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Abstract. We present a method which appears to be useful in identifying the Lebesgue
points for a function in the Sobolev class W 1,n . The key argument is applied for obtaining the
uniqueness of asymptotic values, characterizing the approximate continuity, and for showing that
functions satisfying a weak minimum principle possess Lebesgue points everywhere.

1. Introduction

This note deals with the pointwise behaviour of functions in the Sobolev
space W 1,n

loc (Rn) , n ≥ 2. The main ingredient of the paper is a method based on
a somewhat non-standard combination of Sobolev type inequalities. This method,
among others, implies that any function u ∈ W 1,n(B) defined in the unit ball
B ⊂ Rn cannot have two different asymptotic values at the boundary point of B
(Theorem 3.1). We have not been able to locate this general result in the existing
literature. Of course, the question concerning asymptotic values has a long history
and much stronger results are true if u is assumed to be, for example, monotone
in the sense of Lebesgue, see e.g. [7], [8], [10] and the references therein.

We present two other applications of the key argument. Firstly, it is shown
that for functions in W 1,n

loc (Rn) the points of approximate continuity coincide with
the Lebesgue points (Theorem 3.4). The new feature here is that the approximate
continuity implies the Lebesgue point property. Secondly, we prove that functions
in W 1,n

loc (Ω) satisfying a weak minimum principle in an open set Ω ⊂ Rn possess
Lebesgue points everywhere in Ω.

An elementary example shows that results do not hold in the same form for
Sobolev functions u ∈ W 1,p(Rn) , p < n . Another example shows that approxi-
mate continuity does not imply the n -fine continuity even for functions satisfying
a weak minimum principle.

One should keep in mind that functions in W 1,n
loc (Rn) always possess Lebesgue

points outside an n -polar set. Thus our results could be regarded as kind of
minimal conclusions concerning the pointwise behaviour in the exceptional set.
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2. Definitions and auxiliary lemmas

Throughout n ≥ 2 and we use the notation Br = B(x0, r) for x0 ∈ Rn and
r > 0. The boundary of the ball B(x0, r) is denoted by ∂B(x0, r) and the integral
average of u ∈ L1(Br) over Br is denoted by

uBr =

∫
−
Br

u dx =
1

|Br|

∫

Br

u dx.

Here we integrate with respect to the n -dimensional Lebesgue measure | · | . The
linear measure is denoted by | · |1 .

Let Ω ⊂ Rn be open. Then the Sobolev space W 1,n(Ω) consists of functions
from the Lebesgue space Ln(Ω) for which |∇u| ∈ Ln(Ω). Here and elsewhere ∇u
is the weak gradient of u . We write u ∈ W 1,n

loc (Rn) if u ∈ W 1,n(B) for all balls
B ⊂ Rn .

Recall next the definitions of Lebesgue point and approximate continuity.
Suppose that u: B(x0, r) → [−∞,∞] is integrable. Then x0 is called a Lebesgue
point for u , if

lim
r→0

∫
−
Br

|u− u(x0)| dx = 0.

The function u is called approximately continuous at x0 , if there is a set E ⊂ Rn

with

lim
r→0

|E ∩Br|
|Br|

= 1

such that the restriction u|E is continuous at x0 .
The key argument is based on certain consequences of Poincaré and Sobolev

inequalities. These consequences are well known for specialists but we give brief
proofs for the reader’s convenience. Our first auxiliary lemma deals with functions
vanishing on a large set.

Lemma 2.1. Let B ⊂ Rn be a ball and let u ∈W 1,n(B) . Suppose that

∣∣{x ∈ B : |u(x)| > 0}
∣∣ ≤ α|B|

for some 0 < α < 1 . Then there is a constant c depending only on n and α such
that ∫

−
B

|u|n dx ≤ c
∫

B

|∇u|n dx.

Proof. The following argument is taken from [3, Lemma 2.8]. By the Minkow-
ski and the Poincaré inequalities, we have

(∫

B

|u|n dx
)1/n

≤ c
(
|B|
∫

B

|∇u|n dx
)1/n

+ |uB | |B|1/n.
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By Hölder’s inequality,

|uB | |B|1/n ≤ |B|1/n−1

∫

{x∈B:|u(x)|>0}
|u| dx ≤

(∫

B

|u|n dx
)1/n

α1−1/n,

and the assertion easily follows.

The other lemma concerns n -quasicontinuous representatives of Sobolev func-
tions. Recall that u: Ω→ [−∞,+∞] is n -quasicontinuous on an open set Ω ⊂ Rn

if for every ε > 0 there is a set E ⊂ Ω such that C1,n(E) < ε and the restriction
of u to Ω \ E is continuous. In this paper C1,n refers to the Sobolev n-capacity,
see e.g. [1].

Lemma 2.2. Let x0 ∈ Rn and suppose that u ∈ W 1,n(Rn) is n -quasi-
continuous. Then for any R > ε > 0 there is Aε ⊂ [0, R] such that the linear
measure of Aε satisfies |Aε|1 ≥ R− ε and

(
oscu

(
∂B(x0, r)

))n ≤ cr

ε

∫

B(x0,R)

|∇u|n dx

for all r ∈ Aε . The constant c depends only on n .

Proof. A version of the Gehring oscillation lemma implies that u is continuous
on ∂Br = ∂B(x0, r) and the estimate

(2.1)
(
oscu(∂Br)

)n ≤ cr
∫

∂Br

|∇u|n dσ

holds for a.e. r ∈]0, R[ , see [4, Lemma 2.1]. Here c depends only on n . The
assertion follows from this by elementary estimates. For r ∈]0, R] , let ϕ(r) =∫
∂Br
|∇u|n dσ , where σ is the surface measure on the sphere ∂Br . Recall that

∫

BR

|∇u|n dx =

∫ R

0

ϕ(r) dr.

For λ > 0, we have

∣∣{t ∈ [0, R] : ϕ(t) ≤ λ}
∣∣
1
≥ R− 1

λ

∫ R

0

ϕ(r) dr.

Choosing λ = (1/ε)
∫ R

0
ϕ(r) dr , Aε = {t ∈ [0, R] : ϕ(t) ≤ λ} , we have |Aε|1 ≥

R− ε and each r ∈ Aε satisfies
∫

∂Br

|∇u|n dσ = ϕ(r) ≤ λ =
1

ε

∫ R

0

ϕ(t) dt

assuming that λ > 0. Since the case λ = 0 is trivial, we conclude the assertion
from (2.1).
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3. Lebesgue points and approximate continuity

We show first that functions in W 1,n(B) cannot have two distinct asymptotic
values at the boundary point x0 of B . Such a property is well known for quasi-
conformal functions and for monotone functions in the Sobolev space W 1,n(B) ;
see [10, p. 181 and p. 189]. We state the result in general terms as follows.

Theorem 3.1. Let u ∈W 1,n
loc (Rn) and let E ⊂ Rn with

(3.1) β = lim inf
R→0+

|{r ∈ (0, R) : ∂B(x0, r) ∩ E 6= ∅}|1
R

> 0.

If u has a finite limit α as x→ x0 in E , then

lim
r→0+

∫
−
B(x0,r)

|u− α|n dx = 0.

Proof. Define v ∈W 1,n
loc (Rn) by v(x) = |u(x)− α| and denote

Eε = {x ∈ Ω : v(x) ≤ ε}

for ε > 0. We divide the integral average of vn over Br into two parts by writing
∫
−
Br

vn dx =
1

|Br|

∫

Br∩Eε
vn dx+

1

|Br|

∫

Br\Eε
vn dx.

The first term on the right-hand side is trivially estimated as

1

|Br|

∫

Br∩Eε
vn dx ≤ εn.

To estimate the second term we write

1

|Br|

∫

Br\Eε
vn dx ≤ 2n−1

|Br|

∫

Br\Eε

(
(v − ε)n + εn

)
dx

≤ 2n−1

∫
−
Br

(
(v − ε)+

)n
dx+ 2n−1εn.

It is not hard to see that Lemma 2.2 implies together with (3.1) the inequality

|Br ∩ Eε| ≥ c|Br|

for all r small enough. Here 0 < c < 1 depends only on n and β . Hence we may
apply Lemma 2.1 and conclude that

∫
−
Br

(
(v − ε)+

)n
dx ≤ c

∫

Br

|∇v|n dx
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for all r small enough. It follows that

1

|Br|

∫

Br\Eε
vn dx ≤ c

∫

Br

|∇v|n dx+ 2n−1εn

for a constant c depending only on n and β . Consequently

∫
−
Br

vn dx ≤ εn(1 + 2n−1) + c

∫

Br

|∇u|n dx.

Letting r → 0, we obtain

lim sup
r→0

∫
−
Br

vn dx ≤ εn(1 + 2n−1),

and the claim

lim
r→0

∫
−
Br

|u− α|n dx = 0

follows.

It is known that Theorem 3.1 does not hold for p < n . The following example
is taken from [6].

Example 3.2. Define u in R2 by

u(z) = u(reiθ) =





θ for 0 ≤ θ ≤ 1
2π,

1
2π for 1

2π ≤ θ ≤ π,
3
2π − θ for π ≤ θ ≤ 3

2π,

0 for 3
2π ≤ θ ≤ 2π.

Then u ∈ W 1,p
loc (R2) for p < 2, but there is an infinite number of asymptotic

values in the origin.

Theorem 3.1 easily implies that the points of approximate continuity coincide
with the Lebesgue points for functions in W 1,n

loc (Rn) .

Theorem 3.3. Let u ∈W 1,n
loc (Rn) and let x0 ∈ Rn . Then the following are

equivalent:

(i) lim
r→0

∫
−
Br

u dx = u(x0) <∞,

(ii) lim
r→0

∫
−
Br

|u− u(x0)|n dx = 0,

(iii) app-lim
x→x0

u(x) = u(x0) <∞.
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Proof. It is a trivial consequence of Hölder’s inequality that (ii) implies (i).
Also, it is well known that (ii) implies (iii), see [11, p. 190]. We show first that (i)
implies (ii). Suppose that

lim
r→0

uBr = lim
r→0

∫
−
Br

u dx = u(x0).

By the Poincaré inequality,

∫
−
Br

|u− u(x0)|n dx ≤ 2n−1

∫
−
Br

|u− uBr |n dx+ 2n−1

∫
−
Br

|uBr − u(x0)|n dx

≤ C
∫

Br

|∇u|n dx+ 2n−1|uBr − u(x0)|n,

and the claim (ii) easily follows. We conclude the assertion of the theorem by
showing that (iii) implies (ii). Assume that

app-lim
x→x0

u(x) = u(x0) <∞.

By definition, there is a set E ⊂ Rn with the n -dimensional measure density 1
at x0 such that u→ u(x0) as x→ x0 along the set E . It follows that

lim
R→0

|{r ∈ (0, R) : ∂Br ∩ E 6= ∅}|1
R

= 1,

and (ii) holds by Theorem 3.1.

Remark 3.4. (a) Suppose that u ∈ L1
loc

(
B(x0, r)

)
is bounded. Then it is not

hard to see that the approximate continuity implies the Lebesgue point property,
see [9, Remark 6.7]. Vuorinen [9, Theorem 6.13] has given sufficient conditions
for the case in which the approximate limit property implies the angular limit
property for functions in the half-space Rn

+ .
(b) Example 3.2 also shows that Theorem 3.3 does not hold for p < n . In

fact, for u as in Example 3.2, the limit

lim
r→0

∫
−
B(0,r)

u dx

exists as a finite number. However, u is not approximately continuous in the
origin. In particular, the origin is not a Lebesgue point for u .

We construct an example showing that the approximate continuity does not
in general imply the n -fine continuity for functions in W 1,n(Rn) , n > 2. For the
notion of n -fine topology, see [1] and the references therein.
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Example 3.5. For each j = 1, 2, . . . , let xj = (2−j , 0, . . . , 0), Rj = 2−2j−2 ,
rj = 2−3j−3 , and define

uj(x) =





logRj − log |x− xj |
logRj − log rj

for rj < |x− xj | < Rj ,

1 for 0 ≤ |x− xj | ≤ rj ,
0 for |x− xj | ≥ Rj .

The functions uj are indeed extremal for the n -capacity of the spherical condenser(
B (xj , rj), B(xj , Rj)

)
, see [1, pp. 35–36]. Define

u =
∞∑

j=1

uj .

A computation then yields
∫

B(xj ,Rj)

|∇u|n dx = ωn−1

(
log

Rj
rj

)1−n
= ωn−1

(
(j + 1) log 2

)1−n
,

and therefore
∫

Rn

|∇u|n dx =
∞∑

j=1

∫

B(xj ,Rj)

|∇uj |n dx = ωn−1(log 2)1−n
∞∑

j=2

1

jn−1
<∞

if only n ≥ 3. Here ωn−1 is the surface measure of ∂B(0, 1). Thus u ∈W 1,n(Rn) .
A straightforward calculation shows that the n -dimensional density of the set⋃∞

j=1B(xj , Rj) is equal to zero in the origin. Hence u has the approximate limit
zero in the origin. However, u does not have the n -fine limit zero in the origin.
To see this, it is enough to prove that the set

E =
∞⋃
j=1

B(xj , rj)

is not n -thin in the origin, [1, p. 234]. Equivalently, see [2, pp. 120–121], it is
sufficient to show that

∞∑

k=1

C1,n

(
E ∩B(0, 2−k)

)1/n−1
=∞.

This follows from the estimate

C1,n

(
B(xj , rj)

)1/n−1 ≥ c
((

log
2

rj

)1−n)1/n−1

= c(log 23j+4)−1

=
c

(3j + 4) log 2
,

since the constant c depends only on n , see [1, 2.41].
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The function u in Example 3.5 satisfies the minimum principle in the Sobolev
sense [6]. Hence Example 3.5 shows as well that the weak minimum principle is not
enough to guarantee the pointwise n -fine continuity. On the other hand, the weak
minimum principle does imply the pointwise approximate continuity. We finish
the paper by proving this assertion. We again use the argument of Theorem 3.1
but also some facts about the n -fine topology are needed.

Theorem 3.6. Let Ω ⊂ Rn be open and suppose that u ∈W 1,n
loc (Ω) is such

that for each domain Ω′ b Ω the inequality m ≤ u holds a.e. in Ω′ whenever
m ∈ R and (m− u)+ ∈W 1,n

0 (Ω′) . Then u possesses Lebesgue points everywhere
in Ω .

Proof. Take any n -quasicontinuous representative of u and define it pointwise
in Ω by

(3.3) u(z) = n-fine-lim inf
x→z

u(x).

Then the resulting function u remains to be n -quasicontinuous [5, Theorem 2.145].
Denote v(x) =

(
u(x) − u(x0)

)+
, Eε = {x ∈ Ω : v(x) ≤ ε} for each ε > 0. We

have the estimate

(3.4) |Br ∩ Eε| ≥ 1
2 |Br|

for all r small enough. This follows from Lemma 2.2 since the weak minimum
principle implies the existence of a radius R > 0 such that

min v(∂Br) <
1
2ε

for all r < R . In fact, if there is a decreasing sequence ri → 0, i = 0, 1, . . . ,
such that min v(∂Bri) ≥ 1

2ε , we may apply the weak minimum principle in annuli
together with the n -quasicontinuity to conclude that v ≥ 1

2ε in Br0 outside an n -
polar set. This contradicts (3.3). The estimate (3.4) allows us to apply Lemma 2.1
and proceed exactly the same way as in the proof of Theorem 3.1 in order to achieve

lim
r→0

∫
−
Br

(
u− u(x0)

)+
dx = 0.

Hence it is enough to prove that

lim
r→0

∫
−
Br

(
u(x0)− u

)+
dx = 0.

To do this, observe first that u is locally bounded from below by the weak min-
imum principle. In fact, since u is n -quasicontinuous, there are lots of spheres
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∂B(x0, R) ⊂ Ω such that u is continuous on ∂B(x0, R) ; see the proof of Lemma 2.2.
Fix a number m < u(x0) such that u ≥ m in a neighbourhood of x0 . By (3.3),
for each ε > 0, there is an n -fine neighbourhood Vε of x0 such that u ≥ u(x0)−ε
in Vε . We have

lim
r→0

|Br \ Vε|
|Br|

= 0,

see e.g. [1, p. 230], and therefore

∫
−
Br

(
u(x0)− u

)+
dx =

1

|Br|

∫

Br∩Vε

(
u(x0)− u

)+
dx+

1

|Br|

∫

Br\Vε

(
u(x0)− u

)+
dx

≤ ε |Br ∩ Vε||Br|
+
(
u(x0)−m

) |Br \ Vε|
|Br|

≤ 2ε

for all sufficiently small radii r . Thus x0 is a Lebesgue point for u .
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[2] Heinonen, J., T. Kilpeläinen, and J. Malý: Connectedness in fine topologies. - Ann.
Acad. Sci. Fenn. Ser. A I Math. 15, 1990, 107–123.

[3] Kinnunen, J., and N. Shanmugalingam: Quasi-minimizers on metric spaces. - Manu-
script.
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