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Abstract. We introduce the notion of limit value sharing for meromorphic functions in the
plane. This is closely connected to Ahlfors’s theory of covering surfaces.

1. Introduction

The central notion in this paper is the sharing of limit values. With this we
mean that two (transcendental) meromorphic functions in the plane converge to

certain given values a ∈ Ĉ on the same sequences zn →∞ .
Shared limit values fit very well to Ahlfors’s theory of covering surfaces [2].

One could say that shared limit values in Ahlfors’s theory are an analogue of
shared values in Nevanlinna’s theory of meromorphic functions [25]. This shows
in the fact that shared limit values lead to shared islands in a suitable sense.
Despite of the formal similarities between shared values and shared limit values,
problems connected to the latter are more topological in nature. A consequence
of this is that the proof of the five point theorem does not carry over. Already
simple examples like f and f + 1/z show that meromorphic functions can share
all limit values without being identical. Nonetheless we will show that there is a
remarkable difference between four and five shared limit values.

In Section 2 we summarize some facts from value distribution theory for later
reference. (For a complete treatment we refer to the monographs [13], [19], [26],
[27] and [37].) In the third section we give growth estimations in terms of the char-
acteristic functions of two mappings that share limit values. The next two sections
are devoted to the construction of non-trivial examples of functions sharing limit
values. The reader who is interested in more theoretical results may skip this
part. The following sections treat the case of five shared limit values, extension
properties of limit value sharing, a generalization of limit value sharing and filling
disks. In these sections the theory of normal families plays a central role. We refer
to [34].

I would like to thank my teacher F. Pittnauer. The idea of shared limit
values is his. Further I want to thank J.K. Langley. The examples in Section 5
were constructed by him.
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2. Value distribution theory

We set Dr(a) := {z ∈ C | |z−a| < r} (with obvious modification for a =∞),
Dr := Dr(0) and D := D1 . The closure of Dr is Dr := {z ∈ C | |z| ≤ r} . We

denote by Ĉ the Riemann sphere and by χ the chordal metric. The complement
of a set A will be denoted Ac . It will always be clear from the context whether
the complement is taken with respect to C or Ĉ .

For meromorphic f : U → Ĉ with U ⊂ C the spherical derivative of f is

f#(z) := lim
w→z

χ
(
f(z), f(w)

)

|z − w| =
|f ′(z)|

1 + |f(z)|2

with z ∈ U . We have f# = (1/f)# , hence f# is defined in poles of f . Further
f#:U → R+ is continuous.

Let f : C → Ĉ be meromorphic and D ⊂ Ĉ be a domain. The bounded
components of f−1(D) are called islands (over D ). Let n(r, f,D) be the number
of islands of f over D contained in Dr . Further

A(r, f) :=
1

π

∫

Dr

(
f#(z)

)2
dz =

1

π

∫ 2π

0

∫ r

0

|f ′(%eiϕ)|2%
(
1 + |f(%eiϕ)|2

)2 d% dϕ.

The function π · A(r, f) is the spherical area of the image of Dr under f (with
regard to multiplicities).

The Ahlfors–Shimizu characteristic is defined (see [13, p. 10])

(1) T (r, f) :=

∫ r

0

A(t, f)

t
dt.

The function T (r, f) is, up to a bounded term, Nevanlinna’s characteristic. Sim-
ilarly to (1) let N (r, f,D) be the logarithmic integral of n(r, f,D) . As usual we
denote by S(r, f) functions such that S(r, f) = o

(
T (r, f)

)
(outside a possible

exceptional set of finite linear measure).
With this notation Ahlfors’s second fundamental theorem takes the form:

Theorem 2.1 (Ahlfors). Let f : C→ Ĉ be meromorphic and D1, . . . , Dq be
Jordan domains with disjoint closures. Then

(q − 2)T (r, f) ≤
q∑

k=1

N (r, f,Dk) + S(r, f).

The estimation of the integrated error term is due to Miles [21].

Let now {a1, . . . , aq} ⊂ Ĉ and D1, . . . , Dq disks with disjoint closures and
ak ∈ Dk for k = 1, . . . , q , and n(r, f, ak) be the number of preimages in f−1({ak})
contained in Dr . The trivial inequality n(r, f,Dk) ≤ n(r, f, ak) shows with The-
orem 2.1 the second fundamental theorem of Nevanlinna theory.
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Theorem 2.2 (Nevanlinna). Let f : C→ Ĉ be meromorphic and {a1, . . . , aq}
⊂ Ĉ . Then

(q − 2)T (r, f) ≤
q∑

k=1

N (r, f, ak) + S(r, f).

Of courseN (r, f, ak) =
∫ r

0
n(t, f, ak)/t dt . (If f(0) = ak a simple modification

is necessary.)
Let I be an island of f over D . If f : I → D is bijective, then I is called a

simple island.

Theorem 2.3 (five islands theorem). Let f : C → Ĉ be a transcendental
meromorphic function. Then over at least one of five given Jordan domains with
disjoint closures f possesses infinitely many simple islands.

For a proof see [2] or the recent paper [4].

We note that f and g are said to share the value a ∈ Ĉ , if for all z ∈ C

f(z) = a ⇐⇒ g(z) = a,

i.e. if f and g have the same preimages for a . (A survey on shared value problems
can be found in [22].) The basic result on shared values is Nevanlinna’s five point
theorem [25].

Theorem 2.4 (five point theorem). Let f, g: C → Ĉ be meromorphic and
not both constant. If f and g share five values then f = g .

To illustrate the strength of this theorem, let us note how Picard’s theorem
follows from the five point theorem: Suppose there exists a non-constant mero-
morphic function f in the plane that omits the third roots of unity. Let γ be a
non-trivial third root of unity, then f and γf are distinct, non-constant and share
five values, namely 0, ∞ and the third roots of unity, contradicting the five point
theorem.

From the second fundamental theorem it follows easily:

Proposition 2.5. Let f, g: C→ Ĉ be meromorphic and non-constant.

(i) If f and g share three values then T (r, f) ≤ 3 · T (r, g) + S(r, f) .
(ii) If f and g share four values then T (r, f) = T (r, g) + S(r, f) .

3. Shared limit values

Picard’s theorem shows that if f is transcendental meromorphic then Ĉ \
{a, b} ⊂ f(Dc

r) for all r > 0 with suitable a, b ∈ Ĉ . In particular we have the

Casorati–Weierstraß theorem: For each a ∈ Ĉ there is a sequence zn ∈ C with
zn →∞ and f(zn)→ a .

We will consider transcendental meromorphic functions f and g on C that
converge on the same sequences zn →∞ to given a ∈ Ĉ .
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Definition 3.1. Let f, g: C → Ĉ be transcendental meromorphic functions
and a ∈ Ĉ . We say that f and g share the limit value a , if for all sequences
zn →∞ :

f(zn)→ a ⇐⇒ g(zn)→ a.

The formal similarity of value sharing and limit value sharing lets one hope
for uniqueness theorems like the five point theorem. Simple examples show, that
such statements are not true (without further restrictions). Let e.g. f be arbitrary
and f1 := (z + 1)f and f2 := zf . Since f1/f2 = (z + 1)/z it follows that f1 and
f2 share all limit values but their difference is f1 − f2 = f . This already shows
that the proof of the five point theorem cannot be mimicked. The given example
is trivial since the quotient is rational. We will construct in Section 5 examples
where there are no such simple relations between f and g , yet all limit values are
shared.

The following lemma makes it possible to use Ahlfors’s theory. For M,N ⊂ C
we write N ⊂∼ M if N \M is bounded.

Lemma 3.2. Meromorphic functions f, g: C → Ĉ share the limit value
a ∈ Ĉ if and only if for all ε > 0 there exists δ(ε) > 0 such that

g−1
(
Dδ(a)

)
⊂∼ f−1

(
Dε(a)

)
and f−1

(
Dδ(a)

)
⊂∼ g−1

(
Dε(a)

)
.

Proof. We can assume that a is finite.
“⇒” Suppose there is ε > 0 such that the sets Mn := g−1

(
D1/n(a)

)
\

f−1
(
Dε(a)

)
with n ∈ N are unbounded. Choose zn ∈ Mn with |zn| ≥ n . Then

zn →∞ and since |g(zn)− a| < 1/n we have g(zn)→ a . Now zn /∈ f−1
(
Dε(a)

)

implies |f(zn) − a| ≥ ε hence f(zn) 6→ a , a contradiction. Symmetry shows
necessity.

“⇐” Suppose there is zn → ∞ with f(zn) → a but g(zn) 6→ a . Passing to
a subsequence we can assume |g(zn) − a| > ε for some ε > 0 and for all n ∈ N .
Since {zn} ⊂∼ f−1

(
Dδ(a)

)
for all δ > 0 and {zn} ∩ g−1

(
Dε(a)

)
= ∅ we deduce

that f−1
(
Dδ(a)

)
\g−1

(
Dε(a)

)
is unbounded for all δ > 0. This is a contradiction.

Symmetry shows the rest.

We introduce a further notion.

Definition 3.3. Let f and g be meromorphic functions and a ∈ Ĉ . We call
a a completely unshared limit value of f and g if there is no sequence zn → ∞
with f(zn)→ a and g(zn)→ a .

A simple “diagonal argument” shows:

Proposition 3.4. Let f and g be meromorphic functions. Then the set of
completely unshared limit values is open.

Proposition 3.5 Let f and g be transcendental meromorphic functions.
Then the set V of all completely unshared limit values is a proper subset of Ĉ .



Meromorphic functions with shared limit values 187

Proof. Suppose V = Ĉ . Then f − g and f/g are not transcendental since
otherwise there are sequences zn and wn with (f − g)(zn)→ 0 and (f/g)(wn)→
1. It easily follows that f and g are rational.

Let f be a transcendental entire function and g := ef + f . It is easy to show
that f and g share no limit value and that V = C is maximal. Another example
is f(z) := ez + e−z and g(z) := ez − e−z . Again V = C but f and g share the
limit value ∞ .

4. Growth estimations

If f and g share values then the charcteristic functions are of comparable
growth (cf. Proposition 2.5). The same is true for shared limit values.

Theorem 4.1. Let f, g: C → Ĉ be transcendental meromorphic functions
that share q ≥ 3 limit values. Then

T (r, f) ≤ q

q − 2
T (r, g) + S(r, f).

Proof. Let a1, . . . , aq be the shared limit values. Choose ε > 0 such that the
disks Dε(a1), . . . ,Dε(aq) have disjoint closures. Lemma 3.2 shows the existence of
δ > 0 with g−1

(
Dδ(ak)

)
⊂∼ f−1

(
Dε(ak)

)
for k = 1, . . . , q . We show that, with at

most finitely many exceptions, every island of f over Dε(ak) contains an island of
g over Dδ(ak) . Suppose it exists a sequence of islands In of f over Dε(ak) which
do not contain islands of g over Dδ(ak) . Since g−1

(
Dδ(ak)

)
⊂∼ f−1

(
Dε(ak)

)
it

follows In ∩ g−1
(
Dδ(ak)

)
= ∅ for n ≥ n0 . Each In contains zn with f(zn) = ak ,

hence f(zn) → ak . Then |g(zn) − ak| ≥ δ gives a contradiction. It follows
that n

(
r, f,Dε(ak)

)
≤ n

(
r, g,Dδ(ak)

)
+ O(1) ≤ n(r, g, ak) + O(1). Logarithmic

integration and Theorem 2.1 shows

(q − 2)T (r, f) ≤
q∑

k=1

N (r, g, ak) + S(r, f) ≤ q · T (r, g) + S(r, f).

Corollary 4.2. Let f, g: C → Ĉ be transcendental meromorphic functions
that share infinitely many limit values. Then there exists for every ε > 0 a set
Eε ⊂ R+ of finite linear measure such that

T (r, f) ≤ (1 + ε)T (r, g)

outside Eε .

In view of Proposition 2.5(ii) the question arises if the conclusion of Corol-
lary 4.2 is already true for q ≥ 4 shared limit values.

The above proof shows that limit value sharing implies a kind of island shar-
ing. Uniqueness theorems do not follow (without further restrictions) since one
cannot conclude that f − g has zeros in these islands.
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We now prove a uniqueness theorem under strong additional assumptions. It
is only a partial result and it would be interesting to know whether the assumptions
can be weakened (especially concerning the growth of f ).

For the proof we need the following corollary from Wiman’s theorem ([6,
p. 224]):

Theorem 4.3 (Wiman). Let f : C → C be a non-constant entire function
with order %(f) < 1

2 and M ⊂ C be unbounded and connected. Then f(M) is
unbounded.

Theorem 4.4. Let f, g: C → C be zero-free entire functions that share all
limit values of a curve surrounding 0 . If

%1(f) := lim sup
r→∞

log log T (r, f)

log r
<

1

2
,

then f = g .

Proof. Since %1(f) < 1
2 we have f = exp(ϕ) with an entire function ϕ with

order %(ϕ) < 1
2 . From our growth estimates it follows g = exp(ψ) with %(ψ) <

1
2 . Let C be the curve consisting of shared limit values and γ be a component
of f−1(C) . Then γ is unbounded and connected. Consider f/g = exp(ϕ − ψ) .
Suppose ϕ − ψ is not constant. Since %(ϕ − ψ) < 1

2 it follows from Wiman’s
theorem that Γ := (ϕ− ψ)(γ) is unbounded (and of course connected). We have
f/g(z)→ 1 for z →∞ in f−1(C) since C is compact, hence in particular f/g → 1
on γ . For all δ > 0 it follows Γ ⊂∼ exp−1

(
Dδ(1)

)
. This implies a contradiction

since for suitable δ > 0 the preimage exp−1
(
Dδ(1)

)
consists only of islands. We

conclude that ϕ− ψ is constant and it follows that f = g .

5. Examples of functions that share all limit values

In this section we construct entire functions f and g that share all limit
values in Ĉ and are not related by simple transformations.

The construction is due to J.K. Langley [16].
The idea is to use two Weierstraß products with close zeros. We need some

technical preparation. Let an →∞ be a complex sequence with |an| ≤ |an+1| for
all n ∈ N . We define

dist (r) := inf
{
|aj − ak| | j 6= k, |aj | ≥ r, |ak| ≥ r

}
.

For z ∈ C we denote by k(z) the index such that |z − ak(z)| ≤ |z − aj | for all
j ∈ N . If several aj have minimal distance from z then we choose k(z) maximal.

Lemma 5.1. Let an → ∞ be a complex sequence with dist (r) → ∞ as
r → ∞ . Then there exists a function ϕ: R+ → R+ with ϕ(r) → ∞ for r → ∞
such that for all z ∈ C and j 6= k(z) :

|z − aj | ≥ ϕ(|z|).
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Proof. Let |z| = r and j ∈ N such that aj has second minimal distance
from z . (Note that |ak(z)−z| = |aj−z| is possible.) First we assume |z−aj | < 1

2r .

Then |aj |, |ak(z)| ≥ 1
2r and thus |z − aj | ≥ 1

2dist
(

1
2r
)

. Otherwise |aj − ak(z)| ≤
|z − aj | + |z − ak(z)| < 1

2dist
(

1
2r
)

+ 1
2dist

(
1
2r
)

= dist
(

1
2r
)

gives a contradiction.

It follows |z − aj | ≥ min
{

1
2r,

1
2dist

(
1
2r
)}

=: ϕ(r) .

Theorem 5.2. For every δ ∈ [0, 1) there exist entire functions f and g with
δ = %(f) = %(g) = %(f/g) which share all limit values.

Proof. We set

f(z) :=
∞∏

k=1

(
1− z

ak

)

with ak := 2k if δ = 0 and ak := k1/δ for δ ∈ (0, 1). These functions are well
known and it follows from the basic results on the exponent of convergence of
canonical Weierstraß products that %(f) = δ for δ ∈ [0, 1) (see [27]). We choose
a second sequence bk with |bk| = ak and |bk − ak| = εk → 0 with a positive
sequence εk which we prescribe later. Put

h(z) :=
∞∏

k=1

(
1− z

bk

)
.

Clearly %(h) = δ . For large z we have

|f(z)|+ |h(z)| ≤ exp(|z|).

On the circles |z − ak| = 1
2 (ak − ak−1) with large z and k :

|f(z)|
|z − ak|

≤ exp(2ak)
1
2 (ak − ak−1)

≤ exp(2ak),

since 1
2 (ak − ak−1) → ∞ . Now f(z)/(z − ak) is holomorphic on |z − ak| ≤

1
2 (ak−ak−1) . The maximum principle shows that on |z−ak| ≤ exp(−3ak) it holds
|f(z)| ≤ exp(−ak) . The same inequality is true for h on |z − bk| ≤ exp(−3ak) .
Set εk := exp(−4ak) . Then

(2) |f(z)| ≤ exp(−ak) and |h(z)| ≤ exp(−ak)

simultanuously on |z − ck| < 1
2 exp(−3ak) where ck := 1

2 (ak + bk) . The union of
these disks will be denoted by E , i.e.

E :=
{
z ∈ C | |z − ck| < 1

2 exp(−3ak)
}
.

We estimate h/f outside E . Again we denote by k(z) the index so that |z−ak(z)|
is minimal. It is easy to see that ak fulfills the assumptions of Lemma 5.1. Thus
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there is function ϕ with ϕ(r) → ∞ and |z − aj | ≥ ϕ(|z|) for j 6= k(z) . For the
function

uk(z) :=
z − bk
z − ak

we get

|uk(z)− 1| = εk
|z − ak|

.

We show |uk(z)(z) − 1| → 0 for z → ∞ outside E . Let zn → ∞ be a sequence
outside E and consider k(zn) . If k(zn) is bounded so is ak(zn) and it follows
|uk(zn)(zn) − 1| → 0. If k(zn) is unbounded we can assume k(zn) → ∞ . We
obtain

|uk(zn)(zn)− 1| = εk(zn)

|zn − ak(zn)|
≤ 2

exp(−4ak(zn))

exp(−3ak(zn))− exp(−4ak(zn))

≤ 12 exp(−ak(zn))→ 0,

since ak(zn) →∞ . Thus for z /∈ E
∞∑

k=1

|uk(z)− 1| ≤
∞∑

k=1
k 6=k(z)

|uk(z)− 1|+ o(1) ≤ 1

ϕ(|z|)
∞∑

k=1

|εk|+ o(1) = o(1).

It follows that v(z) :=
∏∞
k=1 uk(z) converges compactly in C \ E and v(z) → 1

for z →∞ in C \ E . It is easy to show

α :=
∞∏

k=1

bk
ak
6= 0.

Hence for z →∞ in C \ E
h(z)

f(z)
=
v(z)

α
→ 1

α
.

We set g := αh and claim that f and g share all limit values. Let zn → ∞ be
a sequence with f(zn) → a ∈ Ĉ \ {0} . From (2) it follows zn /∈ E for n ≥ n0 .

The behaviour of v shows g(zn)→ a . Similarly we get from g(zn)→ a ∈ Ĉ \ {0}
that f(zn)→ a . Hence f and g share all limit values in Ĉ \ {0} and it is easy to
conclude that all limit values are shared.

It is clear that %(f/g) ≤ δ . Since the zeros of f are the zeros of f/g it follows
from the exponent of convergence that %(f/g) = δ .

Considering f(zn) and g(zn) with the above constructed f and g one gets

examples for every finite order. If F : C→ Ĉ is meromorphic and bounded on E
then F · f and F · g share all limit values. Such F can easily be constructed with
results from complex approximation.
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6. Examples of functions that share finitely many limit values

It is known from the theory of shared values that examples with finitely many
shared values can be constructed by f = p ◦ ϕ and g = q ◦ ϕ with p, q: Ĉ → Ĉ
rational and ϕ: C → Ĉ meromorphic. A well-known example of Gundersen [11]
for functions sharing four values is of the form f(z) = p ◦ ez and g(z) = q ◦ ez .
Since exp(C) = C \ {0} the preimages of p and q for the shared values must be
equal in C \ {0} .

To get examples in the case of limit value sharing, p and q have to share the
values on the whole sphere (already because of the Casorati–Weierstraß theorem).
It follows that examples with four shared limit values cannot be constructed with
the above method. It was noted in [1] that rational functions that share four values
on the sphere are identical.

Let p: Ĉ→ Ĉ be rational and non-constant (this will be assumed throughout

this section), N := {a1, . . . , an} ⊂ Ĉ and M := p−1(N) . It can be proved
elementarily that

(3) (n− 2) deg p ≤ |M | − 2

where deg p is the degree of p and | · | is the cardinality.
The similarity to the formulas in Theorem 2.1 and 2.2 is obvious. With (3)

an adaption of the proof of the five point theorem shows:

Theorem 6.1. If rational p, q: Ĉ→ Ĉ share four values then p = q .

As noted in Proposition 2.5 we have T (r, f) ≤ 3 ·T (r, g) +S(r, f) if two tran-

scendental meromorphic functions f, g: C → Ĉ share three values. See also [12]
where it is shown that the constant 3 is sharp. For rational functions (3) gives:

Proposition 6.2. If rational p, q: Ĉ→ Ĉ share three values then

deg p ≤ 3 deg q − 2.

An example of two rational functions with equal degree that share three values
on the sphere was given in [30]. We now give two examples that are extremal for
the inequality in Proposition 6.2. This answers a question in [30, Question III].

Examples 6.3. First note that if deg q = 1 then Proposition 6.2 shows
deg p = 1. It follows p = q . For the case deg p = 4 and deg q = 2 we have:

(4) p(z) :=
(z + 1)3(z − 3)

(z − 1)3(z + 3)
, q(z) :=

(z + 1)(z − 3)

(z − 1)(z + 3)
;

p and q share the values 0, 1,∞ .
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The next extremal case is deg p = 7 and deg q = 3. We cannot give such an
example. For deg p = 10, deg q = 4 we have

(5)

p(z) :=
(z − 1)7(z + 3)

(
z + 2− i

√
3
)(
z + 2 + i

√
3
)

(z + 1)7(z − 3)
(
z − 2 + i

√
3
)(
z − 2− i

√
3
)

=
z10 − 9z8 + 42z6 − 210z4 + 384z3 − 315z2 + 128z − 21

z10 − 9z8 + 42z6 − 210z4 − 384z3 − 315z2 − 128z − 21
,

q(z) :=
(z − 1)(z + 3)

(
z + 2− i

√
3
)(
z + 2 + i

√
3
)

(z + 1)(z − 3)
(
z − 2 + i

√
3
)(
z − 2− i

√
3
)

=
z4 + 6z3 + 12z2 + 2z − 21

z4 − 6z3 + 12z2 − 2z − 21
;

p and q again share 0, 1,∞ . We were not able to construct examples of higher
degree.

Let now ϕ: C → Ĉ be a transcendental meromorphic function. Then with
the rational functions p , q from (4) and (5) it follows that

f := p ◦ ϕ and g := q ◦ ϕ

share the values and the limit values 0, 1 and ∞ . Then (see e.g. [15, Theo-
rem 2.2.5]) T (r, f) = 2 ·T (r, g)+S(r, f) and T (r, f) = 2.5 ·T (r, g)+S(r, f) . Theo-
rem 4.1 shows that if three limit values are shared then T (r, f) ≤ 3·T (r, g)+S(r, f) .
We believe that examples of the above type with arbitrary large degree exist so
that the constant 3 should be (at least asymptotically) sharp.

Functions that share four limit values gives an example of Reinders [32]. He
constructs two elliptic functions (on the same torus) that share four values. It
is easy to see that value sharing and limit value sharing are identical for such
functions. Consider p, q: Ĉ → Ĉ rational that share 0, 1,∞ and take the square
root of p and q . Then uniformize the algebraic functions by an elliptic function.
This method works for

(6) p(z) :=
(z + 1)3(z − 3)

(z − 1)3(z + 3)
, q(z) :=

(z + 1)(z − 3)3

(z − 1)(z + 3)3

and an elliptic function ϕ: C→ Ĉ which solves

(ϕ′)2 = (ϕ+ 1)(ϕ− 1)(ϕ+ 3)(ϕ− 3).

This leads to

f =
√
p ◦ ϕ = ϕ′ · ϕ+ 1

(ϕ− 1)2(ϕ+ 3)
, g =

√
q ◦ ϕ = ϕ′ · ϕ− 3

(ϕ− 1)(ϕ+ 3)2
;
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f and g share the values and the limit values 0, 1,−1,∞ . Our constants are
different from Reinders’s original example. The uniqueness theorem in [32] shows
that both examples are equal up to a Möbius transformation. We have p(z) = q(z)
with p , q from (6) for z ∈

{
0, 1,−1, 3,−3,∞, i

√
3 ,−i

√
3
}

. In 0, 1, −1, 3, −3,

∞ the shared limit values are taken. For ϕ→ ±i
√

3 it holds

f

g
→
(
±i
√

3 + 1
)(
±i
√

3 + 3
)

(
±i
√

3 − 1
)(
±i
√

3 − 3
) = −1.

Hence the set of all completely unshared limit values is Ĉ \ {0, 1,−1,∞} . In the
next section we show that if five limit values are shared then this set is empty.

All constructed examples in this section have in common that the shared limit
values are also shared values. This is not necessary. Let p1, p2, q1, q2 be rational
functions with p1(∞) = q1(∞) = 1 and p2(∞) = q2(∞) = 0 then with the above
examples we get f̃ := p1 · f + p2 , g̃ := q1 · g + q2 which share the limit values but
not necessarily the values.

7. A five limit value theorem

First we note a statement which is known as the Zalcman lemma [38]. The
idea essentially comes from a paper of Lohwater and Pommerenke [20].

Lemma 7.1 Let F be a family of meromorphic functions in Dr . Then the
following is equivalent:

(i) F is not normal in Dr .
(ii) There is a sequence fj ∈ F , a sequence of linear transformations Mj with

Mj → c ∈ Dr compactly in C such that fj ◦Mj → F compactly in C with
a non-constant meromorphic function F .

We need the following result of Lehto [17].

Theorem 7.2. (i) Let f be a transcendental entire function. Then there
exists a sequence wj →∞ with

|wj |f#(wj)→∞.

(ii) Let f be a transcendental meromorphic function. Then there exists a
sequence wj →∞ with

lim sup
j→∞

|wj |f#(wj) ≥ 1
2 .

In this section we will only use (ii) which, except for the sharp constant 1
2 ,

can already be found in [18]. Statement (i) will be used later in connection with
Julia directions. We note that (i) was improved by Clunie and Hayman [5]. See
also Pommerenke [31].

We now prove a theorem for five shared limit values. An important argument
is Nevanlinna’s five point theorem.
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Theorem 7.3. Let f and g be transcendental meromorphic functions that
share five limit values. Then for each a ∈ Ĉ there is a sequence zj → ∞ such
that f(zj)→ a and g(zj)→ a , i.e. the set of all completely unshared limit values
is empty.

Proof. According to Theorem 7.2(ii) there is a sequence wj → ∞ with
f#(wj) ≥ (3|wj |)−1 . We set for z ∈ D :

Φj(z) := wj |wj |z/(1−z).
Then Φj(0) = wj . Further z/(1 − z) maps the unit disk onto the half plane{

Re z ≥ − 1
2

}
. Hence

|Φj(z)| ≥ |Φj(−1)| =
√
|wj | → ∞.

Put fj := f ◦ Φj : D→ Ĉ . It follows

f#
j (0) = |Φ′j(0)|f#

(
Φj(0)

)
= |wj | log |wj |f#(wj) ≥ 1

3 · log |wj | → ∞.

Hence fj has no convergent subsequence since fj → F implies f#
j → F# .

The Zalcman lemma shows the existence of a sequence of linear transforma-
tions Mj → c ∈ D such that a subsequence fj ◦Mj → F compactly on C with
F meromorphic and non-constant. We claim that gj ◦Mj with gj := g ◦ Φj is
normal in C . Suppose this is not the case and gj ◦ Mj is not normal in Dr

for some r > 0. The Zalcman lemma gives a sequence of linear transformations
Tj → d ∈ Dr such that a subsequence gj ◦Mj ◦ Tj converges compactly on C
to a non-constant meromorphic function H . Since fj ◦Mj → F compactly on
C it follows fj ◦Mj ◦ Tj → F (d) compactly on C . Let a1, . . . , a5 be the five
shared limit values. Since H is non-constant H takes one of the shared limit
values, say H(z0) = a1 . Then zj := Φj ◦Mj ◦Tj(z0)→∞ and g(zj)→ a1 . Since
a1 is a shared limit value we get f(zj) → a1 and therefore F (d) = a1 . Hence
f ◦ Φj ◦Mj ◦ Tj(z) → a1 for all z ∈ C and thus since Φj ◦Mj ◦ Tj(z) → ∞
also g ◦ Φj ◦Mj ◦ Tj(z) → a1 . This contradicts H 6= const. We conclude that a
subsequence of gj ◦Mj converges compactly on C to a meromorphic function G .

Let ai be a shared limit value and F (z0) = ai . Then zj := Φj ◦Mj(z0)→∞
and f(zj)→ ai . It follows g(zj)→ ai which shows G(z0) = ai . Symmetry shows
that the five limit values are shared values of F and G . Since F is non-constant
the five point theorem shows F = G . The Picard theorem gives for every a ∈ Ĉ ,
with at most two exceptions, za ∈ C with F (za) = a and hence a sequence
zaj := Φj ◦Mj(za) → ∞ with f(zaj ) → a . Since F = G it follows g(zaj ) → a .
Proposition 3.4 shows that the set of all completely unshared limit values is open.
Hence there are similar sequences for the two possible exceptional values.

An important tool in our proof is the mapping Φj . It is the universal covering

of D onto C \
{
|z| ≤

√
|wj |

}
.

If f and g are entire so are F and G . It follows:



Meromorphic functions with shared limit values 195

Theorem 7.4. Let f and g be transcendental entire functions that share
four finite limit values. Then for every a ∈ Ĉ there is a sequence zj → ∞ with
f(zj)→ a and g(zj)→ a .

We state the following conjecture:

Conjecture 7.5. Let f and g be transcendental meromorphic functions that
share five limit values. Then f and g share all limit values.

It seems to us that this is the correct analogue of the five point theorem.
We feel it would be interesting to investigate whether the conclusion holds

if the five point set is replaced by a non-discrete set. In the next section we will
show that it holds if the set of shared values has non-empty interior.

The above method of proof proposes to each uniqueness theorem concerning
at least three shared values without multiplicities a corresponding statement for
limit value sharing. In [23] it was proved:

Theorem 7.6. Let f : C→ Ĉ be meromorphic and non-constant. If f and
f ′ share three finite values then f = f ′ .

A modification of the above reasoning shows:

Theorem 7.7. Let f : C→ Ĉ be transcendental and meromorphic. If f and
f ′ share three finite limit values then for every a ∈ Ĉ there is a sequence zj →∞
with f(zj)→ a and f ′(zj)→ a .

8. Extension properties of limit value sharing

Now we assume that f and g share all limit values from an open set. We will
show that then f and g share all limit values. We describe the idea of the proof
in a special case.

Let M ⊂ Ĉ be the open set of shared limit values. We can assume Dc
r ⊂M

for some r > 0. It remains to prove that f and g share all limit values in Dr .
If f−1(Dr) and g−1(Dr) consist only of islands (this is our special assumption),
it follows from the maximum principle that (f − g)(z) → 0 for z → ∞ in these
islands. Clearly ∂f−1(Dr) ⊂ f−1(∂Dr) and ∂Dr ⊂ M is compact. It follows
f − g → 0 on ∂f−1(Dr) . Symmetry shows that f and g share all limit values
in Dr .

In the general case we need statements that play the role of the maximum
principle for unbounded domains. Universal Phragmén–Lindelöf theorems (see [8])
are theorems of this type. The next theorem was conjectured by Newman [28] and
proved by Fuchs [9].

Theorem 8.1. Let G be an unbounded domain and f be holomorphic on
G such that for every finite w ∈ ∂G

lim sup
z→w, z∈G

|f(z)| ≤ 1.
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Set
MG(r, f) := sup

z∈∂Dr∩G
|f(z)|.

If lim infr→∞MG(r, f)/r = 0 then |f(z)| ≤ 1 for all z ∈ G .

Note that no geometrical or topological assumptions are made for the domain.
We will further need a general version of a theorem of Lindelöf (see e.g. [6,

p. 226]) which states that e.g. in every sector each bounded holomorphic function
which converges to 0 for z →∞ on the boundary converges to 0 in the interior.
Such a statement follows from the following result of Sakai [33] (see also [8]).

Theorem 8.2 (Sakai). Let G be an unbounded domain with unbounded
boundary and f be holomorphic on G . If for each w ∈ ∂G with w /∈ D when
approximated from G \D :

lim sup
z→w

|f(z)| ≤ 1

and if
|f(z)| ≤ a|z|b

in G \D for some a, b > 0 then

lim sup
z→∞, z∈G

|f(z)| ≤ 1.

Corollary 8.3. Let G be an unbounded domain with unbounded boundary
and f be continuous and bounded on G and holomorphic in G . If f converges
to 0 on the boundary, i.e. if

lim
z→∞
z∈∂G

f(z) = 0,

then f converges to 0 in G :
lim
z→∞
z∈G

f(z) = 0.

Proof. For all ε > 0 there exists r > 0 such that Sakai’s theorem can be
applied to f(rz)/ε on G/r . Hence lim supz→∞, z∈G |f(z)| ≤ ε . With ε → 0 the
claim follows.

Now we can prove our extension theorem.

Theorem 8.4. Let f, g: C → Ĉ be transcendental meromorphic functions
that share all limit values of an open set. Then f and g share all limit values
in Ĉ .

Proof. Let M ⊂ Ĉ be an open set of shared limit values and Dc
r ⊂ M .

Consider f−1(Dr) . According to the remarks at the beginning of this section it
is sufficient to consider the unbounded components of f−1(Dr) . Suppose there
exists a sequence zn → ∞ with f(zn) → a ∈ Dr but g(zn) 6→ a . Then there
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must be a subsequence zn which lies in the unbounded components of f−1(Dr) .
Let Zn be the component that contains zn . If the Zn tend to ∞ then

lim
n→∞

max
z∈∂Zn

|(f − g)(z)| = 0.

Further f−g is asymptotically bounded in f−1(Dr) . Otherwise there is a sequence
wn → ∞ in f−1(Dr) with g(wn) → ∞ and f(wn) bounded. This contradicts
the assumption that f and g share the limit value ∞ . Theorem 8.1 shows

lim
n→∞

max
z∈Zn

|(f − g)(z)| = 0,

in contradiction to (f − g)(zn) 6→ 0. Hence almost all zn lie in a fixed Z . Since

lim
z→∞
z∈∂Z

(f − g)(z) = 0

and f − g is asymptotically bounded on Z we get from Corollary 8.3

lim
z→∞
z∈Z

(f − g)(z) = 0,

again a contradiction. Symmetry proves the rest.

Instead of Theorem 8.1 one can also use a generalized maximum principle as
can be found e.g. in [6].

9. A generalization of limit value sharing

In this section we study the following situation: Suppose there is an open set
M ⊂ Ĉ and a function ϕ: M → Ĉ with

f(zn)→ a ∈M ⇐⇒ g(zn)→ ϕ(a) ∈ ϕ(M).

We will show that ϕ must be conformal. In fact, we show that ϕ is the restriction
of a Möbius transformation and that the relation between the limit values of f
and g extends to all of Ĉ .

Lemma 9.1. Let f, g: C → Ĉ be transcendental meromorphic functions,
M ⊂ Ĉ and ϕ: M → Ĉ such that for all sequences zn →∞ :

f(zn)→ a ∈M ⇒ g(zn)→ ϕ(a).

Then ϕ is continuous.
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Proof. Let a ∈ M and ak be a sequence in M with ak → a . We can

assume a, ϕ(a), ak, ϕ(ak) ∈ C . Choose a sequence z
(k)
n → ∞ with f(z

(k)
n ) → ak

for n → ∞ and hence g(z
(k)
n ) → ϕ(ak) . Pick nk such that |f(z

(k)
nk )− ak| < 1/k ,

|g(z
(k)
nk ) − ϕ(ak)| < 1/k and |z(k)

nk | ≥ k . Then z
(k)
nk → ∞ with k → ∞ and

f(z
(k)
nk )→ a . Then g(z

(k)
nk )→ ϕ(a) and it follows ϕ(ak)→ ϕ(a) .

Note that we did not even use continuity.

It is less obvious that ϕ is meromorphic.

Lemma 9.2. With the assumptions of Lemma 9.1 with M ⊂ Ĉ open
ϕ: M → Ĉ is meromorphic.

Proof. Let a ∈ M . We may assume a, ϕ(a) ∈ C and ϕ 6= ∞ on Dε(a)
with suitable ε > 0. The five islands theorem shows that, with at most four
exceptions, f possesses infinitely many simple islands over Dε(a) for each a ∈M
(maybe one has to decrease ε > 0). Let In be a sequence of simple islands
of f over Dε(a) and f−1

n : Dε(a) → In be the corresponding branches of the

inverse function of f . We consider Fn: Dε(a) → Ĉ with Fn := g ◦ f−1
n . Now

g is asymptotically bounded on I := ∪In . Otherwise there exists a sequence
zn ∈ I with zn →∞ and g(zn)→∞ . Passing to a subsequence we may assume
f(zn) → b ∈ Dε(a) . It follows ϕ(b) = limn→∞ g(zn) = ∞ in contradiction
to the choice of ε . Hence Fn is a normal sequence and converges pointwise to
the continuous function ϕ|Dε(a) . According to Vitali’s theorem Fn converges
compactly. Thus ϕ is holomorphic on Dε(a) . The continuity of ϕ shows the
removability of the four possible exceptional points.

Theorem 9.3. Let f, g: C → Ĉ be transcendental meromorphic functions,
M ⊂ Ĉ be open and ϕ: M → Ĉ such that for every sequence zn →∞ :

f(zn)→ a ∈M ⇐⇒ g(zn)→ ϕ(a) ∈ ϕ(M).

Then ϕ can be extended to a Möbius transformation and

f(zn)→ a ∈ Ĉ ⇐⇒ g(zn)→ ϕ(a) ∈ Ĉ,

i.e. ϕ ◦ f and g share all limit values.

Proof. We may assume Dc ⊂ M and ϕ(∞) = ∞ , i.e. f and g share the
limit value ∞ . We show that ϕ can be extended to a holomorphic function in C .
Suppose the power series expansion of ϕ around ∞ has as its circle of convergence
∂Dr with 0 < r < 1. Let a ∈ ∂Dr . We choose ε with 0 < ε < r and consider

Uε(a) := {z ∈ C | r − ε < |z| < 2, | arg z − arg a| < ε}.

According to the five islands theorem there are at most four points a ∈ ∂Dr such
that f has only finitely many simple islands over Uε(a) for all ε > 0. Suppose
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a is not such an exceptional point. Then there is a sequence In of simple islands
over Uε(a) with suitable ε > 0. Let f−1

n : Uε(a) → In be the corresponding
inverse functions. Since f and g share the limit value ∞ it follows that g is
asymptotically bounded on f−1

(
Uε(a)

)
. Hence Fn := g ◦ f−1

n is normal on Uε(a)
and converges on the part of Uε(a) which lies in Dc pointwise to ϕ . Vitali’s
theorem shows that Fn converges on Uε(a) compactly to the extension of ϕ .

Let now a ∈ ∂Dr be such that f possesses only finitely many simple islands
over Uε(a) for every ε > 0. We denote by Vε,δ(a) the sets Vε,δ(a) := Uε(a)\Uδ(a)
with δ < ε . We claim the existence of ε > 0 such that f has infinitely many simple
islands over each Vε,δ(a) with δ ∈ (0, ε) . Suppose ε does not exist. For ε1 > 0
choose δ1 > 0 such that f has only finitely many simple islands over Vε1,δ1(a) .
For ε2 > 0 with ε2 < δ1 choose δ2 such that f possesses only finitely many islands
over Vε2,δ2(a) and continue inductively. Since the Vεk,δk(a) are Jordan domains
with disjoint closures the five islands theorem shows that this process must stop
after three repetitions and we obtain a contradiction. Hence there is ε > 0 such
that f has for all ε > δ > 0 infinitely many simple islands over Vε,δ(a) . As above
one shows that ϕ can be extended to Dc

r ∪ Vε,δ(a) for all δ with ε > δ > 0. Now
δ → 0 shows that a is an isolated singularity of ϕ . Since ∞ is a shared limit
value g is asymptotically bounded on

⋃
0<δ<ε f

−1
(
Vε,δ(a)

)
. It follows that ϕ is

bounded in a neighbourhood of a and therefore a is removable. Hence the radius
of convergence of ϕ around ∞ is not finite, i.e. ϕ is holomorphic in Ĉ \ {0} . The

origin is again a removable singularity. Thus ϕ: Ĉ → Ĉ is rational with a single
pole at ∞ . This pole is simple since ϕ is bijective in a neighbourhood of ∞ .
Hence ϕ is a polynomial of first degree.

Consider f̃ := ϕ ◦ f and g . Then f̃ and g share all limit values in M .
According to Theorem 8.4, f̃ and g share all limit values in Ĉ . The theorem is
proved.

We generalize the foregoing theorem. For this we need the following lemma.

Lemma 9.4. Let f and g be meromorphic functions that share the limit
value a ∈ Ĉ . If there exists a neighbourhood Dε(a) such that for all b ∈ Dε(a)
and all sequences zn →∞ :

f(zn)→ b ⇒ g(zn)→ b,

then f and g share all limit values in Ĉ .

Proof. We may assume that f and g share the limit value a = 0. According
to Lemma 3.2 there exists δ with 0 < δ < ε such that g−1(Dδ) ⊂∼ f−1(Dε/2) .
Suppose there is a sequence zn →∞ with g(zn)→ b ∈ Dδ but f(zn) 6→ b . Then
there exists a subsequence zn →∞ with f(zn)→ c 6= b . Since {zn} ⊂∼ f−1(Dε/2)
it follows c ∈ Dε and therefore g(zn)→ c , a contradiction. Hence f and g share
all limit values in Dδ and Theorem 8.4 shows that all limit values are shared.
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Theorem 9.5. Let f, g: C → Ĉ be transcendental meromorphic functions
which share the limit value ∞ . Further let M be a neighbourhood of ∞ and
ϕ: M → Ĉ such that for all zn →∞ :

f(zn)→ a ∈M ⇒ g(zn)→ ϕ(a).

Then ϕ can be extended to a polynomial and ϕ ◦ f and g share all limit values.

Proof. That ϕ is a polynomial follows exactly as in the proof of Theorem 9.3.
We set K := supz∈Mc |ϕ(z)| <∞ and choose R > K . Then ϕ−1(Dc

R) ⊂ M and
ϕ ◦ f and g share the limit value ∞ since ϕ−1({∞}) = {∞} . Let a ∈ Dc

R and
zn → ∞ such that ϕ ◦ f(zn) → a . Then all accumulation points of f(zn) are
contained in ϕ−1({a}) ∈ M . It follows g(zn) → ϕ

(
ϕ−1({a})

)
= a . With a = ∞

the assumptions of Lemma 9.4 are fulfilled. Hence ϕ ◦ f and g share all limit
values.

It is important that ∞ is a shared limit value. With an approximation theo-
rem of Arakelian (see [10]) it is possible to construct entire functions g with

exp(zn)→ a ∈ D ⇒ g(zn)→ ϕ(a)

where ϕ: D→ C is an arbitrary holomorphic and continuous function in D.
If ϕ is defined globally we obtain:

Theorem 9.6. Let f, g: C → Ĉ be transcendental meromorphic functions
and ϕ: Ĉ→ Ĉ such that for all zn →∞ :

f(zn)→ a ∈ Ĉ ⇒ g(zn)→ ϕ(a).

Then ϕ is rational and ϕ ◦ f and g share all limit values.

Proof. Lemma 9.2 shows that ϕ is rational. Let a ∈ Ĉ and zn → ∞ such
that ϕ ◦ f(zn) → a . The accumulation points of f(zn) are again contained in
ϕ−1({a}) . Then g(zn)→ ϕ

(
ϕ−1({a})

)
= a . It follows that ϕ ◦ f and g share all

limit values.

10. Filling disks and Julia directions

A sequence of disks

(7) Dj := {z ∈ C | |z − zj | < εj |zj |}

with zj → ∞ and εj → 0 is called a sequence of filling disks for meromorphic

f : C → Ĉ if in every infinite union ∪Djk f takes all values of Ĉ with at most
two exceptions.

Every transcendental entire function possesses a sequence of filling disks. The
zj are chosen such that f#(zj) is large. Theorem 7.2 shows the existence of a
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sequence zj with Mj := |zj |f#(zj) → ∞ . Set e.g. εj := 1/
√
Mj and consider

for z ∈ D the functions
fj(z) := f(εj |zj |z + zj).

Then f#
j (0) = εj |zj |f#(zj) =

√
Mj → ∞ . Hence fj has no convergent sub-

sequence. Montel’s theorem shows that each subsequence of fj takes all values

in Ĉ , with at most two exceptions, infinitely often. This shows that the Dj are
filling disks.

The functions fj are of the form fj = f ◦ Φj , with Φj(D)→∞ .

Lemma 10.1. Let f and g be transcendental meromorphic functions that
share three limit values and Φj : D→ C holomorphic such that Φj(D)→∞ . Set
fj := f ◦Φj and gj := g ◦Φj . Then fj is normal in D if and only if gj is normal
in D .

Proof. Suppose fj is not normal in D but gj is normal. According to the
Zalcman lemma there exists a sequence of linear transformations Mj → c ∈ D
such that after passing to a subsequence fj ◦Mj → F compactly on C with a
non-constant meromorphic function F .

Since gj is normal, a subsequence converges compactly gj → G with a mero-
morphic function G in D and thus gj ◦Mj → G(c) compactly on C . Since F
is non-constant, F takes one of the shared limit values a1, a2, a3 . We assume
F (z0) = a1 . Hence fj ◦Mj(z0) = f ◦ Φj ◦Mj(z0) → a1 . From the properties of
Mj and Φj it follows zj := Φj ◦Mj(z0) → ∞ . Since a1 is a shared limit value
of f and g we obtain g(zj) = gj ◦Mj(z0) → a1 and thus G(c) = a1 . It follows
gj ◦Mj(z)→ a1 for all z ∈ C and since Φj ◦Mj(z)→∞ also fj ◦Mj(z)→ a1 .
This implies F ≡ a1 , contradicting F 6= const.

If f is entire, so are the functions resulting from the Zalcman lemma.

Lemma 10.2. Let f and g be transcendental entire functions that share
two finite limit values. Let Φj , fj and gj be as above. Then fj is normal in D
if and only if gj is normal in D .

Suppose f possesses filling disks with centres zj . If α is an accumulation
point of arg zj then in each sector

Jε := {z ∈ C | | arg z − α| < ε}
around the ray J := {z ∈ C | arg z = α} lie infinitely many filling disks. It follows
that f takes in every Jε each value, with at most two exceptions, infinitely often,
i.e. J is a Julia direction (see [14]). Hence every transcendental entire function
possesses a Julia direction.

For meromorphic functions the situation is more complicated. In fact there are
meromorphic functions without Julia directions. From the above argumentation
for entire functions we see that in this case necessarily:

(8) f#(z) = O

(
1

|z|

)
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for all z ∈ C . Functions with (8) are called Julia exceptional functions [29] (see
also [18, Theorem 3]).

Inequality (8) and (1) immediately imply T (r, f) = O
(
(log r)2

)
.

Hence if

(9) lim sup
r→∞

T (r, f)

(log r)2
=∞,

then there exists zj → ∞ with |zj |f#(zj) → ∞ . It follows again that f has a
sequence of filling disks and hence a Julia direction.

We note that Julia directions need not be generated by filling disks. An
example of a meromorphic function with (8) and a Julia direction was given in [39].
An example of an entire function with a Julia direction where the sectors Jε do
not contain filling disks can be found in [3]. We will call a Julia direction which is
obtained from filling disks a Milloux direction.

We call zj → ∞ a singular sequence for f if for all ε with 0 < ε < 1 and
each subsequence Dε

jk
of the disks

Dε
j := {z ∈ C | |z − zj | < ε|zj |}

f takes in ∪Dε
jk

all values, with at most two exceptions, infinitely often. A similar
notion was introduced in [7].

Proposition 10.3. Let f : C→ Ĉ be meromorphic and zj →∞ . Then the
following statements are equivalent:

(i) zj is a singular sequence of f .

(ii) fj : D → Ĉ with fj(z) := f(ε|zj |z + zj) has no convergent subsequence for
all ε ∈ (0, 1) .

(iii) There exists a sequence uj with |zj − uj | = o(|zj |) and |uj | · f#(uj)→∞ .

(iv) There exists a sequence εj → 0 such that the disks (7) are filling disks for f .

We omit the simple proof.

Theorem 10.4. Let f and g be trancendental meromorphic functions that
share three limit values. Then f and g have the same singular sequences.

Proof. Let zj be a singular sequence of f . For ε ∈ (0, 1) set Φj(z) :=
ε · |zj | · z + zj . Since ε < 1 it follows Φj(D) → ∞ . Proposition 10.3 shows that
fj = f ◦Φj has no convergent subsequence. Suppose gj = g ◦Φj has a convergent
subsequence gj . According to Lemma 10.1 the corresponding subsequence fj is
normal and possessses hence a convergent subsequence in contradiction to Propo-
sition 10.3. It follows that gj has no convergent subsequence and Proposition 10.3
shows that zj is a singular sequence for g . Symmetry proves the rest.
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Corollary 10.5. Let f and g be transcendental meromorphic functions that
share three limit values. Then:

(i) f and g have the same Milloux directions.
(ii) Either f and g are both Julia exceptional functions or f and g have a

common Milloux direction.
(iii) If (9) holds for f then (9) is true for g and f and g have a common Milloux

direction.

For (iii) apply Theorem 4.1.

Corollary 10.6. Let f and g be transcendental entire functions that share
two finite limit values. Then:

(i) f and g have the same Milloux directions.
(ii) f and g have a common Milloux direction.

We note that in [35] (see also [36]) it was shown that functions with a Valiron
deficient value are not Julia exceptional. This gives obvious versions of the above
statements for such functions.
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