
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 27, 2002, 151–161

A REMARK ON THE AHLFORS–LEHTO

UNIVALENCE CRITERION

Toshiyuki Sugawa

Kyoto University, Department of Mathematics

606-8502 Kyoto, Japan; sugawa@kusm.kyoto-u.ac.jp

Abstract. In this note, we will prove the Ahlfors–Lehto univalence criterion in a general
form. This enables us to deduce lower estimates of the inner radius of univalence for an arbitrary
quasidisk in terms of a given quasiconformal reflection.

1. Introduction

Let D be a domain in the Riemann sphere Ĉ with hyperbolic metric %D(z)|dz|
of constant negative curvature −4. For a holomorphic function ϕ on D , we define
the hyperbolic sup-norm of ϕ by

‖ϕ‖D = sup
z∈D

%D(z)−2|ϕ(z)|.

We denote by B2(D) the complex Banach space consisting of all holomorphic
functions of finite hyperbolic sup-norm. For a holomorphic map g: D1 → D2 , the
pullback g∗2 : ϕ 7→ ϕ ◦ g · (g′)2 is a linear contraction from B2(D2) to B2(D1) . In
particular, if g is biholomorphic, g∗2 : B2(D2)→ B2(D1) becomes an isometric iso-
morphism. As is well known, the Schwarzian derivative Sf = (f ′′/f ′)′−(f ′′/f ′)2/2
of a univalent function f on D satisfies ‖Sf‖D ≤ 12 (see [3]). This result is clas-
sical for the unit disk D = {z ∈ C : |z| < 1} , actually, the better estimate
‖Sf‖D ≤ 6 is known. On the other hand, Nehari’s theorem [13] asserts that if
a locally univalent function f on D satisfies ‖Sf‖D ≤ 2, then f is necessarily
univalent. Hille’s example [7] shows that the number 2 is best possible. We now
define the quantity σ(D) , which is called the inner radius of univalence of D , as
the infimum of the norm ‖Sf‖D of those locally univalent meromorphic functions
f on D which are not globally univalent in D . In other words, σ(D) is the
possible largest number σ ≥ 0 with the property that the condition ‖Sf‖D ≤ σ
implies univalence of f in D . Note that the inner radius of univalence is Möbius
invariant, namely, σ

(
L(D)

)
= σ(D) for a Möbius transformation L . In the case

D = D , we already know σ(D) = 2. For a comprehensive exposition of these
notions and some background, we refer the reader to the book [9] of O. Lehto.
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Ahlfors [1] showed that every quasidisk has positive inner radius of univalence.
Conversely, Gehring [6] proved that if a simply connected domain has positive inner
radius of univalence then it must be a quasidisk. Later, Lehto [8] pointed out the
inner radius of univalence of a quasidisk can be estimated by using Ahlfors’ method
as

(1) σ(D) ≥ 2 inf
z∈D′

|∂̄λ(z)| − |∂λ(z)|
|λ(z)− z|2%D(z)2

,

where λ is a quasiconformal reflection in ∂D which is continuously differentiable
off ∂D and D′ = D \ {∞, λ(∞)} . This result may be called the Ahlfors–Lehto
univalence criterion. However, in order to obtain estimate (1) rigorously, a kind of
approximation procedure must work, so an additional assumption was needed. For
example, Lehto [9, Lemma III.5.1] assumed the quasidisk D to be exhausted by
domains of the form {rz : z ∈ D} for 0 < r < 1. More recently, Betker [5] gave a
similar result for general quasidisks under the assumption that the quasiconformal
reflections λ are of a special form associated with the Löwner chains. For another
additional condition, see a remark at the end of the next section.

We remark that if we content ourselves with an estimate of the form σ(D) ≥
c(K) for a K -quasidisk D , where c(K) is a positive constant depending only
on K , the original idea of Ahlfors [1] is sufficient. (See Section 2. See also [2,
Chapter VI] and [9, Theorem II.4.1] for slightly different approaches.)

Our main result is to show (1) without any additional assumption, even the
continuous differentiability of λ . This might be known as a kind of folklore.

Theorem 1. Let D be a quasidisk with a quasiconformal reflection λ in
∂D . Then the inequality σ(D) ≥ ε(λ,D) holds for D , where

(2) ε(λ,D) = 2 ess.inf
z∈D

|∂̄λ(z)| − |∂λ(z)|
|λ(z)− z|2%D(z)2

.

Actually, this estimate is known to give often sharp results for several concrete
examples (see [9]). The author, however, does not know if the equality σ(D) =
supλ ε(λ,D) always holds or not, where the supremum is taken over all possible
quasiconformal reflections λ in ∂D .

Our main theorem has applications to lower estimates of the inner radius
of univalence for a strongly starlike domain (see [15]) and for a round annulus
(see [14]). Indeed, the quasiconformal reflections used in those papers are not
necessarily of class C1 off the boundary.

Finally, the author would like to express his sincere thanks to Professor
F.W. Gehring, whose suggestion improved the statement of our main theorem.
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2. Proof of the main result

Basically, we shall go along the same line as in [1]. Let a quasiconformal
reflection λ in ∂D be given, i.e., λ is an orientation-reversing homeomorphic
involution of Ĉ keeping each boundary point of D fixed and satisfying that λ(z̄)
is quasiconformal. We note that |∂λ| ≤ k0|∂̄λ| a.e. for some constant 0 ≤ k0 < 1.

Noting that the quantity ε(λ,D) is invariant under the Möbius transfor-
mations (see [9, Section II 4.1]), we assume that a quasidisk D is contained in
C for a moment. We take a non-constant meromorphic function f on D with
‖Sf‖D < ε0 = ε(λ,D) . We wish to show that f is univalent in D . Set ϕ = Sf .

Let η0 and η1 be linearly independent solutions of the linear differential
equation

(3) 2y′′ + ϕy = 0

in D . Note that the Wronskian η0η
′
1 − η′0η1 is a non-zero constant and, as is well

known, η1/η0 satisfies the Schwarzian differential equation Sη1/η0
= ϕ = Sf in D .

In particular, there exists a Möbius transformation L satisfying η1/η0 = L ◦ f .
Therefore, when we try to show the univalence of f , we can assume, and always
do so in the sequel, f = η1/η0 and η0η

′
1 − η′0η1 ≡ 1.

For instance, if η0 and η1 are taken by the solutions of (3) satisfying the
initial conditions η0 = 1, η′0 = 0 and η1 = 0, η′1 = 1, respectively, at a reference
point z0 in D , then f = η1/η0 is strongly normalized at z0 : f(z0) = f ′(z0)−1 =
f ′′(z0) = 0.

To extend f to the whole sphere, we consider the map

F (z) =
η1(z) +

(
λ(z)− z

)
η′1(z)

η0(z) +
(
λ(z)− z

)
η′0(z)

.

We first note the Möbius invariance of the above construction. For an A =
(ac
b
d) ∈ SL(2,C) let LA be the Möbius transformation induced by the matrix A .

We set A∗2ϕ = (ϕ◦LA)(L′A)2 and A∗−1/2η = (η◦LA)(L′A)−1/2 , where (L′A)−1/2(z) =
cz + d . A straightforward calculation shows that A∗−1/2η is a solution of the dif-

ferential equation 2y′′ + A∗2ϕy = 0 in A−1(D) if η is a solution of (3) in D . In
particular, we can see that differential equation (3) always admits two linearly in-
dependent (single-valued) solutions in D even if ∞ ∈ D . Setting λ̃ = L−1

A ◦λ◦LA ,
we consider the map

F̃ (z) =
A∗−1/2η1(z) +

(
λ̃(z)− z

)
(A∗−1/2η1)′(z)

A∗−1/2η0(z) +
(
λ̃(z)− z

)
(A∗−1/2η0)′(z)

.
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Then we have the relation F ◦LA = F̃ . In fact, using the relation LA(w)−LA(z) =
(w − z)/(cw + d)(cz + d) , we obtain

η ◦ LA(z) +
(
λ ◦ LA(z)− LA(z)

)
η′ ◦ LA(z)

=
A∗−1/2η(z)

cz + d
+
(
LA
(
λ̃(z)

)
− LA(z)

)
(cz + d)

(
(A∗−1/2η)′(z)− cη ◦ LA(z)

)

=
A∗−1/2η(z)

cz + d
+

λ̃(z)− z
cλ̃(z) + d

(
(A∗−1/2η)′(z)−

cA∗−1/2η(z)

cz + d

)

=
A∗−1/2η(z) + (λ̃(z)− z)(A∗−1/2η)′(z)

cλ̃(z) + d
.

Taking η1 and η0 as the above η , we see the desired relation.

Next, we need the following fundamental property of F .

Lemma 2. The map F : D → Ĉ constructed above is K -anti-quasiregular,
where K = (1 + k)/(1− k) , k = 1− (1− k0)(1− k1) < 1 , and k1 = ‖ϕ‖D/ε0 < 1 .

Proof. By the Möbius invariance of the construction of F , we may assume
here that ∞ ∈ ∂D . We note that the numerator and the denominator in the
definition of the map F can never vanish simultaneously because of the relation
η0η
′
1 − η′0η1 ≡ 1. Since K -anti-quasiregularity is a local property, it is enough to

show that F is K -anti-quasiregular in a neighbourhood of an arbitrary point, say
a , in D . We may assume that η0(a) +

(
λ(a)− a

)
η′0(a) 6= 0. (If not, consider 1/F

instead.) By continuity, we can take an open neighbourhood V of a in D such
that η0 + (λ− z)η′0 does not vanish at any point of V .

Here, we recall that a non-constant continuous function h: V → C is K -
anti-quasiregular if and only if h is ACL and has locally square integrable partial
derivatives satisfying |∂h| ≤ k|∂̄h| a.e. in V (see [10, Chapter VI], where the
authors used the term “quasiconformal function” instead of “quasiregular map-
ping”).

Now we show that F is ACL in V , precisely, for any closed rectangle {x+iy :
x0 ≤ x ≤ x1, y0 ≤ y ≤ y1} contained in V , F (x + iy) is absolutely continuous
in x ∈ [x0, x1] for a.e. y ∈ [y0, y1] and in y ∈ [y0, y1] for a.e. x ∈ [x0, x1] . Since
ηj + (λ− z)η′j is absolutely continuous in x ∈ [x0, x1] for a.e. y and for j = 0, 1,
and since η0 + (λ− z)η′0 does not vanish there, we can conclude that the quotient
F (x + iy) is also absolutely continuous in x ∈ [x0, x1] for a.e. y ∈ [y0, y1] and in
y ∈ [y0, y1] for a.e. x ∈ [x0, x1] (see, for example, [12, p. 50]). Hence, F is ACL
in V .

Next, we investigate the partial derivatives of F . A formal calculation gives
us

∂F =
∂λ+ (λ− z)2ϕ/2
(
η0 + (λ− z)η′0

)2 and ∂̄F =
∂̄λ

(
η0 + (λ− z)η′0

)2 .
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Since λ has locally square integrable partial derivatives in D and since the de-
nominator is locally bounded away from 0 in V , we can observe that ∂F and ∂̄F
are both locally square integrable in V . Furthermore, we have

∂F (z)

∂̄F (z)
=
∂λ(z) +

(
λ(z)− z

)2
ϕ(z)/2

∂̄λ(z)
.

Hence the assumption ‖ϕ‖D = ε0k1 implies

‖∂F/∂̄F‖∞ ≤ 1− (1− k0)(1− k1) = k.

Hence, we have shown that F is K -anti-quasiregular in V .

Now we consider the map f̂ : D ∪D∗ → Ĉ defined by

(4) f̂(z) =

{
f(z) for z ∈ D,
F
(
λ(z)

)
for z ∈ D∗,

where D∗ = Ĉ \D . It is not so clear that f̂ can be extended to ∂D continuously
because ϕ cannot be extended to ∂D or beyond it in general. In order to overcome
this difficulty, we approximate ϕ by better quadratic differentials. In fact, for a
general ϕ ∈ B2(D) , we have the following result, which is essentially due to Bers
[4, Lemma 1].

Proposition 3. Let D be a Jordan domain in Ĉ . For any ϕ ∈ B2(D) there
exists a sequence (ϕj)j of holomorphic functions in D such that ‖ϕj‖D ≤ ‖ϕ‖D
and ϕj tends to ϕ uniformly on each compact subset of D as j →∞ .

Proof. We denote by g: D → D the Riemann mapping function of D with
g(0) = z0 and g′(0) > 0. Let Dj , j = 1, 2, . . . , be Jordan domains with Dj+1 ⊂
Dj and with

⋂
j Dj = D . Then the Carathéodory kernel theorem implies that the

Riemann mapping functions gj of Dj with gj(0) = z0 and g′j(0) > 0 converge to
g uniformly on each compact subset of the unit disk as j tends to ∞ . Now we set
ϕj = (g ◦ g−1

j )∗2ϕ . We then have ‖ϕj‖D ≤ ‖ϕj‖Dj = ‖ϕ‖D by the Schwarz–Pick
lemma: %D ≥ %Dj . We also have ϕj → ϕ locally uniformly as j →∞ .

With this result in mind, we can deduce our main result from the following
lemma.

Lemma 4. Suppose that ϕ ∈ B2(D) with ‖ϕ‖D ≤ k1ε0 is holomorphic in
D , where 0 ≤ k1 < 1 and ε0 = ε(λ,D) , which is given by (2). Then the function

f̂ defined by (4) extends to a K -quasiconformal homeomorphism of the Riemann
sphere, where K = (1 + k)/(1− k) and k = 1− (1− k0)(1− k1) .
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Actually, we can prove our main theorem as follows. Let ϕ ∈ B2(D) satisfy
‖ϕ‖D < ε0 and set k1 = ‖ϕ‖D/ε0 . We take a sequence (ϕj)j as in Proposition 3.

Let f̂ and f̂j be the functions in Ĉ\∂D defined by (4) for ϕ and ϕj , respectively,
so that both are strongly normalized at z0 ∈ D . Then, by the above lemma, each
f̂j can be continued to a K -quasiconformal homeomorphism of Ĉ . Since those
K -quasiconformal mappings which are conformal in D and strongly normalized at
z0 form a normal family, f̂j has a subsequence converging to a K -quasiconformal

mapping uniformly in Ĉ . By construction, the limit mapping coincides with f̂
in Ĉ \ ∂D . This implies that f̂ has a K -quasiconformal extension to the whole
sphere. Now the proof of our main theorem is complete up to the above lemma.

Remark. Under the assumption that λ is of class C1 off the boundary ∂D
and that ϕ is holomorphic in D with ‖ϕ‖D < ε0 , a direct calculation shows

∂f̂(z) = − 1 +
(
z − λ(z)

)2
ϕ
(
λ(z)

)
∂λ(z)/2

(
η0

(
λ(z)

)
+
(
z − λ(z)

)
η′0
(
λ(z)

))2 and

∂̄f̂(z) = −
(
z − λ(z)

)2
ϕ
(
λ(z)

)
∂̄λ(z)/2

(
η0

(
λ(z)

)
+
(
z − λ(z)

)
η′0
(
λ(z)

))2

at every z ∈ D∗\{∞, λ(∞)} . Therefore, if
(
λ(z)−z

)2
∂̄λ(z) vanishes at the bound-

ary, then we would obtain continuous extensions of ∂f̂ and ∂̄f̂ to Ĉ . Moreover,
the limits of

f̂(z + t)− f̂(z)

t
and

f̂(z + it)− f̂(z)

t
,

when t tends to 0 along the real axis, both exist and are equal to f ′(z) and
if ′(z) , respectively, for each z ∈ ∂D . In fact, when z + t or z + it approaches
to z in D∗ , the above quotients tend to the desired values by (7) below. This

implies that our f̂ has continuous partial derivatives everywhere in Ĉ . Hence, we
can conclude that f̂ is a local C1 -diffeomorphism of Ĉ , and hence, a global C1 -
diffeomorphism of it. Thus, if we restrict ourselves to this case, the proof would
become much simpler than ours.

We note that it is always possible to take such a quasiconformal reflection λ
for any quasidisk D (see [1] or [9, Section II.4]).

3. Proof of Lemma 4

Let ϕ be as in Lemma 4. We assume, for a moment, that D is bounded. Then
the solutions η0 and η1 of (3) are holomorphic in D . Thus f̂ can be continuously

extended to the whole sphere and f̂(∂D) is the image of the quasicircle ∂D un-
der the locally univalent meromorphic map η1/η0 . Now we require an extension
theorem for quasiregular mappings.
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Lemma 5. Let Ω be a plane domain and C be an open quasiarc (or a

quasicircle) in Ω such that Ω \ C is an open set in Ĉ . Suppose that h: Ω → Ĉ
is a continuous map such that h|Ω\C is a K -quasiregular map and that, for each
x ∈ C , h maps C ∩ U injectively onto a quasiarc for some open neighbourhood
U of x in Ω . Then h is K -quasiregular in Ω .

Proof. If we know that h is quasiregular in Ω, we can conclude that h is
K -quasiregular because |∂̄h/∂h| ≤ (K − 1)/(K + 1) a.e. by assumption. Since
quasiregularity is a local property, it suffices to show that h is quasiregular in an
open neighbourhood U of each x ∈ C . The assumption allows us to take an open
neighbourhood U of x so that h maps U ∩ C injectively onto a quasiarc. Then,
by composing suitable quasiconformal mappings, we may further assume that U
is an open disk centered at x = 0 with U ∩ C = U ∩R and that h(U ∩R) ⊂ R .
Set U± = {z ∈ U : ± Im z ≥ 0} . By the reflection principle for quasiregular
mappings [11], the mapping h|U± extends to a quasiregular one in U for each
signature. This means that h is ACL and has locally square integrable partial
derivatives in U , and hence h is quasiregular there.

By this lemma, our mapping f̂ turns out to be a K -quasiregular mapping on
Ĉ , and hence, f̂ can be decomposed to the form g ◦ ω for a K -quasiconformal
mapping ω: Ĉ → Ĉ and a rational function g (see [10, Chapter VI]). Suppose
that the degree of g is greater than one. Then there exists a branch point, say b∗ ,
of g . Set a∗ = ω−1(b∗) and a = λ(a∗) . At this time, by Möbius conjugation, we

assume that 0,∞ ∈ ∂D and the branch points of f̂ and their reflections under λ
are all finite.

Since f̂ is locally injective in D , the point a∗ must lie in Ĉ\D , thus a ∈ D .

First, we show that a /∈ D . Suppose that a ∈ D . By assumption, note that
η0(a)+

(
λ(a)−a

)
η′0(a) 6= 0. We now investigate the local behaviour of F near the

point a . Since a∗ is a branch point of F ◦ λ , the image of the positively oriented
loop |z − a| = r under F would have winding number N with N < −1 around
F (a) for a sufficiently small r > 0. Setting δ = z − a and δ∗ = λ(z) − λ(a) , we
have

ηj(z) +
(
λ(z)− z

)
η′j(z) = ηj(a) + η′j(a)δ

+
(
λ(a)− a+ δ∗ − δ

)(
η′j(a) + η′′j (a)δ

)
+O(δ2)

= ηj(a) +
(
λ(a)− a+ δ∗

)
η′j(a) +

(
λ(a)− a

)
η′′j (a)δ + o(δ)

as δ → 0 for j = 0, 1. Using the relations η0η
′
1−η′0η1 = 1 and η′′j = −ϕηj/2 also,
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we calculate

F (z)− F (a) =
η1(z) +

(
λ(z)− z

)
η′1(z)

η0(z) +
(
λ(z)− z

)
η′0(z)

− η1(a) +
(
λ(a)− a

)
η′1(a)

η0(a) +
(
λ(a)− a

)
η′0(a)

=
ϕ(a)

(
λ(a)− a

)2
δ/2 + δ∗ + o(δ)

(
η0(a) +

(
λ(a)− a

)
η′0(a)

)2
+ o(1)

=
λ(z)− λ(a) + c(z − a) + o(z − a)
(
η0(a) +

(
λ(a)− a

)
η′0(a)

)2
+ o(1)

as z → a , where c = ϕ(a)
(
λ(a)− a

)2
/2. From ‖ϕ‖D ≤ k1ε0 , we deduce

|c| ≤ k1

( |λ(a)− a|%D(a)

|λ(z)− z|%D(z)

)2(
|∂̄λ(z)| − |∂λ(z)|

)

for almost all z ∈ D . So, if we are given a number s with k1 < s < 1, then we
can find a sufficiently small number r so that

(5) |c| < s · ess.inf
D(a,r)

(
|∂̄λ| − |∂λ|

)

holds, where D(a, r) = {z ∈ C : |z − a| < r} . We now need the following fact
about the local behaviour of quasiconformal maps, which might be interesting in
itself.

Lemma 6. Let h: C→ C be a quasiconformal homeomorphism. For a point
a ∈ C and a radius r > 0 , suppose that E = ess.infD(a,r)

(
|∂h|− |∂̄h|

)
> 0 . Then,

the map ht(z) = h(z) + tz̄ is quasiconformal on the disk D
(
a, (1 − s)r

)
for any

t ∈ C with |t| < sE . Furthermore, we have

(6) |ht(z)− ht(a)| ≥ (sE − |t|)|z − a| for z ∈ D
(
a, (1− s)r

)
.

We postpone the proof to Section 4 because we require a trick to show this.

Set H(z) =
(
λ(z) + cz

)
/
(
η0(a) +

(
λ(a) − a

)
η′0(a)

)2
. Using (5), we now

apply the above lemma to the case h = λ̄ and t = c̄ and see that H is anti-
quasiconformal near the point a . In particular, the image of the positively oriented
loop lr : |z − a| = r under H has winding number −1 around the point H(a)
for r small enough. With the help of the estimate in (6), we now conclude that
F (z)−F (a) =

(
H(z)−H(a)

)(
1 +o(1)

)
as z → a , which implies that the winding

number of the image of lr under F around the point F (a) = H(a) is equal to
that of H for sufficiently small r . This contradicts the fact that a is a branch
point of F . We now conclude that a /∈ D .

Therefore, the point a∗ must lie in ∂D if f̂ has a branch point a∗ . Since
a = λ(a∗) = a∗ in this case, we may use the letter a instead of a∗ .

We will use the following important fact on quasiconformal reflections to de-
duce a contradiction.
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Lemma 7 [9, Lemma I.6.3]. Let λ be a K -quasiconformal reflection in C
with ∞ ∈ C . Then

1

M(K)
|z − ζ| ≤ |λ(z)− ζ| ≤M(K)|z − ζ|

for any z ∈ C and ζ ∈ C , where M(K) > 1 is a constant depending only on K .

The map f̂ is never injective near a while f̂ |D = f = η1/η0 is injective near
a , so we can select sequences of pairs of points zn and wn in D and closed arcs αn
connecting zn and wn in D such that F (zn) = F (wn) and F (αn) has winding
number ±1 around F (a) = f(a) , and that zn → a , wn → a and diamαn → 0 as
n → ∞ , where diam stands for the Euclidean diameter. Here and hereafter, we
always understand that curves are parametrized by the standard interval [0, 1] .

Now we consider the asymptotic behaviour of F (z) as z tends to a in D .
Keeping Lemma 7 in mind, in the same way as above, we can show that

(7)
F (z)− F (a) =

η1(z) +
(
λ(z)− z

)
η′1(z)

η0(z) +
(
λ(z)− z

)
η′0(z)

− η1(a)

η0(a)

= η0(a)−2
(
λ(z)− a

)
+O

(
(z − a)2

)

as z → a in D .
Therefore, combining with Lemma 7, we have

F
(
αn(t)

)
− F (a)− η0(a)−2

(
α∗n(t)− a

)
= O

((
αn(t)− a

)2)
= O

((
α∗n(t)− a

)2)

uniformly in t as n→∞ , where α∗n(t) = λ
(
αn(t)

)
. In particular,

η0(a)2
(
F
(
αn(t)

)
− F (a)

)
/
(
α∗n(t)− a

)
= 1 + o(1),

hence

(8)
∣∣F
(
αn(t)

)
− F (a)− η0(a)−2

(
α∗n(t)− a

)∣∣ <
∣∣F
(
αn(t)

)
− F (a)

∣∣

holds in t ∈ [0, 1] for sufficiently large n .
Now we may assume |zn| ≥ |wn| for every n . Since F (zn) = F (wn) we have

δn := |z∗n − w∗n| = O(|zn − a|2) as n → ∞ by (7), where we set z∗n = λ(zn) and
w∗n = λ(wn) .

Here, we recall a fundamental property of quasidisks. The linear connected-
ness of D∗ asserts the existence of a constant M > 1 such that any pair of points
in D∗∩D(c, r) can be joined by a curve in D∗∩D(c,Mr) for all c ∈ C and r > 0
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(see [6] or [9]). In particular, there exists a sequence of curves β∗n connecting w∗n
and z∗n in D∗ ∩D(z∗n,Mδn) . Therefore we have

∣∣(F (zn)− F (a)
)
− η0(a)−2

(
β∗n(t)− a

)∣∣ ≤M |η0(a)|−2δn +O(|zn − a|2)

= O(|zn − a|2) = O(|z∗n − a|2) = O(|F (zn)− F (a)|2)

as n→∞ , and then

(9)
∣∣(F (zn)− F (a)

)
− η0(a)−2

(
β∗n(t)− a

)∣∣ < |F (zn)− F (a)|

for n large enough.
Now we conclude from (8) and (9) that the closed curves F (αn)− F (a) and

γ∗n−a , where γ∗n := α∗n·β∗n , have the same winding number around 0 for sufficiently
large n . By the choice of αn , we see that γ∗n has winding number ±1, and hence
γ∗n separates a from ∞ for such an n . Since a and ∞ belong to ∂D∗ and since γ∗n
is a curve in D∗ , this situation contradicts the fact that D∗ is simply connected.
This contradiction is caused by the assumption deg g > 1. Therefore we can now
conclude that g is a Möbius transformation, and hence the proof of Lemma 4 is
now complete except for Lemma 6.

4. Proof of Lemma 6

Set k0 = ‖∂̄h/∂h‖∞ < 1. Without loss of generality, we can assume that
a = 0. We simply write D(r) = D(0, r) . First note that ht(z) = h(z) + tz̄
is quasiregular in D(r) for |t| < E . In fact, |∂̄ht/∂ht| ≤ (|∂λ| + |t|)/|∂̄λ| ≤
k0 + k1 − k0k1 = 1− (1− k0)(1− k1) < 1 a.e. in D(r) if |t|/E = k1 < 1.

Put ε = 1− s . Now we use the auxiliary function χ: C→ C which is defined
by

χ(z) =




z̄ if |z| ≤ εr,
ε(1− ε)−1(r − |z|)z̄/|z| if εr ≤ |z| ≤ r,
0 if r ≤ |z|.

Then we can extend ht|D(εr) to the complex plane, which will still be denoted by
the same letter, by the relation ht = h+ tχ . Since

∂χ(z) = − εr

2(1− ε) ·
|z|
z2

and ∂̄χ(z) =
εr

2(1− ε)

(
1

|z| −
2

r

)
,

we have |∂χ| ≤ 1/2(1− ε) = 1/2s and |∂̄χ| ≤ max{ε, |1− 2ε|}/2(1− ε) < 1/2s on
the annulus {εr < |z| < r} . Setting k = |t|/sE < 1, we see that

∣∣∣∣
∂̄ht
∂ht

∣∣∣∣ ≤
|∂̄h|+ |t|/2s
|∂h| − |t|/2s ≤

2|∂̄h|+ k(|∂h| − |∂̄h|)
2|∂h| − k(|∂h| − |∂̄h|) ≤

m+ k0

1 +mk0
< 1
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holds a.e. in the above annulus, where m = k/(2 − k) < 1. Combining this with
the fact that ht is quasiregular in |z| < εr and in |z| > r , we can see that
ht is quasiregular in C for each t ∈ D(sE) . Set µt = ∂̄ht/∂ht and let ωt be
the quasiconformal automorphism of C satisfying the partial differential equation
∂̄ωt = µt∂ωt a.e. on C and the normalization ωt(0) = 0 and ωt(1) = 1. Then
Qt = ht◦ω−1

t is an entire function for each t ∈ D(sE) . Since ht = h near the point
at infinity, Qt can be holomorphically extended to ∞ so that Q−1

t (∞) = {∞}
and that Qt is locally biholomorphic near ∞ . In particular, Qt is a polynomial
of degree 1, and hence an analytic automorphism of C . Thus we can conclude
that ht = Q−1

t ◦ ωt is also a quasiconformal map of C . Since ht(z) = h(z) + tz̄
for z ∈ D(εr) = D

(
(1− s)r

)
, the first assertion in Lemma 6 now follows.

The latter part of Lemma 6 can immediately be deduced from the former one.
Indeed, for each fixed z ∈ D

(
(1− s)r

)
other than 0 and for t ∈ D(sE) , the fact

that h(z) + (t+ u)z̄ = ht(z) + uz̄ never vanishes whenever |t|+ |u| < sE implies
that |ht(z)| ≥ (sE − |t|)|z̄| = (sE − |t|)|z| .
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