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Abstract. For a large class of nonlinear perturbations of balayage spaces existence and
uniqueness of solutions to the Dirichlet problem are shown. In the special case of a harmonic
space given by a linear second order partial differential operator L the perturbed equation is
Lu − ϕ( · , u)µ = 0 where ϕ(x, t) is continuous in t ∈ R , the functions ϕc := sup{|ϕ( · , t)| :
−c ≤ t ≤ c} , c > 0 , are locally µ -Kato, i.e., yield continuous real L -potentials UGϕcµL , and
the functions t 7→ ϕ(x, t) , x ∈ X , have a weak form of joint lower Lipschitz property, i.e.,
ψ := sups<t(ϕ( · , t) − ϕ( · , s))−/(t− s) is locally µ -Kato and perturbation by −ψµ still leads to
a P -harmonic structure.

1. Introduction and basic notions

Recently the Dirichlet problem for nonlinear perturbation of partial differen-
tial equations of the type

Lu− uϕ( · , u)µ = 0

(L being a linear elliptic or parabolic operator of second order) has been studied
in the potential-theoretic setting of a harmonic space ([BM], [BBM]).

We shall be able to weaken the assumptions, our model case being

Lu− ϕ( · , u)µ = 0

(cf. (2.2)), to get better results, and, nevertheless, have shorter proofs.
In fact, our method works even for balayage spaces (see [BH]) covering in

addition nonlocal situations as e.g. given by Riesz potentials. So we shall study
nonlinear perturbation of balayage spaces. The reader who is mainly interested in
the PDE case leading to harmonic spaces (which can be viewed as balayage spaces
where harmonic measures for open sets live on the boundaries) might consult [He],
[CC], [BH], [K], [HH] and [Bo].

It will be convenient to assume that our balayage space has a base of regular
sets. We adopt the same notations as in [Ha] and recall briefly the basic definitions:
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Let X be a locally compact space with countable base. For every open set U
in X , let B(U) denote the set of all numerical Borel measurable functions on U .
Further, C (U) will denote the space of all continuous real functions on U and
K (U) the set of all functions in C (U) having compact support in U . Occasionally,
functions on U will be identified with functions on X which are zero on U c .
Finally, given any set A of functions let Ab (A + resp.) denote the set of all
functions in A which are bounded (positive resp.).

Let U be a base of relatively compact open subsets of X and, for every
U ∈ U , let HU be a kernel on X such that HU (x, · ) = εx for every x ∈ U c and
HU1U = 0. Let us suppose that U is stable with respect to finite intersections
(by [BH, Remark VII.3.2.4] this is no restriction of generality). Define

(1.1) W := {v | v : X → [0,∞] l.s.c., HUv ≤ v for every U ∈ U }
and, for every numerical function f ≥ 0 on X , let

Rf := inf{v ∈ W : v ≥ f}.
A function s ∈ C +(X) is called strongly (W )-superharmonic if, for every U ∈ U ,
HUs < s on U .

Then (HU )U∈U is a family of (regular) harmonic kernels and (X,W ) is a
balayage space provided the following holds (where U, V ∈ U ):

(H1) Given x ∈ X , limU↓{x}HUf(x) = f(x) for all f ∈ K (X) or R1{x} is l.s.c.
at x .

(H ′2) HVHU = HU if V ⊂ U .
(H3) For every f ∈ Bb(X) with compact support, the function HUf is continuous

on U .
(H ′4) For every f ∈ K (X) , the function HUf is continuous on U .
(H ′5) There exists a strongly superharmonic function s ∈ C +(X) .

In the following (X,W ) will always denote a balayage space associated with
a family (HU )U∈U of regular harmonic kernels. For simplicity let us suppose
that there exists a strictly positive bounded function in W . This is no real loss
of generality, since we may always replace W by {w/s : w ∈ W } , s being an
arbitrary strictly positive function in W ∩ C (X) . (Note, however, that we would
have to replace Bb(X) by the space of all s -bounded functions.)

For every open subset U of X let H (U) denote the set of all harmonic
functions on U , i.e.,

H (U) := {h ∈ B(X) : h|U continuous, HV h(x) = h(x)

for every x ∈ V ∈ U , V ⊂ U}.
One way of defining the convex cone P(X) of all continuous real potentials is the
following:

P(X) := {p ∈ W ∩ C (X) : 0 ≤ g ≤ p, g ∈H +(X) =⇒ g = 0}.
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We recall from [BH] that for every open subset U of X , regular or not, bounded
or not, there is a harmonic kernel HU . It is characterized by

HUp = inf{q ∈P(X) : q ≥ p on U c} (p ∈P(X)).

By definition, a sequence (xn) in U converging to a point z ∈ ∂U is called
regular if limn→∞HUf(xn) = f(z) for every f ∈ K (X) . If it is regular, then
limn→∞HUf(xn) = f(z) even for every f ∈ Bb(X) such that the restriction
of f on U c is continuous at z . The set U is regular, if every sequence in U
converging to a boundary point of U is regular. In particular, every U ∈ U is
regular by (H ′4) .

Let us fix a potential kernel KX for (X,W ) , i.e., KX is a kernel such that

(1.2) KXf ∈P(X) ∩H
(
X \ supp(f)

)
for f ∈ B+

b (X) with compact support.

For every open subset U of X , we define a kernel KU by

(1.3) KU := KX −HUKX .

Since obviously KU (x, · ) = 0 for every x ∈ U c , we may view KU as being a kernel
on X or a potential kernel on U (restricting HV (x, · ) on U for x ∈ V ∈ U with
V ⊂ U we obtain a family of harmonic kernels on U ). We recall that KU is a
compact operator on Bb(X) if U is relatively compact (this follows easily from
[Ha, Lemma 10.1] and (1.3)). Moreover,

(1.4) KU = KV +HVKU

for all open U , V with V ⊂ U .
A function f ∈ B(X) is called a Kato function (with respect to KX ) if

KXMf is a potential kernel (Mf denotes multiplication by f ) or, equivalently, if

KX(1Unf
±) ∈ C (X)

for a sequence (Un) of open sets covering X . Of course, every locally bounded
function in B(X) is a Kato function. More generally, every f ∈ B(X) which is
locally bounded by a Kato function is a Kato function.

Remark 1.1. If the balayage space (X,W ) is given by a second order
differential operator L with Green function GL (such that LGL( · , y) = −δy ),

then potential kernels are associated with (Kato) measures µ by KXf = GfµL :=∫
GL( · , y)f(y)µ(dy) .
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2. Main result

Let ϕ be a Borel measurable real function on X ×R such that the functions
t 7→ ϕ(x, t) , x ∈ X , are continuous on R . For every x ∈ X and real c > 0, we
define

ϕc(x) := max
{
|ϕ(x, t)| : −c ≤ t ≤ c

}
,

ψ(x) := sup

{(
ϕ(x, t)− ϕ(x, s)

t− s

)−
: −∞ < s < t <∞

}
.

We note that ψ: X → [0,∞] is the smallest function such that the functions
t 7→ ϕ(x, t) + ψ(x)t , x ∈ X , are increasing. Moreover,

ψ(x) = sup
t∈R

(
∂ϕ

∂t
(x, t)

)−

if ∂ϕ/∂t exists.
Let us fix a relatively compact open subset U of X and assume the following:

(i) For every c > 0, KX(1Uϕc) ∈ C (X) , i.e., 1Uϕc is a Kato function.
(ii) KX(1Uψ) ∈ C (X) , i.e., 1Uψ is a Kato function.

(iii) Perturbation of (X,W ) by −1Uψ (with respect to KX ) yields a balayage

space (X, W̃ ) (see [Ha]).

Remarks 2.1. 1. If (i) and (ii) hold for U , then (i) and (ii) hold for any
open V ⊂ U .

2. Of course (i) holds if ϕ is locally bounded. Further, (ii) holds if (∂ϕ/∂t)(x, t)
exists and the functions

(
(∂ϕ/∂t)(x, · )

)−
, x ∈ U , are uniformly bounded.

3. Assuming that 1Uψ is a Kato function, (iii) holds provided there exist
s ∈ W and u ∈ B+(X) such that

v := s+KXu ∈ C (X), ψv ≤ u on U

and, for every V ∈ U , {HV s < s}∪{KV (1Uψv) < KV u} = V [Ha, Theorem 6.4]).
A special case would be p := KX1 ∈ C(X) strongly superharmonic and ψ < 1/p
on U (s := 0, u := 1).

4. If (X,W ) is parabolic, (iii) is already a consequence of (ii). Indeed,
suppose that 1Uψ is a Kato function. By [Ha, Lemma 10.1], KXM1Uψ is a
compact operator on Bb(X) and therefore, by [Ha, Theorem 10.2, Lemma 10.3],

L :=

∞∑

m=0

(KXM1Uψ)m

is a bounded operator on Bb(X) . Choose a strongly superharmonic bounded
s ∈ W ∩ C (X) and define v := Ls , u := 1Uψv . Then v = s+KXu and ψv = u
on U . Thus (iii) holds by the preceding remark.
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We define a (nonlinear) operator Kϕ
U : Bb(X)→ Bb(X) by

Kϕ
Uv := KU

(
ϕ( · , v)

)
(v ∈ Bb(X)).

Of course, Kϕ
U lives on Bb(U) : Kϕ

Uv depends only on the restriction of v on U
and vanishes on U c .

Given f ∈ Bb(X) , we shall say that a function Hϕ
Uf ∈ Bb(X) is a (gen-

eralized) solution to the perturbed Dirichlet problem associated with U and f
provided

(2.1) Hϕ
Uf +Kϕ

UH
ϕ
Uf = HUf.

In the situation of Remark 1.1 equation (2.1) implies that

(2.2) LHϕ
Uf − ϕ( · , Hϕ

Uf)µ = 0.

Moreover, Hϕ
Uf has essentially the same boundary behavior as HUf . If e.g. U

is regular, then Kϕ
UH

ϕ
Uf tends to zero at ∂U whence limx→zH

ϕ
Uf(x) = f(z) for

any z ∈ ∂U where f is continuous.
Our main result is the following:

Theorem 2.2. 1. For every f ∈ Bb(X) there exist a unique generalized
solution Hϕ

Uf to the perturbed Dirichlet problem. Moreover,

−(I −KUMψ)−1
(
HUf

− +KU

(
ϕ( · , 0)+

))
≤ Hϕ

Uf

≤ (I −KUMψ)−1
(
HUf

+ +KU

(
ϕ( · , 0)−

))
,

Hϕ
VH

ϕ
Uf = Hϕ

Uf for every open V with V ⊂ U , Hϕ
Uf is continuous on U , and

limn→∞Hϕ
Uf(xn) = f(z) for every regular sequence (xn) in U converging to a

point z ∈ ∂U where the restriction of f to the complement of U is continuous.
2. If f, g ∈ Bb(X) such that f ≤ g , then Hϕ

Uf ≤ Hϕ
Ug .

3. If a bounded sequence (fn) in Bb(X) converges pointwise to a function f ,
then limn→∞Hϕ

Ufn = Hϕ
Uf .

Obviously, Kϕ
V for V ⊂ U is not changed if we replace ϕ by 1(U∩{ψ<∞})×Rϕ

(note that KX(1{ψ=∞}) = 0 by (ii)). Therefore we may assume without loss of
generality that ϕ(x, · ) = 0 for every x ∈ U c and that ψ is a real function. To
prove Theorem 2.2 we may in addition suppose that |ϕ| ≤ 1 and all functions
t 7→ ϕ(x, t) , x ∈ X , are increasing. Indeed, fix c > 0 and define

ϕ̃(x, t) :=
ϕ(x, tc) + tcψ(x)

ϕc(x) + cψ(x) + 1
(x ∈ X, t ∈ R)

where tc := min
(
max(−c, t), c

)
.
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Obviously, |ϕ̃| ≤ 1, ϕ̃ = 0 on U c×R and every function t 7→ ϕ̃(x, t) , x ∈ X ,
is increasing and continuous. By (iii), for every relatively compact open W in X ,
the operator I −KWMψ is invertible, (I −KWMψ)−1 =

∑∞
m=0(KWMψ)m , and

(2.3) H̃W = (I −KWMψ)−1HW

is the harmonic kernel for W with respect to (X, W̃ ) . By (i) and (ii),

K ′X := KXMϕc+cψ+1

is a potential kernel with respect to (X,W ) . Clearly, KXMψ = K ′XMψ/(ϕc+cψ+1) .

This implies that the balayage space (X, W̃ ) is obtained perturbing (X,W ) by
−ψ/(ϕc + cψ+ 1) with respect to K ′X . We finally note that there exists a unique

potential kernel K̃X for (X, W̃ ) such that, for every relatively compact open W
in X ,

K̃W = (I −KWMψ)−1K ′W

(this follows from (2.3) and [Ha, Proposition 10.5]).
Fix a > 0 and let f ∈ Bb(X) such that |f | ≤ a . Since the functions HU1

and KU |ϕ( · , 0)| are bounded, we may choose b > 0 such that

(I −KUMψ)−1
(
aHU1 +KU |ϕ( · , 0)|

)
≤ b.

Then
(I −KUMψ)−1

(
HU |f |+KU |ϕ( · , 0)|

)
≤ b.

Moreover, fix g ∈ Bb(X) and c ≥ b such that |g| ≤ c .

Suppose now that the statements of Theorem 2.2 hold for (X, W̃ ) , K̃X ,
and ϕ̃ (defined using this constant c). Then

|H̃ ϕ̃
Uf | ≤ H̃U |f |+ K̃U |ϕ̃( · , 0)| = (I −KUMψ)−1(HU |f |+KU |ϕ( · , 0)|) ≤ b ≤ c.

Further,

K ′U
(
ϕ̃( · , g)

)
= KU

(
ϕ( · , g) + ψg

)
= KU

(
ϕ( · , g)

)
+KUMψg

whence

g+KU

(
ϕ( · , g)

)
= (I−KUMψ)g+K ′U

(
ϕ̃( · , g)

)
= (I−KUMψ)

(
g+K̃U

(
ϕ̃( · , g)

))
.

Thus
g +Kϕ

Ug = HUf ⇐⇒ g + K̃ϕ̃
Ug = H̃Uf ⇐⇒ g = H̃ ϕ̃

Uf.

This implies that Hϕ
Uf = H̃ ϕ̃

Uf and that Theorem 2.2 holds for (X,W ) , KX ,
and ϕ .
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3. Existence and uniqueness of the solution
to the perturbed Dirichlet problem

As indicated in the previous section we shall assume from now on that |ϕ| ≤ 1
and all functions t 7→ ϕ(x, t) , x ∈ X , are continuous and increasing. For every
real function v on X we define a function Φ(v) by

Φ(v)(x) := ϕ(x, v(x)) (x ∈ X).

Clearly, for every v ∈ Bb(X) ,

Kϕ
Uv = KU

(
Φ(v)

)
.

Our assumption on ϕ implies that |Φ(v)| ≤ 1 for every v ∈ Bb(X) . Moreover,
Φ(v) ≤ Φ(w) on {v ≤ w} , and

(
Φ(vn)

)
converges pointwise to Φ(v) if (vn)

converges pointwise to v .

Lemma 3.1. Let (vn) be a sequence in Bb(X) . Then there exists a sub-
sequence (wn) of (vn) such that the sequence (Kϕ

Uwn) in Bb(X) converges uni-
formly. Moreover, if (vn) converges pointwise to a function v , then (Kϕ

Uvn) con-
verges uniformly to Kϕ

Uv .

Proof.
(
Φ(vn)

)
is a bounded sequence in Bb(X) and KU is a compact

operator on Bb(X) . This implies the first statement. The second statement now
follows from the continuity of the functions t 7→ ϕ(x, t) and the fact that KU is a
kernel.

Proposition 3.2. The operator I +Kϕ
U : Bb(X)→ Bb(X) is surjective.

Proof. We fix g ∈ Bb(X) and consider the mapping T from Bb(X) into
Bb(X) defined by

Tu := g −Kϕ
Uu.

By Lemma 3.1, T is continuous and T (Bb(X)) is relatively compact. By Schau-
der’s fixed point theorem there exists u ∈ Bb(X) such that Tu = u , i.e., we have
u+Kϕ

Uu = g . Thus I +Kϕ
U is surjective.

Let ∗H +(U) denote the set of all functions s ∈ B+(X) such that s is l.s.c.
on U and HV s ≤ s for every V ∈ U with V ⊂ U . If s ∈ ∗H +(U) , then
obviously 1Us ∈ ∗H +(U) .

Lemma 3.3. Let v, w, g ∈ Bb(X) and s ∈ ∗H +(U) such that v + KUw =
g ≤ s and {w > 0} ⊂ {v ≥ 0} . Then v ≥ g − s . In particular, v ≥ 0 if
g ∈ ∗H +

b (U) .

Proof. Obviously, KUw ≤ g ≤ s on {v ≥ 0} , hence on {w > 0} . Conse-
quently KUw ≤ s and v = g −KUw ≥ g − s .
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Proposition 3.4. Let v, w, g ∈ Bb(X) and s ∈ ∗H +(U) such that |g| ≤ s ,
vw ≥ 0 , and v +KUw = g . Then |v − g| ≤ s .

Proof. Apply Lemma 3.3 to v, w, g and −v,−w,−g .

Corollary 3.5. The operator I +Kϕ
U : Bb(X)→ Bb(X) is bijective.

Proof. By Proposition 3.2, the operator I + Kϕ
U is surjective. To show that

it is injective, we fix v1, v2 in Bb(U) such that v1 +Kϕ
Uv1 = v2 +Kϕ

Uv2 . Taking
v := v1 − v2 and w := Φ(v1) − Φ(v2) we have vw ≥ 0 and v + KUw = 0, hence
|v| ≤ 0 by Proposition 3.4 (taking g = s = 0). Thus v1 = v2 .

An immediate consequence is the following:

Theorem 3.6. For every f ∈ Bb(X) , there exists a unique solution Hϕ
Uf to

the perturbed Dirichlet problem.

4. Properties of the solution to the perturbed Dirichlet problem

As before we suppose that U is a relatively compact open subset of X ,
|ϕ| ≤ 1, and the functions t 7→ ϕ(x, t) , x ∈ X , are continuous and increasing.

Proposition 4.1. Let f ∈ Bb(X) . Then Hϕ
VH

ϕ
Uf = Hϕ

Uf for every V ∈ U
with V ⊂ U . Moreover, limn→∞Hϕ

Uf(xn) = f(z) for every regular sequence (xn)
in U converging to a point z ∈ ∂U where the restriction of f to the complement
of U is continuous.

Proof. Define h := Hϕ
Uf . Then h is continuous on U , since Kϕ

UHUf ∈ C (U)
and HUf is harmonic on U . Moreover, for every V ∈ U with V ⊂ U ,

h+Kϕ
V h = h+Kϕ

Uh−HVK
ϕ
Uh = HUf −HV (HUf − h) = HV h.

Fix z ∈ ∂U such that f |Uc is continuous at z and let (xn) be a regular se-
quence in U such that limn→∞ xn = z . Then limn→∞HUf(xn) = f(z) and
we conclude from (1.3) that limn→∞KUg(xn) = 0 for every g ∈ Bb(X) . Thus
limn→∞Hϕ

Uf(xn) = f(z) by (2.1).

Moreover, we easily obtain the following (note that a combination of (1)
and (2) yields the first inequalities in Theorem 2.2):

Proposition 4.2. Let f, f1, f2, . . . ∈ Bb(X) . Then the following holds:

1. −KU

(
ϕ( · , 0)+

)
≤ Hϕ

U0 ≤ KU

(
ϕ( · , 0)−

)
.

2. −HU

(
(f1 − f2)−

)
≤ Hϕ

Uf1 −Hϕ
Uf2 ≤ HU

(
(f1 − f2)+

)
.

3. If f2 ≤ f1 then Hϕ
Uf2 ≤ Hϕ

Uf1 .
4. If the sequence (fn) is bounded and converges pointwise to a function f , then

limn→∞Hϕ
Ufn = Hϕ

Uf .
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Proof. 1. Let v = Hϕ
U0 and s± = KU

(
ϕ( · , 0)±)

)
. Then v ∈ Bb(X) ,

s± ∈ ∗H +

b (U) , and taking w := Φ(v)− Φ(0) we obtain that

v +KUw = −KU

(
ϕ( · , 0)

)
= s− − s+ =: g.

Of course, g ≤ s− and −g ≤ s+ . Since {w > 0} = {Φ(v) > Φ(0)} ⊂ {v ≥ 0} ,
Lemma 3.3 implies that v ≥ g − s− = −s+ . Since {−w > 0} ⊂ {−v ≥ 0} , we
obtain that −v ≥ −g − s+ = −s− . Thus −s+ ≤ v ≤ s− .

2. Let v1 = Hϕ
Uf1 , v2 = Hϕ

Uf2 , v = v1 − v2 , and w = Φ(v1) − Φ(v2) .
Then {w > 0} ⊂ {v ≥ 0} and v + KUw = HU (f1 − f2) =: g . In particular,
g ≤ HU

(
(f1 − f2)+

)
∈ ∗H +

b (U) and −g ≤ HU

(
(f1 − f2)−

)
∈ ∗H +

b (U) . Thus, by
Lemma 3.3,

v ≥ g −HU

(
(f1 − f2)+

)
= −HU

(
(f1 − f2)−

)
,

−v ≥ −g −HU

(
(f1 − f2)−

)
= −HU

(
(f1 − f2)+

)
.

3. Immediate consequence of (2), since (f1 − f2)− = 0 if f2 ≤ f1 .

4. For every n ∈ N ,

(4.1) Hϕ
Ufn +Kϕ

UH
ϕ
Ufn = HUfn.

Of course, limn→∞HUfn = HUf and the sequence (Hϕ
Ufn) is bounded by (2).

Moreover, by Lemma 3.1, there exists a subsequence (gn) of (fn) such that the
sequence (Kϕ

UH
ϕ
Ugn) is convergent. So we conclude from (4.1) that the sequence

(Hϕ
Ugn) converges to a function G ∈ Bb(X) . Letting n tend to infinity we obtain

from (4.1) that

G+Kϕ
UG = HUf.

Thus Hϕ
Uf = G = limn→∞Hϕ

Ugn . By a general argument on subsequences, this
shows that in fact limn→∞Hϕ

Ufn = Hϕ
Uf .

Proposition 4.3. Let h ∈ Bb(X) such that, for every z ∈ ∂U ,
limy→z,y/∈U h(y) = h(z) and limn→∞ h(xn) = h(z) for every regular sequence
(xn) converging to z . Moreover, suppose that U is covered by subsets V ∈ U
satisfying Hϕ

V h = h . Then h = Hϕ
Uh .

Proof. Define g := h + Kϕ
Uh and let V ∈ U be a subset of U such that

Hϕ
V = h . Then h+Kϕ

V h = HV h is harmonic on V and Kϕ
Uh−Kϕ

V h is harmonic
on U ∩V . Therefore g is harmonic on U ∩V and we conclude that g is harmonic
on U . So g−HUh is a function in Bb(X) which is harmonic on U , equal to zero
on U c , and tends to zero along every regular sequence converging to a boundary
point of U . This implies that g −HUh = 0 whence h = Hϕ

Uh .
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Corollary 4.4. If the restriction of f ∈ Bb(X) to the complement of U is
continuous at every z ∈ ∂U , then Hϕ

Uf is the only function g ∈ Bb(X) such that
g = f on U c , Hϕ

V g = g for every V ∈ U with V ⊂ U , and limn→∞ g(xn) = f(z)
for every regular sequence (xn) convergent to a point z ∈ ∂U .

Finally, let us suppose that our assumptions (i)–(iii) hold for every relatively
compact open subset U in X . Then, for every open subset W of X , we may
define ϕH (W ) to be the set of all h ∈ Bb(X) such that h is continuous on W
and Hϕ

V h = h for every V ∈ U with V ⊂W . The following sheaf property is an
immediate consequence of Proposition 4.3.

Corollary 4.5. The set {ϕH (W ) : W open ⊂ X} is a sheaf, i.e., for every
family (Wi)i∈I of open subsets in X ,

ϕH

(⋃
i∈I

Wi

)
=
⋂
i∈I

ϕH (Wi).
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