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Abstract. In this paper we establish two theorems in rigidity problems. In particular,

suppose that G is a Möbius group of R
n

and f : R
n → R

n
is a G -compatible map which has

a non zero differential at a radial point of G . If all elements in G do not have a common fixed
point, then f is a Möbius transformation. This improves a well-known result by P. Tukia.

1. Introduction

Mostow’s rigidity theorem is a deep fundamental theorem in the theory of
Möbius groups. Since the discovery of the theorem, there have been many discus-
sions on this subject by S. Agard, D. Sullivan, P. Tukia, and some others.

In [5], P. Tukia extended Mostow’s rigidity theorem to a very general situation.
He proved ([5, Theorem A])

Theorem A. Let G be a group of Möbius transformations of R
n

and let

f : R
n → R

n
be a G -compatible map which is differentiable with a non-vanishing

Jacobian at a radial point of G . Then f is a Möbius transformation unless there
is a point z ∈ R

n
fixed by every g ∈ G . If there is such a point z , then there are

Möbius transformations h and h′ such that h(∞) is fixed by every g ∈ G and
that h′fh | Rn is an affine homeomorphism of Rn .

The map f is G-compatible, if there is a homomorphism ϕ of G onto another
Möbius group such that fg(x) = ϕ(g)f(x) .

Actually, a more general result, where f is defined on a G -invariant set A ,
was obtained in [5]. A striking fact is that the action of f at a radial point of G
determines very much the behavior of f . It is natural to investigate the behavior
of f without the assumption that the Jacobian of f at the radial point is non-
vanishing. In [5], the assumption about the Jacobian is essential, because in the
proof triples of distinct points are mapped by the derivative of f at the radial
point to triples of distinct points (see Section 2 for the definitions). Hence the
projections to Hn+1 (defined in Section 2 or Section D in [5]) of the images of
those triples by the derivative of f are defined. In this paper, we find a local way
to avoid such a situation. Thus locally Tukia’s technique can be applied and the
local result can be extended globally.
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The main results of this paper are the following theorems.

Theorem 1. Let G be a Möbius group of R
n

and let A ⊂ R
n

be a G -

invariant set containing at least three points. Let f : A → R
n

be G -compatible
and be differentiable at a radial point of G such that the rank of the derivative is
k > 0 . Suppose that A is not contained in the union of two (n − k) -subspheres
of R

n
. Then there are Möbius transformations h′ and h such that h′fh is

the restriction of an affine map on h−1(A) ∩ Rn . If h(∞) ∈ A and f is not
continuous at h(∞) , then h(∞) is fixed by every g ∈ G . Moreover, if A is R

n

or a k′ -sphere (0 < k′ ≤ n) and h(∞) is not fixed by every g ∈ G , then f is a
Möbius transformation.

Since A can be a proper subset of R
n

, the definition of differentiability and
the rank of the differential needs careful definition. These definitions are given in
Section 2.

Corollary 1. Let G be a non-elementary Möbius group of R
n

and let

f : R
n → R

n
be G -compatible and differentiable at a radial point of G . Then

either f is a Möbius transformation or the rank of the differential of f at this
radial point is 0 .

More generally, let c ∈ R
n

and denote by Sc the minimal sphere containing
L(G) ∪ {c} . We have

Theorem 2. Let A , f and G be as in Theorem 1 . Assume that the point
h(∞) in Theorem 1 is not fixed by every g ∈ G . Then f | A∩Sc is the restriction
of a Möbius transformation.

The author would like to thank P. Tukia for his kind concern and suggestions.
I am also indebted to the referee, whose comments and suggestions have much
improved the paper.

2. Proofs of the theorems

We will now give the definition of differentiability of a map defined on an ar-
bitrary subset of R

n
, analogous and equivalent to the definition D1 in [5]. Assume

that f : A→ R
n

, A ⊂ R
n

, is a map and that x ∈ Rn ∩ Ā . Denote by V (A) the
affine subspace generated by A and D(A) the dimension of V (A) . Then we say
that f is differentiable at x if there is an affine map α of V (A) such that

|f(y)− α(y)|
|y − x| → 0

as y → x in A , where we require that f is continuous at x if x ∈ A . If β is a
linear map such that α = β+ (constant) on V (A) , then β is called the derivative
or differential of f at x . If A 6= R

n
, then α may not be unique and neither the
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rank of β is unique. What we call in this paper the rank of the differential of f at
point x is the minimal rank of all possible β and we always choose α and β with
the minimal rank. The affine part of f at point x is defined to be α . If β has a
full rank on V (A) , then obviously α can be extended to an affine homeomorphism
on Rn .

Notation. The hyperbolic metric of Hn+1 is % and | · | denotes the usual
euclidean metric.

A map is an affine map if it is of the form L+ (constant), where L is a linear
map.

Affine and linear maps of Rn are extended to R
n

so that ∞ 7→ ∞ .

Assume that u ∈ H
n+1

= R
n ∪ Hn+1 , v ∈ R

n
, u′ ∈ Rn+1 and v′ ∈ Rn+1

such that u 6= v and u′ 6= v′ . Then

H(u, v) is the hyperbolic line or ray with end points u and v ;

L(u′, v′) is the euclidean line through u′ and v′ .

x ∈ H
n+1

, y , z ∈ Rn be distinct, and let Π be a plane. Then

ang(y, z,Π) denotes the angle between the euclidean straight line L(y, z) and
Π, taken between and Π, taken between 0 and 1

2π .

ang(x, y, z) is the angle between the rays H(x, y) and H(x, z) , taken between
0 and 1

2π ,

P (x, y, z) is the orthogonal projection of z onto H(x, y) in the hyperbolic
geometry. In this case x ∈ R

n
.

We set for m ≥ 0:

Cm =
{
x ∈ Hn+1 : %

(
x,H(0,∞)

)
≤ m

}
,

Cm,1 =
{

(x, y, z) : P (x, y, z) ∈ Cm, |P (x, y, z)| = 1
}

.

Möb(n) is the group of Möbius transformations of R
n

and if g ∈ Möb(n)
is loxodromic, then the multiplier of g is the number λ > 1 so that g can be
conjugated to the map z 7→ λβ(z) , where β is orthogonal.

Lemma 1. Let g ∈ Möb(n) and u ∈ Rn . Then g is loxodromic with an
attractive fixed point u if and only if for some x ∈ Rn the following is true:

(1) |gk(x)− u| = λ−k|x− u|B(x, k),

for some λ > 1 and where the sequence {B(x, k) : k = 1, 2, . . .} is bounded. The
number λ is the multiplier of g .
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Proof. Suppose first that g is loxodromic with multiplier λ , attractive fixed
point u and repelling fixed point v . If k is a positive integer and u 6= x 6= v , then
the Möbius invariance of the cross-ratio implies

|gk(x), x, u, v| = λ−k,

that is

|gk(x)− u| = λ−k
|x− u| |gk(x)− v|

|x− v| .

Here as usual in the definition of a cross ratio,

|gk(x)− v|
|x− v| = 1

if v =∞ . Setting

B(x, k) =
|gk(x)− v|
|x− v|

our claim follows.

Conversely, suppose that (1) is true. It follows that g is either loxodromic
or parabolic and that u must be the attractive fixed point of g . Since λ > 1, g
must be loxodromic.

Obviously, the number λ in (1) is well defined and we have seen in the first
part of the proof that it is the multiplier of g .

Remark. If g is loxodromic with fixed points u and v , then (1) holds true
for any x ∈ R\{u, v} .

The following lemma is the extension of Lemma C1 in [5].

Lemma 2. Let g , g′ ∈ Möb(n) , where g is loxodromic, let A ⊂ R
n

be
a set which properly contains the fixed point set of g and is invariant under g
(i.e. gA = A). Suppose that β is an affine map which is not constant on A . If
for any point x ∈ A and all k ∈ Z , we have that

βgk(x) = g′kβ(x),

then g′ is loxodromic, both g and g′ have the same multiplier, and β maps the
attractive (repelling) fixed point of g to attractive (repelling) fixed point of g′ .
Moreover, β | V is a similarity if a ∈ A and V is the affine subspace of minimal
dimension such that V ∪ {∞} contains a and all fixed points of g .
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Proof. Let u be the attractive fixed point of g . We can assume that u ∈ Rn ,
possibly by replacing g by g−1 . Our assumption implies that we can find x ∈ A
such that g(x) 6= x and β(x) 6= β(u) ; if necessary, we replace u by the other fixed
point of g (and g by g−1 ). Set

B0(x, k) =
|βgk(x)− β(u)|
|gk(x)− u| .

Since gk(x) → u as k → ∞ , the numbers B0(x, k) , k = 1, 2, . . . , are bounded.
Write

|g′kβ(x)− β(u)| = |βgk(x)− β(u)| = |gk(x)− u|B0(x, k).

Using Lemma 1 we find that g′ is loxodromic and β(u) is the attractive fixed point
of g′ . Similarly we see that β maps the repelling fixed point of g to a repelling
fixed point of g′ , and from the remark of Lemma 1 we deduce that both g and g′

have the same multiplier. It is easy to see that the original proof of Lemma C1
in [5] works if we replace α in Lemma C1 by β in our lemma here. Actually we
have proven that β maps distinct fixed points of g to distinct fixed points of g′

and this is what we need for the modification. The rest of the claim of our lemma
follows from [5, Lemma C1] immediately. We remark that the right-hand side
formula (C2) of [5] should be (x1 + λx2, µx2) but the proof of Lemma C1 in [5] is
unaffected (also Sε(u) should be the union, rather than the family, of the circles
S mentioned in the defining formula).

Let G , A and f be as in Theorem 1. Then there is a homomorphism ϕ of
G onto another Möbius group such that ϕ(g)f = fg for all g ∈ G . By composing
with Möbius transformations, we can assume that 0 ∈ A is a radial point, f(0) = 0
and f is differentiable at 0 and the rank of the differential is k . We also assume
that in the following lemmas 0 < k < D(A) , where D(A) is the dimension of
the affine subspace V (A) generated by A . Denote by β the differential and α
the affine part of f at the radial point. We extend α to Rn so that α maps an
affine subspace orthogonal to V (A) onto a constant. The assumption that 0 is a
radial point guarantees that we can find a sequence {gi} , where gi ∈ G , such that
for any given x ∈ Hn+1 , there is m > 0 such that gi(x) ∈ Cm and gi(x) → 0.
Without loss of generality, we assume that ∞ ∈ A and g−1

i (∞) converges to a
point a 6= 0. Then gi(z) → 0 if z 6= a as follows, for instance, by an application
of 4◦ , p. 568, of [5].

Lemma 3. Let b ∈ R
n\{a} . Then we can pass to a subsequence so that

the following is true. There are x0 , y0 ∈ A\{a} , a neighborhood U of x0 and a
neighborhood V of y0 such that αgi(x) , αgi(b) , and αgi(y) are distinct for each
x ∈ U and y ∈ V beginning from some i = i0 .
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Proof. Since b 6= a , then, as we have seen, gi(b)→ 0 as i→∞ . In particular,
gi(b) 6= ∞ for large i . Let V (0) be the subspace whose dimension is n − k and
α | V (0) is constant. For each i , there is a unique (n − k)-sphere or plane Πi

containing b and g−1
i (∞) such that gi(Πi) is an (n− k)-plane parallel to V (0).

Since g−1
i (∞) → a 6= b , we can find an (n − k)-sphere or plane S containing b

and a such that Πi → S in the sense of Hausdorff metric. Here we may substitute
a subsequence for {gi} if necessary. By the assumption about A there exists
x0 ∈ A \ S . Since a ∈ S and limi→∞ g−1

i (∞) = a , we have x0 6= a and hence
gi(x0) 6= ∞ for large i . Furthermore, there exists a neighborhood U of x0 such
that U ∩S = ∅ and U ∩Πi = ∅ for large i . Thus, by possibly shrinking U , we can
assume that if L is a line or a circle which contains b , g−1

i (∞) and a point x ∈ U ,
then L intersects S at b at an angle at not less than a certain δ > 0 for large i .
It follows that if x ∈ U , then ang

(
gi(b), gi(x), gi(Πi)

)
> δ and hence α

(
gi(b)

)

and α
(
gi(x)

)
are distinct for large i . Now for each i , denote by Πi

′ the unique

(n−k)-sphere or plane which contains x0 and g−1
i (∞) such that gi(Πi

′) is parallel
to V (0). In the same way we can find an (n−k)-sphere or plane S′ containing x0

and a such that Πi
′ → S′ in the sense of Hausdorff metric. Take y0 ∈ A\(S ∪S′)

and choose a neighborhood V of y0 such that V ∩ (S ∪ S′) = V ∩ U = ∅ . Then,
possibly by shrinking V , we see that they satisfy the requirements of the lemma.

An immediate consequence is the following lemma.

Lemma 4. Let b , {gi} , x0 and y0 be as in Lemma 3 . Then there exists
a neighborhood W of b such that a /∈ W and a number δ > 0 such that the
following inequalities are true for all x ∈W and large i :

|αgi(x)− αgi(x0)| ≥ δ|gi(x)− gi(x0)|,
|αgi(x)− αgi(y0)| ≥ δ|gi(x)− gi(y0)|,
|αgi(y0)− αgi(x0)| ≥ δ|gi(y0)− gi(x0)|.

Proof. Since b 6= a , x0 6= a and y0 6= a , we have gi(b) 6= ∞ , gi(x0) 6=
∞ and gi(y0) 6= ∞ for large i . It follows that the euclidean lines (cf. Sec-
tion 2) L

(
gi(b), gi(x0)

)
, L
(
gi(b), gi(y0)

)
and L

(
gi(x0), gi(y0)

)
are well defined for

large i . Let U and {Πi} be as in Lemma 3 and C(b, x0, i) = g−1
i

(
L
(
gi(b), gi(x0)

))

be the unique circle or line containing g−1
i (∞) , b and x0 . Since Πi do not

meet U for large i , we obtain that the angles of C(b, x0, i) and Πi at b are
bounded away from 0. It follows that ang

(
gi(b), gi(x0), gi(Πi)

)
are bounded away

from 0 for large i . In the same way we see that ang
(
gi(b), gi(y0), gi(Πi)

)
and

ang
(
gi(x0), gi(y0), gi(Πi)

)
are bounded away from 0 for large i . This is also true

if we replace b by nearby points. The conclusion follows immediately.
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Denote by Sα,m,δ the set of all triples (x, y, z) ∈ Cm,1 which satisfy

|α(x)− α(y)| ≥ δ|x− y|,
|α(x)− α(z)| ≥ δ|x− z|, and

|α(z)− α(y)| ≥ δ|z − y|.

Consider the map

Pα: Sα,m,δ → (Hn+1, %),

Pα(x, y, z) = P
(
α(x), α(y), α(z)

)
.

It is easy to see Sα,m,δ is compact in the usual product topology. Conse-
quently, Pα(Sα,m,δ) is also compact as the continuous image of a compact set.
This implies the following lemma.

Lemma 5. The image of Sα,m,δ by Pα is bounded in the hyperbolic metric.

Combining Lemmas 4 and 5, and Tukia’s methods, we can prove the following
result.

Lemma 6. Let {gi} , W , x0 and y0 be as in Lemma 4 . Then for each
x ∈W ∩A ,

f(x) = lim
i→∞

g′iαgi(x),

where g′i = ϕ(gi)
−1

.

Proof. Denote by y1 = x0 , y2 = y0 and y3 = x ∈ W ∩ A . Let z =
P (y1, y2, y3) . Since g−1

i (∞)→ a as i→∞ , we can find ε0 > 0 such that

(2) ang
(
gi(z),∞, gi(yj)

)
= ang

(
z, g−1

i (∞), yj
)
≥ ε0

for all j if i exceeds a certain i0 . Also since zi = gi(z) approach radially 0,
there exists m ≥ 0 such that all zi are in Cm . Choose λi > 0 such that(
λigi(y1), λigi(y2), λigi(y3)

)
are in the compact set Cm,1 defined in Section 2.

By Lemma 4, the triples
(
λigi(y1), λigi(y2), λigi(y3)

)
are in the set Sα,m,δ which

is also compact. By Lemma 5, Pα
(
λigi(y1), λigi(y2), λigi(y3)

)
are contained in a

set of Hn+1 which is bounded in the hyperbolic metric. Set

z′′i = Pα
(
gi(y1), gi(y2), gi(y3)

)
.

Then the hyperbolic distances %(zi, z
′′
i ) = %(λizi, λiz

′′
i ) are bounded. It follows

from (2) and 4◦ in [5, p. 568] that

ang
(
z′′i , fgi(yj), αgi(yj)

)
→ 0, i→∞, j = 1, 2, 3.
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This together with 6◦ in [5, p. 568] implies that z′i = P
(
fgi(y1), fgi(y2), fgi(y3)

)

is defined for large i and %(z′i, z
′′
i ) → 0 as i → ∞ . It follows that f(y1) , f(y2)

and f(y3) are distinct and ang
(
z′i, fgi(yj), αgi(yj)

)
→ 0 as i→∞ for j = 1, 2, 3.

Let

z′ = g′i(z
′
i) = P

(
g′ifgi(y1), g′ifgi(y2), g′ifgi(y3)

)
= P

(
f(y1), f(y2), f(y3)

)
.

Since
ang
(
z′, f(y3), g′iαgi(y3)

)
= ang

(
z′i, fgi(y3), αgi(y3)

)
,

we deduce that
ang
(
z′, f(y3), g′iαgi(y3)

)
→ 0,

implying that
f(y3) = lim

i→∞
g′iαgi(y3).

Lemma 7. There are Möbius transformations h and h′ such that h′fh is
an affine map on h−1(A) ∩Rn .

Proof. Choose b ∈ A\{a} and a neighborhood W of b in R
n

as in Lemma 4.
Pass to the subsequence of {gi} such that Lemma 6 is true. By Lemma 6, we have

(3) f(x) = lim
i→∞

g′iαgi(x), x ∈W ∩A.

We can assume that the affine space V (A) generated by A is generated
already by W ∩A . If this is not the case, we pick points b1, . . . , bm ∈ A\{a} such
that {bp} contain b and generate V (A) . We choose for each p a subsequence
so that (3) is true for x ∈ Wi ∩ A . We can choose the subsequence so that the
subsequence for p + 1 is a sub-subsequence of the subsequence for p . Thus the
subsequence for p satisfies (3) for all x ∈W = W1 ∪ · · · ∪Wm . So we can assume
that W contains points b1, . . . , bm so that the affine subspace generated by {bp}
is V (A) .

Assume that g′i(∞) → c as i → ∞ . Let hi , h′i , h and h′ be Möbius
transformations such that h′ig

′
i(∞) =∞ , gihi(∞) =∞ , and h′i → h′ and hi → h

as i → ∞ on R
n

in the chordal metric. Thus hi(∞) = g−1
i (∞) → a as i → ∞ .

Hence h−1
i (bp)→ h−1(bp) ∈ Rn as i→∞ .

Now, for each i , αi = h′ig
′
iαgihi is an affine map and since {h−1

i (bp)} generate
the affine space h−1

i

(
V (A)

)
, it is the well-defined affine map of h−1

i (V (A)) sending

cpi = h−1
i (bp) to dpi = h′ig

′
iαgi(bp) . Since cpi → h−1(bp) and dpi → h′f(bp) , it

follows that αi have a limit on h−1
(
V (A)

)
, which is the well-defined affine map

such that h−1(bp) 7→ h′f(bp) . Obviously, we can assume that αi have the limit β
on the whole Rn . Thus

(4) f(x) = h′−1βh−1(x), x ∈W ∩A.
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Actually, (4) is true for all x ∈ A \ {a} . To see this, pick a point b′ ∈ A \ {a} .
Choose a neighborhood W ′ of b′ and a subsequence of gi for which (3) is true
with W replaced by W ′ . We can pick the subsequence from the sequence for
which (3) was true (with W as above). Since limits do not change when passing
to a subsequence, we see that (4) is true for x ∈W ′ ∩A . We conclude that (4) is
true for all x ∈ A \ {a} .

Proof of Theorem 1. If k = D(A) , the dimension of the affine subspace
generated by A , then α can be extended to an affine homeomorphism on Rn and
the claim follows from Theorem D in [5] immediately.

Assume then that 0 < k < D(A) . It follows from Lemma 7 that there are
Möbius transformations h and h′ such that h′fh is an affine map on h−1(A)∩Rn .
By (D14) in [5] we see that a ∈ cl

(
A\{a}

)
. If a = h(∞) ∈ A and f is not

continuous at a , then a must be fixed by all g since f is compatible with G and
is continuous on A\{a} .

Now suppose that A = R
n

. Let h and h′ be as above and suppose that h(∞)
is not fixed by every g ∈ G . Thus f is continuous at h(∞) and if we replace f
by h′fh , we can assume that f is an affine map, extended to ∞ so that ∞ 7→ ∞ .

By Lemma B2 in [5], there are loxodromic elements in G . Let g be such
a loxodromic element. Let u be its attractive fixed point. We can assume that
u ∈ Rn , otherwise replace g by g−1 . By Lemma 2, we see that g′ = ϕ(g) is also
loxodromic. Now let u′ and v′ be the fixed points of g′ . Suppose that f−1{u′}
contains more than one point. It is easy to check that f−1{u′} is closed and
invariant under both g and g−1 . It follows that f−1{u′} contains all fixed points
of g . On the other hand, since the set f−1{v′} is also closed and invariant under
g , it must contain a fixed point of g . This leads to a contradiction. Thus f−1{u′}
contains exactly one point and we conclude that f is injective. An immediate
consequence is that k = n and our theorem follows from [5]. The case that A is
a k′ -sphere follows similarly.

Obviously, Theorem 1 implies Corollary 1.

Proof of Theorem 2. We can assume by Theorem 1 that f is the restriction
of an affine map (which is extended to ∞ if necessary). Thus we can assume that
A is closed and hence L(G) ⊂ A . We see as in the proof of Theorem 1 that the
pre-images of fixed points of loxodromic g ∈ G elements are mapped onto the
fixed points of ϕ(g) which is loxodromic and the pre-image of a fixed point of
ϕ(g) is a point. It follows that if a ∈ A and g ∈ G are loxodromic, then f is a
similarity on the affine subspace generated by a and the fixed points of g . After
this fact, the proof of Theorem 2 follows as the proof of (c) of Theorem D of [5];
we only use Lemma 2 instead of Lemma C1 of [5].
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