
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 27, 2002, 215–220

SCHWARZIAN DERIVATIVES

OF TOPOLOGICALLY FINITE

MEROMORPHIC FUNCTIONS

Adam Lawrence Epstein

University of Warwick, Mathematics Institute

Coventry CV4 7AL, United Kingdom; adame@maths.warwick.ac.uk

Abstract. Using results from dynamics, we prove sharp upper bounds on the local vanishing
order of the nonlinearity and Schwarzian derivative for topologically finite meromorphic functions.

The entire functions f : C→ C with rational nonlinearity

Nf =
f ′′

f ′

and more generally the meromorphic functions f : C → Ĉ with rational Schwar-
zian derivative

Sf = N′f − 1
2N2

f

were discussed classically by the brothers Nevanlinna and a number of other re-
searchers. These functions admit a purely topological characterization (for details,
see [6, pp. 152–153], [7, pp. 391–393] and [11, pp. 298–303]). We show here that a
topological finiteness property enjoyed by a considerably larger class of functions
guarantees bounds on the local vanishing orders of Nf and Sf . For meromorphic

f : C→ Ĉ , let S(f) denote the set of all singular (that is, critical or asymptotic)

values in Ĉ . It follows by elementary covering space theory that #S(f) ≥ 2, pro-
vided that f is not a Möbius transformation; note further that ∞ ∈ S(f) for any
entire f : C→ C , provided that f is not affine. Our main result is the following:

Theorem 1. A. If f : C → Ĉ is meromorphic but not a Möbius transfor-
mation then ordζSf ≤ #S(f)− 2; consequently ordζNf ≤ #S(f)− 1 , for every
ζ ∈ C .

B. If f : C → C is entire but not affine then ordζNf ≤ #S(f) − 2 for every
ζ ∈ C ; consequently, if ordζNf ≥ 1 then ordζSf ≤ #S(f)− 3 .
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As to the converse, the mere existence of uniform bounds on ordζNf or
ordζSf is not enough to guarantee the finiteness of S(f) . For example, the
function f(z) = z+ 1− ez has infinitely many critical values 2πki = f(2πki) , but
Nf (z) = ez/(ez − 1) has no zeros whatsoever and

Sf (z) =
−ez(ez + 2)

2(ez − 1)2

has only simple zeros. On the other hand, the assertions in Theorem 1 are certainly
sharp. Compare the following classical result discussed in the aforementioned
references:

Theorem 2. A. Let f : C → Ĉ be meromorphic; if Sf is rational then
#S(f)− 2 ≤ deg Sf .

B. Let f : C→ C be entire; if Nf is rational then #S(f)− 2 ≤ deg Nf .

Combining Theorem 1 with Theorem 2 leads to the vacuous conclusion that
ordζR ≤ deg R at every ζ ∈ C for any rational function R . In this sense,
Theorem 1 may be regarded as a pointwise converse to Theorem 2; moreover, as
ordζR = deg R for R(z) = (z − ζ)D , the existence of meromorphic functions f
with Sf = R and entire functions f with Nf = R shows that Theorem 1 is
sharp. For a slightly less trivial example, the entire function f(z) = sin z has
critical values at ±1, an asymptotic value at ∞ and no finite asymptotic values.
As #S(f) = 3, Theorem 1 guarantees that every zero of Nf (z) = − tan z is simple.
Similarly, S(g) = S(f) for the meromorphic function g(z) = csc(z) = 1/f(z) , so
Theorem 1 guarantees that every zero of Gf (z) = −1− 3

2 tan2 z = Gg(z) is simple,
and that no such point is a zero of Nf (z) or

Ng(z) =
sin2 z − 2

sin z cos z
.

The proof of Theorem 1 is more interesting than the actual statement. The
strategy is to reduce the assertions to well-known results in holomorphic dynamics.
This idea goes back at least as far as the work [2] of Bergweiler–Eremenko (see
also [8]), and our application here is quite similar but perhaps even more basic.
Let F be meromorphic with an isolated fixed point at ζ ∈ C . The multiplicity
of F at ζ is the positive integer multζF = ordζ

(
F (z)− z

)
. Clearly, multζF ≥ 2

precisely when F ′(ζ) = 1. Fatou showed that if F is rational then the immedi-
ate basin of such a multiple fixed (or, more generally, periodic) point contains at
least multζ(F )− 1 critical values belonging to disjoint and infinite forward orbits.
The argument adapts easily to entire and meromorphic functions, provided that
one also counts forward orbits of asymptotic values; for details, see [10, p. 74].
The work [2] applied Fatou’s theorem to help settle a long-standing conjecture in
value-distribution theory. Part of the discussion involves showing that a particular
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auxiliary mapping, known by construction to have only finitely many singular val-
ues, necessarily has only finitely many multiple fixed points. In fact, as Bergweiler
has observed, this particular conclusion may also be established without Fatou’s
theorem: indeed, if S(f) is finite then f ′(ζk) → ∞ for any sequence of distinct
fixed points ζk (see [1] and also [5]). By contrast, our application exploits the
actual bound on the multiplicity of a single fixed point:

Theorem 3. A. If F : C→ Ĉ is meromorphic but not a Möbius transforma-
tiom then multζ(F ) ≤ #S(F ) + 1 for every fixed point ζ ∈ C .

B. If F : C → C is entire but not affine then multζ(F ) ≤ #S(F ) for every
fixed point ζ ∈ C .

We begin by recalling some standard properties of the nonlinearity and Schwar-
zian derivative. If f : U → Ĉ is meromorphic and nonconstant on a connected
open set U ⊆ C then Nf and Sf are defined and meromorphic on U . It is
well-known and easily verified that Nf identically vanishes if and only if f is the
restriction of an affine transformation, while Sf identically vanishes if and only
if f is the restriction of a Möbius transformation. Moreover, NT◦f = Nf for any
affine transformation T , while ST◦f = Sf for any Möbius transformation T :
these observations follow from the cocycle relations

(1)
Ng◦f dz = Nf dz + f∗(Ng dz),

Sg◦f dz
2 = Sf dz

2 + f∗(Sg dz
2).

We further require two rather straightforward computations:

Lemma 1. If f is meromorphic near ζ ∈ C then ordζNf ≥ −1 and
ordζSf ≥ −2 .

A. If ζ is a critical point of f then Nf has a simple pole at ζ and Sf has a
double pole at ζ .

B. If ζ is not a critical point of f then Sf is holomorphic at ζ , while Nf

is also holomorphic at ζ if and only if f is holomorphic at ζ . Moreover, if
ordζNf ≥ 1 then ordζSf = ordζNf − 1 .

Proof. Let n = degζ f be the local degree of f at ζ . If f is holomorphic at

ζ then we may write f(z) = f(ζ) + α(z − ζ)n + O
(
(z − ζ)n+1

)
for some α 6= 0,

whence

Nf (z) =
(n− 1)nan(z − ζ)n−2 +O

(
(z − ζ)n−1

)

nan(z − ζ)n−1 +O
(
(z − ζ)n

) =
n− 1

z − ζ +O(1),

Sf (z) =
n2 − 1

2(z − ζ)2
+O

(
1

z − ζ

)
.

In particular, if n = 1 then Nf is holomorphic at ζ , so Sf = N′f − 1
2N2

f is also
holomorphic at ζ . Moreover, if ordζNf = k ≥ 1 then

ordζN
′
f = k − 1 < 2k = ordζN

2
f
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and consequently ordζSf = k − 1 = ordζNf − 1. On the other hand, if f
has a pole at ζ then we may apply the previous observations to the function
g = 1/f which is holomorphic at ζ . It follows from (1) that Nf = Ng − 2g′/g ,
where Ng(z) = (n− 1)/(z − ζ)+O(1) and g′(z)/g(z) = n/(z − ζ)+O(1) because
ordζg = n = degζ g ; consequently, Nf (z) = −(n+ 1)/(z − ζ) + O(1). Similarly,
Sf = Sg so

Sf (z) =
n2 − 1

2(z − ζ)2
+O

(
1

z − ζ

)
.

Lemma 2. Let F be holomorphic with an isolated fixed point at ζ ∈ C .
A. If multζF ≥ 2 then ordζNF = multζF − 2 .
B. If multζF ≥ 3 then ordζSF = multζF − 3 .

Proof. Writing F (z) = z+α(z−ζ)m+O
(
(z−ζ)m+1

)
where m = multζF ≥ 2

and α 6= 0, we have

NF (z) =
(m− 1)mα(z − ζ)m−2 +O

(
(z − ζ)m−1

)

1 +mα(z − ζ)m−1 +O
(
(z − ζ)m

)

= (m− 1)mα(z − ζ)m−2 +O
(
(z − ζ)m−1

)

whence ordζNF = multζF − 2. Consequently, if multζF ≥ 3 then ordζNf ≥ 1,
so ordζSF = multζF − 3 by Part B of Lemma 1.

Proof of Theorem 1. It suffices to show that ordζNf ≤ #S(f) − 2 for any
entire function f : C → C , and that ordζSf ≤ #S(f) − 2 for any meromorphic

function f : C→ Ĉ ; the remaining claims then follow by Part B of Lemma 1.
Suppose first that f is entire. If ζ is a critical point of f then Part A of

Lemma 1 implies ordζNf = −1 < #S(f)−1. If ζ is not a critical point of f then
the distinguished local inverse at f(ζ) is approximated to first-order by a unique
affine transformation

T
(1)
f,ζ (z) = ζ +

z − f(ζ)

f ′(ζ)
.

The composition F = T
(1)
f,ζ ◦ f is an entire function which fixes ζ ; indeed, we have

F (z) = z+O
(
(z−ζ)2

)
so ζ is a multiple fixed point. As Nf = NF , it follows from

Part A of Lemma 2 that ordζNf = multζF − 2; moreover, S(F ) = T
(1)
f,ζ

(
S(f)

)
so

ordζNf = multζF − 2 ≤ #S(F )− 2 = #S(f)− 2

by Part A of Theorem 3.
Suppose now that f is meromorphic. If ζ is a critical point of f then Part A

of Lemma 1 implies ordζSf = −2 < #S(f) − 2. If ζ is not a critical point of f
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then the distinguished local inverse at f(ζ) is approximated to second-order by a

unique Möbius transformation T
(2)
f,ζ : in fact,

T
(2)
f,ζ (z) = ζ +

2f ′(ζ)
(
z − f(ζ)

)

f ′′(ζ)
(
z − f(ζ)

)
+ 2f ′(ζ)2

provided that ζ is not a pole. The composition F = T
(2)
f,ζ ◦ f is a meromorphic

function fixing ζ , and multζF ≥ 3 because F (z) = z + O
(
(z − ζ)3

)
. As we

have Sf = SF , it follows from Part B of Lemma 2 that ordζSf = multζF − 3;

moreover, S(F ) = T
(2)
f,ζ

(
S(f)

)
so

ordζSf = multζF − 3 ≤ #S(F )− 2 = #S(f)− 2

by Part B of Theorem 3.

For context, let us briefly sketch the proof of Theorem 2. The core of the
argument is to show that every asymptotic value of f corresponds to a loga-
rithmic end : a simply connected region U ⊂ C such that the restriction f |U
is an infinite cyclic cover of a punctured neigborhood of the asymptotic value.
This assertion follows from asymptotic analysis of the solutions to the associated
differential equations (see [7], [9] and [11]—for Part B one may appeal to the ex-

plicit formula f =
∫
e
∫

Nf ). Note that ord∞Sf ≥ 2 if and only the quadratic
differential Sf (z) dz2 is holomorphic at ∞ ; in this case, it follows that f is mero-
morphic at ∞ and therefore rational, so that there are no logarithmic ends. On
the other hand, if ord∞Sf ≤ 2 then further analysis shows that there are pre-
cisely −ord∞Sf (z) dz2 = 2 − ord∞Sf logarithmic ends. As ordζSf = −2 at
each finite critical point ζ but Sf is elsewhere holomorphic on C , it follows
that deg Sf = 2k + l − 2, where k is the number of critical points and l is
the number of logarithmic ends; consequently, #S(f) − 2 ≤ k + l − 2 ≤ deg Sf

as claimed in Part A. Furthermore, under the assumption of Part B we have
ord∞Sf (z) dz2 = 2ord∞Nf (z) dz2 , so that there are an even number of logarith-
mic ends, corresponding alternately to finite or infinite asymptotic values. As
ordζNf = −1 at each critical point ζ but Nf is elsewhere holomorphic on C , it
follows that #S(f)− 2 ≤ k + 1

2 l − 1 = deg Nf .
Theorem 3 admits various extensions and refinements, each of which may be

transformed as above into a version of Theorem 1. We conclude this note with
a survey of such possible adaptations. In one direction, Fatou’s theorem on the
existence of singular orbits in attracting and parabolic immediate basins has been
extended to the class of finite type complex analytic maps, namely those analytic
maps f : W → X where X is a finite union of compact Riemann surfaces, W ⊆ X
is open, and S(f) ⊂ X is finite; details may be found in [4]. The argument proving

Theorem 1 applies more generally to finite type maps f : W → Ĉ , with the con-
clusion that ordζSf (z) dz2 ≤ #S(f)− 2 for every ζ ∈W . The case when Ĉ−W
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is finite is of particular interest, for then Sf (z) dz2 is meromorphic except possi-
bly at isolated essential singularities. The simplest examples of such maps would
appear to be those for which Sf is rational, and the above sketch suggests that
Theorem 2 remains valid without the assumption that f be meromorphic on all
of C . In fact, it is highly plausible that Nevanlinna’s topological characterization
extends, so that the following should be equivalent for analytic maps f : W → Ĉ
with W ⊆ Ĉ :

(1) f is a map of finite type with finitely many critical points and finitely many
logarithmic ends,

(2) Sf is a rational function and Ĉ−W is finite.

However, we have not seen such a claim demonstrated or even explicitly stated in
the literature.

One might also seek to exploit the fact that Fatou’s theorem actually bounds
the parabolic multiplicity of any rationally indifferent periodic point, and some-
times furnishes a supplementary constraint on the associated holomorphic index
(see [3] for precise statements). The obvious modification of the argument proving

Theorem 1, namely consideration of the maps ω · T (j)
f,ζ ◦ f for other roots of unity

ω , thereby yields additional restrictions on various combinations of Taylor coeffi-
cients. However, it is not clear that the conclusions so obtained place illuminating
restrictions on the nonlinearity and Schwarzian derivative.
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