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Failure of the condition N below W 1,n
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Abstract. In this paper we examine the size of the exceptional sets outside which the null
sets for the Lebesgue measure are preserved under continuous Sobolev mappings. This persistence
is called the condition N. For a W 1,1 -mapping it is true that the condition N is satisfied outside
a set of Lebesgue measure zero. On the other hand, for mappings in W 1,n this exceptional set
can be chosen to have zero Hausdorff dimension. One might expect for some kind of interpolation
results between these estimates on the Hausdorff dimension of exceptional sets. We show, however,
that this is not the case by constructing examples of homeomorphisms that belong to

⋂
p<nW

1,p

so that the exceptional set has to be n -dimensional.

1. Introduction

Suppose that f is a continuous mapping from an open bounded subset Ω of
Rn , n ≥ 2, into Rn . We consider the following (Lusin) condition N: if E ⊂ Ω,
L n(E) = 0, then L n

(
f(E)

)
= 0. Physically, this condition requires that there is

no creation of matter under the deformation f of the n -dimensional body Ω. This
is a natural requirement as the N-property with differentiability a.e. is sufficient
for validity of various change-of-variable formulas, including the area formula, and
the condition N holds for a homeomorphism f if and only if f maps measurable
sets to measurable sets.

If f ∈W 1,1(Ω,Rn) , we can ask which integrability conditions on the deriva-
tive Df guarantee the condition N. According to a classical result by Marcus
and Mizel [11], f satisfies the condition N if |Df | ∈ Lp(Ω) for some p > n .
If |Df | ∈ Lp(Ω) with p ≤ n , the condition N may fail; see e.g. [10] or [15] for
examples.

It is then interesting to ask for the size of the exceptional set, i.e. the set
outside of which the condition N holds. It is worth pointing out that if f is
any mapping in the Sobolev space W 1,1(Ω,Rn) , then f satisfies the condition
N outside a set of measure zero (see e.g. [14] for references). Malý and Martio
proved in [10] (also see [8]), as a substantial improvement on this fact, that if
f ∈ W 1,n(Ω,Rn) , then the condition N holds for f outside of a set that has
Hausdorff dimension zero.

It seems that very little is known about the size of the exceptional set be-
low W 1,n . It would be natural to expect that the Hausdorff dimension of the
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exceptional set decreases as the exponent p increases to n . In this paper we will
prove, however, that if f ∈ W 1,1(Ω,Rn) so that (1.1) holds, and thus in partic-
ular when |Df | ∈ ⋂p<n Lp(Ω), one cannot, in general, find an exceptional set of
Hausdorff dimension smaller than n .

Theorem 1.1. Let s ∈ (0,∞) . Then there exists a homeomorphism f : Q0 →
Q0 from the unit cube Q0 = [0, 1]n onto itself such that the following properties
hold:

(a) f fixes the boundary ∂Q0 .

(b) f ∈W 1,1(Q0,R
n) , f is differentiable almost everywhere, and

(1.1) sup
0<ε≤n−1

ε

∫

Q0

|Df(x)|n−ε dx <∞.

(c) The Jacobian determinant J(x, f) is strictly positive for almost every x ∈ Q0

and J( · , f) ∈ L1(Q0) .

(d) If E ⊂ Q0 with H h(E) = 0 , where h(t) = tn logs log(4 + 1/t) (for small t),
then there exists a compact set F ⊂ Q0 \ E of measure zero such that
L n

(
f(F )

)
> 0 .

If we put certain additional topological or analytical assumptions on f , then
a higher degree of integrability of |Df | can be relaxed for the condition N. Reshet-
nyak proved in [16] that for a homeomorphism it suffices to assume that |Df | ∈
Ln(Ω). There are several generalizations of this result: instead of assuming that
f is a homeomorphism it suffices to assume that f is continuous and open [10],
or that J(x, f) > 0 almost everywhere [2] (see also [17] and [12]). For further
results of this type see the survey paper [9]. Recently Kauhanen, Koskela and
Malý [6] proved that, for a topologically sense-preserving (and thus in particular
for homeomorphical) mapping f , it suffices to assume that

(1.2) lim
ε→0+

ε

∫

Ω

|Df |n−ε = 0.

The construction of f of Theorem 1.1 is a refinement of our construction in [6],
where a similar mapping was constructed to show that the condition N may fail
under condition (1.1). For the convenience of the reader we will present a complete
construction here. The basic idea of the construction comes from Ponomarev [15];
also see [14]. Ponomarev gave an example of a homeomorphism f with |Df | ∈⋂
p<n L

p(Ω) such that f creates matter. He, however, did not consider the size of
the exceptional set and worked only on the Lp -scale.
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2. About the function spaces

In this section we briefly review some function spaces that we dealt with in
the introduction; for a more detailed discussion see [4]. Let us define BLn(Ω) as
the collection of all measurable functions u with

‖u‖n) = sup
0<ε≤n−1

(
ε

∫

Ω

|u|n−ε
)1/(n−ε)

<∞.

Then BLn(Ω) is a Banach space and

V Ln(Ω) =

{
u ∈ BLn(Ω) : lim

ε→0+
ε

∫

Ω

|u|n−ε = 0

}

is a closed subspace. The following inclusions hold (see [3]):

Ln(Ω) ( Ln log−1 L(Ω) ( V Ln(Ω) ( BLn(Ω) (
⋂

α<−1
Ln logα L(Ω) (

⋂
p<n

Lp(Ω),

where the space Ln logα L(Ω) consists of all measurable functions u with

∫

Ω

|u|n logα(e+ |u|) <∞.

One question that Theorem 1.1 and the other results mentioned in the introduction
leave unanswered is the size of the exceptional set for continuous mappings f ∈
W 1,1(Ω,Rn) with |Df | , for example, in Ln log−1 L(Ω) or V Ln(Ω).

3. Proof of Theorem 1.1

Let us begin with some notation. Besides the usual euclidean norm |x| =
(x2

1 + · · · + x2
n)1/2 we will use the cubic norm ‖x‖ = maxi |xi| . Using the cubic

norm, the x0 -centered closed cube with edge length 2r > 0 and sides parallel to
coordinate axes can be represented in the form

Q(x0, r) = {x ∈ Rn : ‖x− x0‖ ≤ r}.

We then call r the radius of Q . c(a, b, . . .) denotes a positive constant depending
only on a, b, . . . which might differ from occurrence to occurrence. We write x ≈
c(a, b, . . .)y if x ≤ c(a, b, . . .)y and y ≤ c(a, b, . . .)x .

We will be dealing with radial stretchings that map cubes Q(0, r) onto cubes.
The following lemma can be verified by an elementary calculation.
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Lemma 3.1. Let %: (0,∞) → (0,∞) be a strictly monotone, differentiable
function. Then for the mapping

f(x) =
x

‖x‖%(‖x‖), x 6= 0,

we have for a.e. x

|Df(x)| ≈ c(n) max

{
%(‖x‖)
‖x‖ ,

∣∣%′(‖x‖)
∣∣
}

and J(x, f) ≈ c(n)
%′(‖x‖)%(‖x‖)n−1

‖x‖n−1
.

We will first give two Cantor set constructions in Q0 . Our mapping f will
be defined as a limit of a sequence of piecewise continuously differentiable homeo-
morphisms fk: Q0 → Q0 , where each fk maps the k :th step of the first Cantor
set construction onto the second one. Then f maps the first Cantor set onto the
second one. Choosing the Cantor sets so that the Hausdorff h measure H h of
the first one is positive and finite and so that the second one has positive measure,
we get the property (d). We will explain this argument later.

Let V ⊂ Rn be the set of all vertices of the cube Q(0, 1). Then the sets
V k = V ×· · ·×V , k = 1, 2, . . . , will serve as the sets of indices for our construction
(with the exception of the subscript 0). If w ∈ V k−1 , we denote

V k[w] = {v ∈ V k : vj = wj , j = 1, . . . , k − 1}.

Let z0 =
(

1
2 , . . . ,

1
2

)
, r0 = 1

2 and denote

ψ(k) =
1

2

logs/n 2

logs/n(k + 2)
.

For v ∈ V 1 = V let zv = z0 + 1
4v , Pv = Q

(
zv,

1
4

)
and Qv = Q(zv, ψ(1)2−1) . If

k = 2, 3, 4, . . . , and Qw = Q(zw, rk−1) , w ∈ V k−1 , is a cube from the previous step
of construction, then Qw is divided into 2n subcubes Pv , v ∈ V k[w] , with centers
zv and radius 1

2rk−1 and inside them we pick concentric cubes Qv , v ∈ V k[w] ,
with radius

rk = ψ(k)2−k.

Note that rk <
1
2rk−1 for all k . Thus, denoting v = (v1, . . . , vk) , we have

zv = zw +
1

2
rk−1vk = z0 +

1

2

k∑

j=1

rj−1vj ,

Pv = Q
(
zv,

1
2rk−1

)
, Qv = Q(zv, rk).
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Figure 1. Cubes Qv , v ∈ V k .

See Figure 1. The number of cubes in the family {Qv : v ∈ V k} , k =
1, 2, 3, . . . , is #V k = 2nk . If W is any subfamily of Vk , we have

(3.1)

∑

w∈W
h(diamQw) ≈ c(n, s)#Wrnk logs log(1/rk)

≈ c(n, s)#W2−nkψ(k)n logs
(
log 2k + logψ(k)−1

)

≈ c(n, s)#W2−nk log−s k logs k ≈ c(n, s)#W2−nk.

This is behind the fact that the Hausdorff h measure of the resulting Cantor set

C =
∞⋂
k=1

⋃
v∈V k

Qv

is positive and finite. In lack of a convenient reference we give a short proof for
this fact.

Lemma 3.2. We have 0 < H h(C) <∞ .

Proof. We mimic the proof in [13, Section 4.10]. The estimate H h(C) <∞
directly follows from (3.1). Let us justify H h(C) > 0.

Let {Uj} be an open covering of C . It suffices to show that

(3.2)
∑

j

h(diamUj) ≥ c(n, s).

Since C is compact, we can assume that {Uj} is finite. For each j choose xj ∈
Uj ∩ C (the intersection can be assumed to be non-empty) and denote Bj =
B(xj , diamUj) . Then there is k0 such that for all k ≥ k0 every cube Qv , v ∈ V k ,
is contained in some Bj , and because h(2t) ≤ 2nh(t) for t ≥ 0, we have that

∑

j

h(diamUj) ≥ 2−n
∑

j

h(diamBj).
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Therefore it suffices to prove (3.2) for the family {Bj} in the place of {Uj} . We
claim that for any open ball B with center in C and any fixed l ,

(3.3)
∑

v∈V l, Qv⊂B
h(diamQv) ≤ c(n, s)h(diamB).

This gives (3.2), since for k ≥ k0 , by (3.1),

∑

j

h(diamBj) ≥ c(n, s)
∑

j

∑

v∈V k, Qv⊂Bj
h(diamQv)

≥ c(n, s)
∑

v∈V k
h(diamQv) ≈ c(n, s).

To prove (3.3), suppose that Qv ⊂ B for some v ∈ V l , and let m be the smallest
integer for which Qw ⊂ B for some w ∈ V m . Then m ≤ l . Denote

W = {w ∈ V m : Qw ∩B 6= ∅}.

By considering the geometry of the construction of C , it is evident that #W ≤
c = c(n, s) . Thus, using (3.1) twice,

h(diamB) ≥ 1

c

∑

w∈W
h(diamQw) ≈ c(n, s)#W2−nm = c(n, s)#W2n(l−m)2−nl

= c(n, s)#{v ∈ V l : Qv ⊂ Qw, w ∈W}2−nl

≈ c(n, s)
∑

w∈W

∑

v∈V l, Qv⊂Qw
h(diamQv)

≥ c(n, s)
∑

v∈V l, Qv⊂B
h(diamQv).

The second Cantor set construction is similar to the first one except that at
this time we denote the centers by z′v and the cubes by P ′v , Q′v , v ∈ V k , with

z′v = z′w +
1

2
r′k−1vk = z0 +

1

2

k∑

j=1

r′j−1vj ,

P ′v = Q
(
z′v,

1
2r
′
k−1

)
, Q′v = Q(z′v, r

′
k).

We set r′0 = 1
2 and

r′k = ϕ(k)2−k

for k = 1, 2, 3, . . . , where

ϕ(k) =
1

4

(
1 +

log log 4

log log(k + 4)

)
.



Failure of the condition N below W 1,n 147

Note that r′k <
1
2r
′
k−1 for each k . We have

L n

( ∞⋂
k=1

⋃
v∈V k

Qv

)
= lim
k→∞

L n

( ⋃
v∈V k

Qv

)
= lim
k→∞

2nk(2r′k)n = 2−n > 0.

We are now ready to define the mappings fk . Define f0 = id. We will give a
mapping f1 that stretches each cube Qv , v ∈ V 1 , homogeneously so that f1(Qv)
equals Q′v . On the annulus Pv \Qv , f1 is defined to be an appropriate radial map
with respect to zv and z′v in the image in order to make f1 a homeomorphism. The
general step is the following: If k > 1, fk is defined as fk−1 outside the union of all
cubes Qw , w ∈ V k−1 . Further, fk remains equal to fk−1 at the centers of cubes
Qv , v ∈ V k . Then fk stretches each cube Qv , v ∈ V k , homogeneously so that
f(Qv) equals Q′v . On the annulus Pv\Qv , f is defined to be an appropriate radial
map with respect to zv in preimage and z′v in image to make fk a homeomorphism
(see Figure 2). Notice that the Jacobian determinant J(x, fk) will be strictly
positive almost everywhere in Q0 .

���

Figure 2. The mapping fk acting on Pv , v ∈ V k .

To be precise, let f0 = id | Q0 and for k = 1, 2, 3, . . . define

fk(x) =





fk−1(x) if x /∈ ⋃
v∈V k

Pv,

fk−1(zv) + ak(x− zv) + bk
x− zv
‖x− zv‖

if x ∈ Pv \Qv, v ∈ V k,

fk−1(zv) + ck(x− zv) if x ∈ Qv, v ∈ V k,

where ak , bk and ck are chosen so that fk maps each Qv onto Q′v , is continuous
and fixes the boundary ∂Q0 :

(3.4) akrk + bk = r′k,
1
2akrk−1 + bk = 1

2r
′
k−1, ckrk

Clearly the limit f = limk→∞ fk is differentiable almost everywhere, its Ja-
cobian determinant is strictly positive almost everywhere, and f is absolutely
continuous on almost all lines parallel to coordinate axes. Continuity of f follows
from the uniform convergence of the sequence (fk) : for any x ∈ Q0 and l ≥ j ≥ 1
we have

|fl(x)− fj(x)| ≤ c(n)r′j → 0
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as j →∞ .
It is easily seen that f is a one-to-one mapping of Q0 onto Q0 . Since f is

continuous and Q0 is compact, it follows that f is a homeomorphism.
To finish the proof of the properties (b) and (c), we next estimate |Df(x)|

and J(x, f) at x in the interior of the annulus Pv \Qv , v ∈ V k , k = 1, 2, 3, . . . .
Denote r = ‖x− zv‖ ≈ c(n, s)rk . In the annulus

f(x) = fk−1(zv) +
(
ak‖x− zv‖+ bk

) x− zv
‖x− zv‖

whence denoting %(r) = akr + bk we have by Lemma 3.1 (it is easy to check that
bk > 0 for large k )

|Df(x)| ≈ c(n, s)(ak + bk/rk)

and
J(x, f) ≈ c(n, s)ak(ak + bk/rk)n−1.

From the equations (3.4) it follows that

ak =
1
2r
′
k−1 − r′k

1
2rk−1 − rk

=
ϕ(k − 1)− ϕ(k)

ψ(k − 1)− ψ(k)
≈ c(n, s)ϕ

′(k)

ψ′(k)
≈ c(n, s) logs/n k

log2 log k

and

ak + bk/rk = r′k/rk =
ϕ(k)

ψ(k)
≈ c(n)

1

ψ(k)
≈ c(n, s) logs/n k.

Therefore

|Df(x)| ≈ c(n, s) logs/n k and J(x, f) ≈ c(n, s) logs k

log2 log k
.

The measure of
⋃

v∈V k
(Pv \Qv) is

2nk
(
rnk−1 − (2rk)n

)
≈ c(n)

(
ψ(k − 1)n − ψ(k)n

)

≈ c(n, s)
(

1

logs(k − 1)
− 1

logs k

)

≈ −c(n, s) d
dk

(
1

logs k

)
≈ c(n, s) 1

k log1+s k

and so for 0 < ε ≤ n− 1

(3.5)

ε

∫

Q0

|Df(x)|n−ε dx ≈ c(n, s)ε
∞∑

k=2

1

k log1+s k
log(s/n)(n−ε) k

= c(n, s)ε
∞∑

k=2

1

k log1+(s/n)ε k

≈ c(n, s)ε
∫ ∞

2

dt

t log1+(s/n)ε t
≈ c(n, s).
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This proves (1.1), and it follows that f ∈ W 1,1(Q0,R
n) . Similarly we prove the

property (c):

(3.6)

∫

Q0

J(x, f) dx ≈ c(n, s)ε
∞∑

k=4

1

k log1+s k

logs k

log2 log k

≈ c(n, s)
∫ ∞

4

dt

t log t log2 log t
<∞.

Let us now prove the property (d). Since H h is Borel regular, we find a Borel
set E′ ⊃ E ∩C such that H h(E′) = 0. Now C \E′ is a Borel set, whence there
is a compact set F ⊂ C \ E′ such that H h(F ) > 0. Denote

W k = {v ∈ V k : Qv ∩ F 6= ∅}.

Then there exists a constant c > 0 such that

(3.7)
#W k

#V k
≥ c

for all k , since otherwice we would have by (3.1) that

∑

v∈Wk

h(diamQv) ≈ c(n, s)#W k 2−nk = c(n, s)
#W k

#V k
→ 0

as k →∞ for k in some subsequence (k) ⊂ N , whence we would have H h(F ) =
0, a contradiction. Since F is compact, we have that

F =
∞⋂
k=1

⋃
v∈Wk

Qv,

whence (3.7) yields

L n
(
f(F )

)
= L n

(
f

( ∞⋂
k=1

⋃
v∈Wk

Qv

))
= L n

( ∞⋂
k=1

f

( ⋃
v∈Wk

Qv

))

= lim
k→∞

L n

( ⋃
v∈Wk

Q′v

)
≈ c(n) lim

k→∞
#W k

(
ϕ(k)2−k

)n

≥ c(n) lim
k→∞

#W k 2−nk = c(n) lim
k→∞

#W k

#V k
≥ c(n)c > 0.
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