe that (3.4) is valid under the supposition β = 0
as well. Using (3.11), we have

(3.13) m(r,Θ) = O
(
m(r,Φ′/Φ) +m(r,Φ) + T (r, g) + log r

)
= S(r, φ).

Let z = z∞ be a pole of Φ(z) belonging to

Π0 =
{
σ
∣∣ φ(σ) =∞, g(σ) 6=∞, g′(σ) 6= −2

}
.

Then, by Lemma 2.5, around z = z∞ , Φ(z) = ∓(z − z∞)−1 +O(1). Substituting
this into (3.12) and using (3.10), we have Θ(z∞) = ∓2. Suppose that

(3.14) Θ(z) 6≡ ∓2.

Then, by (3.13),

N(r,Φ)|Π0 ≤ N
(
r, 1/(Θ2 − 22)

)
≤ 2T (r,Θ) +O(1) ≤ 2N(r,Θ) + S(r, φ).

Furthermore, set

Π1 =
{
σ
∣∣ g(σ) =∞

}
, Π2 =

{
σ
∣∣ g′(σ) = −2

}
.

Since every pole of Φ(z) is simple,

(3.15)
N(r,Φ) ≤ N(r,Φ)|Π0 +N(r,Φ)|Π1∪Π2

≤ 2N(r,Θ) + S(r, φ) +O
(
T (r, g)

)
≤ 2N(r,Θ) + S(r, φ).

Observing that every pole of Θ(z) belongs to {σ | Φ(σ) = 0} ∪Π1 ∪Π2 , we have

(3.16)
N(r,Θ) ≤ 2N(r, 1/Φ) +N

(
r, 1/(g′ + 2)

)
+O

(
N(r, g)

)

≤ 2
(
T (r,Φ)−m(r, 1/Φ)

)
+ S(r, φ).

Then, from (3.4), (3.15) and (3.16), we obtain the following.

Proposition 3.3. Under the condition β = 0 , if (3.14) holds, then m(r, 1/Φ) ≤
3
4T (r, φ) + S(r, φ) .



116 Shun Shimomura

4. Exceptional solutions

We wish to find a pair of solutions
(
φ(z), g(z)

)
such that (3.6) or (3.14) is

not satisfied.

Lemma 4.1. Suppose that (IV) admits a solution ψ(z) which satisfies the
equation

(4.1 ,±) w′ = ±(w2 + 2zw − 2α)− 2

as well. Then β = −2(α± 1)2 .

Proof. Observing that ψ′(z) = ±
(
ψ(z)2 +2zψ(z)−2α

)
−2, and that ψ′′(z) =

2
(
ψ(z) + z

)(
ψ(z)2 + 2zψ(z)− (2α± 2)

)
± 2ψ(z) , we have 2ψ(z)ψ′′(z)− ψ′(z)2 =

3ψ(z)4 +8zψ(z)3 +4(z2−α)ψ(z)2−4(α±1)2 . Since ψ(z) satisfies (IV), it follows
that β = −2(α± 1)2 .

By the same computation as above, we obtain the lemma below.

Lemma 4.2. If β = −2(α±1)2 , then every solution of (4.1 ,±) satisfies (IV).

Proposition 4.3. Suppose that Ω(z) ≡ ∓4 (in case β 6= 0) or that Θ(z) ≡
∓2 (in case β = 0). Then

(1) β = −2(α± 1)2;

(2) both g(z) and φ(z) are solutions of (4.1 ,±).

Proof. Case β 6= 0: Suppose that Ω(z) ≡ ∓4, namely that U(z) = ∓4Φ(z) .
By (3.2), we have

(4.2 ,±) Φ′(z) = ±
(
Φ(z)2 + 2

(
g(z) + z

)
Φ(z)

)
.

On the other hand, from (2.6), it follows that

(4.3 ,∓)

Φ′(z)2 + 2g′(z)Φ′(z)− g′(z)2Φ(z)/g(z)

−
(
Φ(z)3 +G2(z)Φ(z)2 +G1(z)Φ(z)

)(
Φ(z) + g(z)

)
− 2βΦ(z)/g(z)

= ∓4Φ(z)
(
Φ(z) + g(z)

)
.

Substitution of (4.2 ,±) into (4.3 ,∓) yields G∗2(z)Φ(z)2 + G∗1(z)Φ(z) = 0, where
G∗2(z) = g′(z) ∓

(
g(z)2 + 2zg(z) − 2α

)
+ 2, and G∗1(z) is a rational function of

z , g(z) and g′(z) . By the supposition T (r, g) = S(r, φ) = S(r,Φ), we obtain
G∗2(z) ≡ 0, which implies that g(z) satisfies (4.1 ,±). Furthermore, substituting
Φ(z) = φ(z) − g(z) into (4.2 ,±) we see that φ(z) is also a solution of (4.1 ,±).
From Lemma 4.1, the assertion (1) follows immediately.
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Case β = 0: Suppose that Θ(z) ≡ ∓2. From (3.11) and (3.12), it follows
that

(4.4) Φ′(z)2 = Φ(z)2F
(
z,Φ(z)

)
, F (z,W ) = W 2 + h1(z)W + h0(z),

where h1(z) = 4
(
g(z) + z

)
, h0(z) = 6g(z)2 + 12zg(z) + 4(z2 − α)∓ 2

(
g′(z) + 2

)
.

Differentiating (4.4), we observe that W = Φ(z) is a solution of the equation

(
2W ′′ − 2WF (z,W )−W 2FW (z,W )

)2
= W 2Fz(z,W )2/F (z,W )

(FW = ∂F/∂W, Fz = ∂F/∂z) , whose coefficients are small with respect to Φ(z) .

By Lemma 2.3, W 2
(
h′1(z)W +h′0(z)

)2
/F (z,W ) is a polynomial in W . Hence, we

have F (z,W ) =
(
W + h1(z)/2

)2
or h0(z) = h1(z) ≡ 0 (cf. [14], [5], see also [4],

[10]). Since the latter case is impossible, we have 4h0(z)−h1(z)2 ≡ 0, from which
it follows that g(z) satisfies (4.1 ,±). Then, by Lemma 4.1, α = ∓1. It remains
to show that φ(z) is also a solution of (4.1 ,±). By (4.4), Φ(z) satisfies either of
the equations

Φ′(z) = −Φ(z)
(
Φ(z) + h1(z)/2

)
,(4.5,−)

Φ′(z) = Φ(z)
(
Φ(z) + h1(z)/2

)
.(4.5,+)

To determine the sign, suppose that α = −1 and that g(z) satisfies (4.1 ,+). If
(4.5 ,−) occurs, then

φ′(z) = −φ(z)2 − 2zφ(z) +G0(z)

with G0(z) = 2g(z)2 +4zg(z) . By this relation and (IV) with (α, β) = (−1, 0), we
have (−2G0(z) − 8)φ(z)2 + 2G′0(z)φ(z) − G0(z)2 = 0, which contradicts the fact
T (r,G0) = S(r, φ) . Hence, if α = −1, then (4.5 ,+) holds, and in consequence
φ(z) satisfies (4.1 ,+). Similarly, we can verify that both g(z) and φ(z) satisfy
(4.1 ,−) if α = 1.

We examine properties of solutions of (4.1 ,±) (see also [3], [9], [15; Section 4],
[16]).

Lemma 4.4. Every solution of (4.1 ,±) is expressible in the form

(4.6) w = −z ∓ u′(z)/u(z),

where u(z) is a nontrivial solution of

(4.7 ,±) u′′ −
(
z2 + (2α± 1)

)
u = 0.

Conversely, for an arbitrary nontrivial solution u(z) of (4.7 ,±), the function given
by (4.6) satisfies (4.1 ,±).
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Proof. Putting w = −z ∓ u′/u into (4.1 ,±), we obtain the lemma.

Lemma 4.5. For arbitrary solutions χ1(z) , χ2(z) of (4.1 ,±) satisfying
χ1(z) 6≡ χ2(z) , we have N

(
r, 1/(χ1 − χ2)

)
= 0 .

Proof. Note that χj(z) , j = 1, 2, are expressed as χj(z) = −z∓u′j(z)/uj(z) ,
where uj(z) , j = 1, 2, are linearly independent solutions of (4.7 ,±). From the
fact u1(z)u′2(z)−u′1(z)u2(z) ≡ C0 ∈ C\{0} , the conclusion immediately follows.

Lemma 4.6. If α /∈ Z , then every solution χ(z) of (4.1 ,±) satisfies C1r
2 ≤

T (r, χ) ≤ C2r
2 , where C1 and C2 are some positive constants.

Proof. Note that, by the transformation z = t/
√

2 , (4.7 ,±) is changed into

(4.8 ,±)
d2u

dt2
+
(
− t

2

4
− 1

2
(2α± 1)

)
u = 0

(cf. (1.1), (1.2). By Lemma 4.4, χ(z) is expressible in the form

(4.9)
χ(z) = −z ∓ η′c(z)/ηc(z),

ηc(z) = c1Dν

(√
2 z
)

+ c2D−ν−1

(√
2 iz
)
, ν = −α∓ 1

2 − 1
2

for some c = (c1, c2) ∈ C2 − {(0, 0)} . If c1c2 6= 0, using (1.2), we have

ηc(z) = 2ν/2c1z
ν exp(−z2/2)

(
1 + o(1)

)

×
[
1 + o(1) + 2−ν−1/2e(−ν−1)πi/2(c2/c1)z−2ν−1 exp(z2)

]

as z →∞ through the sector | arg z+ 1
4π| < 1

2π . Hence ηc(z) possesses a sequence

of simple zeros zk =
√

2π e−πi/4k1/2
(
1 + o(1)

)
, k ∈ N , which implies T (r, χ) ≥

C1r
2 for some C1 > 0. In case c1c2 = 0, we also obtain the same estimate. For

example, if c1 6= 0, c2 = 0, then, using (2.2) with ν = −α ∓ 1
2 − 1

2 /∈ Z , we

obtain an analogous sequence of simple zeros in the sector | arg z + 3
4π| < 1

2π .
Furthermore, for each c ∈ C2 \ {(0, 0)} , T (r, ηc) = O(r2) (cf. [12; Sections 8
and 22]). Hence T (r, χ) = O(r2) , which completes the proof.

Proposition 4.7. Suppose that −α∓ 1
2 − 1

2 = n ∈ Z . Then all the solutions
of (4.1 ,±) constitute the family

{
χ∓n,c(z)

∣∣ c ∈ C∪{∞}
}

with the properties (1) ,
(2) , (3) of Theorem 1.1.

Proof. Under the supposition n ∈ Z , every solution of (4.1 ,±) is also written
in the form (4.9) with ν = n , so that it has the property (1). If n ∈ N ∪ {0} ,
c = (1, 0), then ηc(z) = Dn

(√
2 z
)

= 2−n/2 exp(−z2/2)Hn(z) . If −n ∈ N ,

c = (0, 1), then ηc(z) = D−n−1

(√
2 iz
)

= 2(n+1)/2 exp(z2/2)H−n−1(iz) . In these
cases, we obtain rational solutions given by (1.5), which implies the property (2).
If n ∈ N ∪ {0} , c2 6= 0, or if −n ∈ N , c1 6= 0, then we can verify (1.6) by the
same argument as in the proof of Lemma 4.6. By Lemma 4.5, we have (1.7). Thus
the property (3) is verified.
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5. Proofs of the main results

5.1. Proof of Theorem 1.1. From Lemmas 4.1, 4.2 and Proposition 4.7,
we immediately obtain Theorem 1.1.

5.2. Proof of Theorem 1.2. By Propositions 3.1, 3.2 and 3.3, for an
arbitrary solution φ(z) of (IV) and a small function g(z) with respect to φ(z) ,
the conclusion of Theorem 1.2 is valid unless g(z) is a solution of (IV) satisfying
Ω(z) ≡ ∓4 (in case β 6= 0) or Θ(z) ≡ ∓2 (in case β = 0). By Proposition 4.3,
these exceptional cases may occur only when β = −2(α±1)2 , and then both g(z)
and φ(z) satisfy (4.1 ,±). By Proposition 4.7, in case n = −α ∓ 1

2 − 1
2 ∈ Z ,

a pair
(
φ(z), g(z)

)
of solutions of (4.1 ,±) satisfies T (r, g) = S(r, φ) if and only

if
(
φ(z), g(z)

)
=
(
χ∓n,c(z), g∓n (z)

)
for some (n, c) ∈ P (cf. Theorem 1.1). By

Lemma 4.6, if α /∈ Z , then such a pair of solutions of (4.1 ,±) does not exist. This
completes the proof.
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