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Abstract. Let K be a compact convex set in C . For each point z0 ∈ ∂K and each
holomorphic polynomial p = p(z) having all of its zeros in K , we prove that there exists a point
z ∈ K with |z − z0| ≤ 20 diamK/

√
deg p such that

|p′(z)| ≥ (deg p)1/2

20(diamK)
|p(z0)|;

i.e., we have a pointwise reverse Markov inequality. In particular,

‖p′‖K ≥
(deg p)1/2

20(diamK)
‖p‖K .

1. Introduction

Let K be a compact set in the complex plane C and let VK(z) be the
extremal function of K , i.e.,

(1) VK(z) = max

[
0,

1

deg p
sup log |p(z)|

]
,

where the supremum is taken over all nonconstant holomorphic polynomials p =
p(z) with supremum norm ‖p‖K = supz∈K |p(z)| ≤ 1. Suppose that the function
VK is Hölder continuous with exponent 0 < a ≤ 1. Then from the Bernstein–
Walsh inequality

(2) |p(z)| ≤ ‖p‖K exp [deg pVK(z)],

which follows from the definition of VK(z) in (1) (cf., [R]), and the Cauchy esti-
mates, one obtains a Markov inequality : this estimates the size of the derivative
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of a polynomial p on K via the sup-norm ‖p‖K of p , its degree, and the Hölder
exponent a of VK ; namely,

(3) ‖p′‖K ≤ C(K)(deg p)1/a‖p‖K ,

where C(K) is a constant depending only on K . We outline a proof of (3);
cf., [PP, Remark 3.2]. Given a polynomial p of degree n , take z0 ∈ K with
|p′(z0)| = ‖p′‖K . Apply the Cauchy estimates on the disk of radius r = n−1/a

centered at z0 to obtain
‖p′‖K ≤ n1/a‖p‖Kr

where Kr := {z ∈ C : dist(z,K) ≤ r} . Since VK is Hölder continuous with
exponent a , (2) implies that

‖p‖Kr ≤ ‖p‖K(1 +Mra)n

for some constant M = M(K) . The choice of r = n−1/a then yields the result.
For example, if K is the unit disk, then (S.N. Bernstein)

‖p′‖K ≤ (deg p)‖p‖K

and if K is the interval [−1, 1] , then (A.A. Markov)

‖p′‖K ≤ (deg p)2‖p‖K

(cf., [Lo]). Note that in these two examples we have precise knowledge of the
constant: C(K) = 1, and this is sharp. In general, controlling C(K) is difficult.

It is natural to ask whether one can improve the Markov inequality for some
natural subclasses of polynomials. Indeed, P. Lax [L] proved a conjecture of
P. Erdös that if all the zeros of p lie outside the open unit disk ∆, then

‖p′‖∆̄ ≤ 1
2deg p‖p‖∆̄.

An example of p(z) = zn + 1 shows that this is best possible.
However, in 1939, P. Turán [T] showed that if all the zeros of p lie in ∆̄, then

a reverse Markov inequality holds:

(4) ‖p′‖∆̄ ≥ 1
2deg p‖p‖∆̄.

Again the same example of p(z) = zn + 1 shows that it is sharp. Thus for this
class the Markov inequality cannot be significantly improved.

Turán also proved in [T] that for the interval I = [−1, 1] and polynomials
with all their zeros in I , the reverse Markov inequality occurs in the following
form:

(5) ‖p′‖I ≥ 1
6 (deg p)1/2‖p‖I .
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In this note, we are interested in a general form of the reverse Markov in-
equality for a polynomial p having all of its zeros in K :

(6) ‖p′‖K ≥ C(K)(deg p)b‖p‖K .

Note that any polynomial p(z) = czn + 1, where |c| is sufficiently small, provides
a counterexample to any form of the reverse Markov inequality for polynomials
with zeros outside K .

The inequality (6) contains two parameters: C(K) and b . Since the holo-
morphic polynomials p with zeros in K are in one-to-one correspondence with
the holomorphic polynomials p̃ with zeros in aK := {az ∈ C : z ∈ K} via
p̃(z) = p(z/a) , C(K) is inversely proportional to the diameter of K . We are
interested in classes of compact sets K for which there is no other dependence on
K for some value of b . Indeed, we show that for the class of R -circular sets, to
be defined in the next section, which includes disks as well as circular arcs, the
reverse Markov inequality holds with b = 1. For general convex sets we show that
b = 1

2 . In both cases the value of b is best possible provided that C(K) depends
only on the diameter of K .

Moreover, we prove a pointwise version of (6):

|p′(z)| ≥ C(K)(deg p)b|p(z)|,

where, in the case of R -circular sets, such an inequality is valid at every point
z ∈ ∂K ; while, in the case of general convex sets, given any point z0 ∈ ∂K , we can
find z ∈ K lying within a distance 20 diamK/

√
deg p from z0 where the above

inequality holds.
Throughout the paper the following function will play a major role: given a

polynomial p(z) = c(z − z1) · · · (z − zn) , we define

(7) φp(z) = φ(z) =
n∑

j=1

(z − zj)−1.

In the polynomial p (and thus in (7)), we allow repeated roots. Note that

p′(z) = p(z)φ(z).

2. Reverse Markov for R-circular sets

We begin with the following result.

Proposition 2.1. Let K ⊂ C be compact. Suppose that z ∈ ∂K has the
property that there exists a circle of radius R = R(z,K) passing through z such
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that the closed disk it bounds contains K . Then for each complex polynomial p
having all of its zeros in K ,

|p′(z)| ≥ deg p

2R
|p(z)|.

Proof. Let p have degree n and zeros z1, . . . , zn in K (with repeated zeros
listed as often as they occur). Since p′(z) = p(z)φ(z) , it suffices to show that
|φ(z)| ≥ n/(2R) for z ∈ ∂K . Rotating and translating the z -variable (which does
not affect the absolute value of the derivative), we may assume that z = R and
that the closed disk ∆R of radius R centered at zero contains K . Then

|φ(z)| =
∣∣∣∣
n∑

j=1

(R− zj)−1

∣∣∣∣

and the conformal mapping w = 1/(R− z) maps ∆R onto the half-plane Rew ≥
1/(2R) . Thus

|φ(z)| ≥
n∑

j=1

Re
1

R− zj
≥ n

2R

and we have
|p′(z)| ≥ n

2R
|p(z)|

for z ∈ ∂K .

Motivated by the proposition, we make the following definition. A compact
set K ⊂ C will be called R -circular if for every point z ∈ ∂K there is a circle of
radius R passing through z such that the closed disk it bounds contains K .

Theorem 2.2. If K is a compact R -circular set in C , then for each complex
polynomial p having all of its zeros in K , and for every point z ∈ ∂K

|p′(z)| ≥ deg p

2R
|p(z)|.

As a corollary we obtain the first result of Turán.

Corollary 2.3. For a complex polynomial p having all of its zeros in ∆̄ , and
for every point z ∈ ∂∆ ,

|p′(z)| ≥ 1
2deg p|p(z)|.

In particular,
‖p′‖∆̄ ≥ 1

2deg p‖p‖∆̄.
Remark. This inequality is not valid when the zeros lie very close to ∂∆

but outside ∆̄. Indeed, take p(z) = zn − n2 . The zeros of p are the n -th roots
of n2 and hence all have modulus n2/n which tends to 1 as n → ∞ . However,
‖p‖∆̄ = n2 + 1 while ‖p′‖∆̄ = n .

Remark. There exist non-convex compact sets satisfying the hypothesis of
the corollary. For example, let K be an arc of a circle. But as we will see right
now this estimate fails on an interval.
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3. Reverse Markov inequality for convex sets

What happens for general convex compact sets K ? First of all, we simplify
the proof of Turan’s second result (5) concerning the real interval I := [−1, 1] .

Proposition 3.1. Let p = p(x) be a real polynomial of degree n with real
zeros x1, . . . , xn ∈ I . Then

(8) ‖p′‖I ≥
√
n

2
√
e
‖p‖I .

Proof. Order the zeros −1 ≤ x1 ≤ · · · ≤ xn ≤ 1. Fix x0 ∈ I with |p(x0)| =
‖p‖I . We may assume that p(x0) > 0. For some m ∈ {1, . . . , n − 1} , x0 ∈
(xm, xm+1) or else x0 ∈ [0, x1) ∪ (xn, 1] .

In this last case, Proposition 2.1 tells us that

|p′(x0)| ≥ 1
2np(x0).

Thus we may assume that x0 ∈ (xm, xm+1) .
Since p′ = pφ , for x ∈ (xm, xm+1) we have

p(x) = p(x0) exp

(∫ x

x0

φ(t) dt

)
.

Hence

p′(x) = p(x0)φ(x) exp

(∫ x

x0

φ(t) dt

)

or, integrating by parts,

(9) p′(x) = p(x0)φ(x) exp

(
(x− x0)φ(x)−

∫ x

x0

(t− x0)φ′(t) dt

)
.

Now since |x− xj | ≤ 2,

(10) φ′(x) = −
n∑

j=1

1

(x− xj)2
≤ −n

4
.

Therefore, for x0 ≤ x ≤ xm+1 we have

(11) φ(x) ≤ − 1
4n(x− x0)

because φ(x0) = 0.
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Since φ(x) approaches −∞ as x approaches xm+1 from the left, there exists
some point x ∈ (x0, xm+1) at which φ(x) = −1/(x−x0) . From (11), we conclude
that 1/(x− x0) ≥ 1

4n(x− x0) at this point; i.e.,

(12) x− x0 ≤ 2/
√
n.

Thus, at this point x , since φ(x) = −1/(x− x0) , using (9) we obtain

p′(x) = − p(x0)

x− x0
exp

(
−1−

∫ x

x0

(t− x0)φ′(t) dt

)
.

By (10) and (12) the integral

∫ x

x0

(t− x0)φ′(t) dt ≤ −n
4

∫ x

x0

(t− x0) dt = −n(x− x0)2

8
.

Thus

|p′(x)| ≥ p(x0)

x− x0
exp

(
−1 +

n(x− x0)2

8

)
.

The function of x in the right side of the inequality above is decreasing when
0 < x− x0 ≤ 2/

√
n and attains its minimum when x− x0 = 2/

√
n . Therefore

|p′(x)| ≥ p(x0)
√
n

2
√
e

.

The polynomial p(x) = (x2 − 1)n/2 (n even) shows that the 1
2 power of n

is the correct exponent in this inequality. However, the constant is not sharp.
Indeed, Erod [E] proved a sharp result for each degree.

We proceed to show that a reverse Markov inequality with exponent 1
2 is

valid for general convex compact sets.

Theorem 3.2. For any convex compact set K in C , any polynomial p = p(z)
of degree n with all of its zeros in K , and any point z0 ∈ ∂K , there is a point
z ∈ K with |z − z0| ≤ 20(diamK)/

√
n such that

|p′(z)| ≥
√
n

20(diamK)
|p(z0)|.

In particular,

‖p′‖K ≥
√
n

20(diamK)
‖p‖K .

Proof. For simplicity, we assume the diameter of K is 1. Fix p = p(z) of
degree n with all of its zeros z1, . . . , zn in K and let z0 ∈ ∂K . We may assume
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that z0 = 0. We want to prove that there is a constant C > 0—we will see that
C = 1/20 will work—such that

|p′(z)| ≥ C√n |p(0)|

for some point z ∈ K with |z| ≤ rn := 1/
(
C
√
n
)

. We may assume that the set
K lies in the upper half plane H . Then the points wk := −1/zk lie in H as well.
We fix the angle α = π/12; note that

1
4 < sinα < 1

3 .

We divide H into the sector S1 := {w ∈ H : α < argw < π−α} and S2 = H \S1 .
As before, we set

φ(z) :=

n∑

k=1

1

z − zk
= φ1(z) + φ2(z),

where

φ1(z) =
∑′ 1

z − zk
and φ2(z) =

∑′′ 1

z − zk
.

Here
∑′

denotes the sum over k with wk ∈ S1 and
∑′′

denotes the sum over k
with wk ∈ S2 .

Let n1 be the number of of points wk in S1 and let n2 be the number of
points wk in S2 . Since Imwk ≥ 0, Imwk ≥ |wk| sinα when wk ∈ S1 , and since
the diameter of K is 1 implies |wk| ≥ 1, we see that

(13) |φ(0)| ≥
n∑

k=1

Imwk ≥ sinα
∑′
|wk| ≥ 1

4a ≥ 1
4n1,

where a =
∑′|wk| .

We let d denote the distance from z0 = 0 to the nearest zero of p ; i.e.,
d = min{|z1|, . . . , |zn|} . Let t = d sinα . We want to estimate the values of

φ′(z) = φ′1(z) + φ′2(z) = −
∑′ 1

(z − zk)2
−
∑′′ 1

(z − zk)2

when |z| ≤ t .
Note that for such z ,

|zk|(1− sinα) ≤ |z − zk| ≤ |zk|(1 + sinα).

Hence

(14)

|φ′1(z)| =
∣∣∣∣
∑′ 1

(z − zk)2

∣∣∣∣ ≤
∑′ 1

|z − zk|2

≤ 1

(1− sinα)2

(∑′ 1

|zk|2
)
≤ 1

(1− sinα)2

(∑′ 1

|zk|

)2

≤ 9a2

4
.
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Next we consider

−Reφ′2(z) = Re
∑′′ 1

(z − zk)2
.

If |z| ≤ t and wk ∈ S2 , then | arg 1/z2
k| does not exceed 2α . Since |zwk| ≤ sinα ,

we see that | arg(1 + zwk)| ≤ α and

βk(z) :=

∣∣∣∣arg
1

(z − zk)2

∣∣∣∣ =

∣∣∣∣arg
1

z2
k(1 + zwk)2

∣∣∣∣ ≤ 4α.

Now

Re
1

(zk − z)2
=

1

|zk − z|2
cosβk(z) ≥ 1

|zk|2(1 + sinα)2
cos 4α.

Thus

(15) Re
∑′′ 1

(z − zk)2
≥ cos 4α

(1 + sinα)2

∑′′ 1

|zk|2
≥ 9

32

∑′′ 1

|zk|2
.

Recall again that the diameter of K is 1 implies |wk|2 ≥ 1, so that

(16)
∑′′ 1

|zk|2
≥ n2.

Plugging (16) into (15) we obtain

(17) −Reφ′2(z) = Re
∑′′ 1

(z − zk)2
≥ 9

32
n2.

Fixing a constant C > 0 which we will specify later, recall that our goal is to
prove that |p′(z)| ≥ C

√
n |p(0)| for some point z ∈ K with |z| ≤ rn = 1/

(
C
√
n
)

(the conclusion of the theorem is that we can take C = 1/20). First of all, we
note that it suffices to consider the case when d > rn . For if d ≤ rn , then
|zk| ≤ 1/

(
C
√
n
)

for some k and |p′(z)| ≥ C
√
n |p(0)| for some point z ∈ [0, zk] ;

this interval lies in K by convexity of K .
If |φ(0)| > C

√
n , then |p′(0)| = |p(0)φ(0)| > C

√
n |p(0)| and the desired

inequality is true. Thus we may assume that |φ(0)| ≤ C
√
n , and, by (13), that

both 1
4a and 1

4n1 are less than C
√
n .

Let tn = rn sinα . For the sake of obtaining a contradiction, we suppose that

(18) |p′(z)| < C
√
n |p(0)| for all z ∈ K satisfying |z| < rn.

Then for |z| < tn we find that

|p(z)| ≥ |p(0)| −
∣∣∣∣
∫ z

0

p′(ζ) dζ

∣∣∣∣ > |p(0)|(1− sinα) > 2
3 |p(0)|.
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We now take any point z′ ∈ K with |z′| = sinα/
(
C
√
n
)

. By the convexity of
K and the assumption d > rn > tn = |z′| , such points exist. Since n2 = n−n1 ≥
n− 4C

√
n , it follows from (17) and the inequality sinα > 1

4 that

(19)

∣∣∣∣
∫ z′

0

φ′2(z) dz

∣∣∣∣ ≥
9

32

(
n− 4C

√
n
) sinα

C
√
n

=
9

32

(√
n

4C
− 1

)
.

Equation (14) and the inequalities a < 4C
√
n , |z′| < 1/[3C

√
n ] give

(20)

∣∣∣∣
∫ z′

0

φ′1(z) dz

∣∣∣∣ ≤
9a2

4
|z′| < 12C

√
n .

Now

|φ(z′)| ≥
∣∣∣∣
∫ z′

0

φ′2(z) dz

∣∣∣∣−
∣∣∣∣
∫ z′

0

φ′1(z) dz

∣∣∣∣− |φ(0)|.

Plugging (19) and (20) and the assumption |φ(0)| < C
√
n (from (18) into the

latter inequality we obtain

|φ(z′)| > 9

32

(√
n

4C
− 1

)
− 12C

√
n− C√n =

√
n

(
9

128C
− 13C

)
− 9

32

and

|p′(z′)| = |p(z′)| · |φ(z′)| > 2

3

[√
n

(
9

128C
− 13C

)
− 9

32

]
|p(0)|.

If C = 1/20 then

|p′(z′)| > .05
√
n |p(0)| = C

√
n |p(0)|

and this contradicts our assumption (18) since

|z′| = sinα/
(
C
√
n
)
< 1/

[
3C
√
n
]
< 1/

[
C
√
n
]

= rn.

We end this section (and the paper) with a family of examples to show that
for a star-shaped compact set the exponent b in a reverse Markov inequality can
be arbitrarily small.

Proposition 3.3. Given ε > 0 , there exists a compact, star-shaped set
K ⊂ C such that there is no constant C > 0 with

‖p′‖K ≥ C(deg p)ε‖p‖K

for all polynomials p .
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Proof. Fix a positive integer m which will be chosen appropriately later and
let z1, . . . , zm be the m -th roots of unity. Consider the set consisting of m “spokes
of a wheel”

Km := {tzj : 0 ≤ t ≤ 1, j = 1, . . . ,m}.
For a positive integer n , let p(z) = (zm − 1)n . Then deg p = nm ; ‖p‖Km = 1;
and a calculation shows that

‖p′‖Km = mn

(
m− 1

mn− 1

)(m−1)/m[
m− 1

mn− 1
− 1

]n
.

For n large,
‖p′‖Km ³ m2−1/me−1+1/mn1/m.

Thus, taking m > 1/ε proves the proposition.
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