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Abstract. In this paper we establish two theorems in rigidity problems. In particular,
suppose that G is a Mébius group of R" and f R >R isa G -compatible map which has
a non zero differential at a radial point of G. If all elements in G do not have a common fixed
point, then f is a Mdbius transformation. This improves a well-known result by P. Tukia.

1. Introduction

Mostow’s rigidity theorem is a deep fundamental theorem in the theory of
Mobius groups. Since the discovery of the theorem, there have been many discus-
sions on this subject by S. Agard, D. Sullivan, P. Tukia, and some others.

In [5], P. Tukia extended Mostow’s rigidity theorem to a very general situation.
He proved ([5, Theorem A])

Theorem A. Let G be a group of Mébius transformations of R" and let

f: R" = R" be a G-compatible map which is differentiable with a non-vanishing
Jacobian at a radial point of G. Then f is a Mobius transformation unless there
is a point z € R" fixed by every g € G. If there is such a point z, then there are
Mébius transformations h and h' such that h(co) is fixed by every g € G and
that b/ fh | R™ is an affine homeomorphism of R™.

The map f is G -compatible, if there is a homomorphism ¢ of G onto another
Mbobius group such that fg(z) = p(g)f(x).

Actually, a more general result, where f is defined on a G-invariant set A,
was obtained in [5]. A striking fact is that the action of f at a radial point of G
determines very much the behavior of f. It is natural to investigate the behavior
of f without the assumption that the Jacobian of f at the radial point is non-
vanishing. In [5], the assumption about the Jacobian is essential, because in the
proof triples of distinct points are mapped by the derivative of f at the radial
point to triples of distinct points (see Section 2 for the definitions). Hence the
projections to H™™1 (defined in Section 2 or Section D in [5]) of the images of
those triples by the derivative of f are defined. In this paper, we find a local way
to avoid such a situation. Thus locally Tukia’s technique can be applied and the
local result can be extended globally.
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The main results of this paper are the following theorems.

Theorem 1. Let G be a Mébius group of R” and let A ¢ R" be a G-
invariant set containing at least three points. Let f: A — R" be G-compatible
and be differentiable at a radial point of G such that the rank of the derivative is
k > 0. Suppose that A is not contained in the union of two (n — k)-subspheres
of R". Then there are Mbbius transformations h' and h such that h'fh is
the restriction of an affine map on h™'(A) N R™. If h(cc) € A and f is not
continuous at h(co), then h(co) is fixed by every g € G. Moreover, if A is R"
or a k'-sphere (0 < k' < n) and h(oo) is not fixed by every g € G, then f is a
Mobius transformation.

Since A can be a proper subset of R", the definition of differentiability and
the rank of the differential needs careful definition. These definitions are given in
Section 2.

Corollary 1. Let G be a non-elementary Mébius group of R" and let
f:R" — R" be G-compatible and differentiable at a radial point of G. Then
either f is a Mobius transformation or the rank of the differential of f at this
radial point is 0.

More generally, let ¢ € R" and denote by S, the minimal sphere containing
L(G)U{c}. We have

Theorem 2. Let A, f and G be as in Theorem 1. Assume that the point
h(oo) in Theorem 1 is not fixed by every g € G. Then f | ANS, is the restriction
of a Mobius transformation.

The author would like to thank P. Tukia for his kind concern and suggestions.
I am also indebted to the referee, whose comments and suggestions have much
improved the paper.

2. Proofs of the theorems

We will now give the definition of differentiability of a map defined on an ar-
bitrary subset of R", analogous and equivalent to the definition D1 in [5]. Assume
that f: A—>R", ACcR", is a map and that = € R* N A. Denote by V(A) the
affine subspace generated by A and D(A) the dimension of V(A). Then we say
that f is differentiable at x if there is an affine map « of V(A) such that

|f(y) — a(y)]
ly — x|

— 0

as y — = in A, where we require that f is continuous at x if x € A. If 3 is a
linear map such that o = $+ (constant) on V(A), then 3 is called the derivative
or differential of f at . If A # R", then o may not be unique and neither the
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rank of ( is unique. What we call in this paper the rank of the differential of f at
point x is the minimal rank of all possible 8 and we always choose o and § with
the minimal rank. The affine part of f at point x is defined to be «. If 3 has a
full rank on V' (A), then obviously « can be extended to an affine homeomorphism
on R".

Notation. The hyperbolic metric of H"*! is ¢ and | - | denotes the usual
euclidean metric.

A map is an affine map if it is of the form L+ (constant), where L is a linear
map.
Affine and linear maps of R™ are extended to R so that oo — oo.

Assume that v € A" = R" U H"t1 yeR", v € R*! and o' € R*H!
such that u # v and u' # v'. Then

H(u,v) is the hyperbolic line or ray with end points v and v;

L(u',v") is the euclidean line through «' and v'.

T € ﬁnH, Yy, z € R" be distinct, and let II be a plane. Then

ang (y, z, 1) denotes the angle between the euclidean straight line L(y, z) and
IT, taken between and II, taken between 0 and %77.

ang(x,y, z) is the angle between the rays H(x,y) and H(x, z), taken between
0 and %ﬂ',

P(z,y,z) is the orthogonal projection of 2z onto H(z,y) in the hyperbolic
geometry. In this case z € R".

We set for m > 0:

Crm ={x € H""' : o(z,H(0,00)) < m},

Cmi = {(x,y,z) : P(x,y,2) € Cp, |P(z,y,2)| = 1}.

Méb(n) is the group of Mdbius transformations of R" and if g € Méb(n)

is loxodromic, then the multiplier of g is the number A > 1 so that g can be
conjugated to the map z +— AB(z), where [ is orthogonal.

Lemma 1. Let g € Méb(n) and w € R™. Then g is loxodromic with an
attractive fixed point u if and only if for some x € R"™ the following is true:

(1) 9" (@) —ul = A" |z — u| B(z, k),

for some A > 1 and where the sequence {B(x,k) : k =1,2,...} is bounded. The
number A is the multiplier of g.
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Proof. Suppose first that ¢ is loxodromic with multiplier A\, attractive fixed
point u and repelling fixed point v. If k is a positive integer and u # x # v, then
the Mobius invariance of the cross-ratio implies

|gk(:l:),x,u,v| = Aikv
that is

_oklz—ullgf@) ol
2 — ]

9" (@) =l

Here as usual in the definition of a cross ratio,

o) — ol _
|z — vl
if v = 00. Setting
’ |z — v

our claim follows.

Conversely, suppose that (1) is true. It follows that g is either loxodromic
or parabolic and that v must be the attractive fixed point of g. Since A\ > 1, g
must be loxodromic.

Obviously, the number A in (1) is well defined and we have seen in the first
part of the proof that it is the multiplier of ¢g. o

Remark. If g is loxodromic with fixed points v and v, then (1) holds true
for any = € R\{u,v}.

The following lemma is the extension of Lemma C1 in [5].

Lemma 2. Let g, ¢ € Mob(n), where g is loxodromic, let A C R" be
a set which properly contains the fixed point set of g and is invariant under g
(i.e. gA = A). Suppose that 3 is an affine map which is not constant on A. If
for any point © € A and all k € Z, we have that

" () = ¢ B(2),

then ¢’ is loxodromic, both g and ¢’ have the same multiplier, and 3 maps the
attractive (repelling) fixed point of g to attractive (repelling) fixed point of ¢'.
Moreover, 3|V is a similarity if a € A and V is the affine subspace of minimal
dimension such that V U {oco} contains a and all fixed points of g.
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Proof. Let u be the attractive fixed point of g. We can assume that v € R",
possibly by replacing g by g~!. Our assumption implies that we can find = € A
such that g(x) # = and B(z) # B(u); if necessary, we replace u by the other fixed
point of g (and g by g=1). Set

186 (@) — Bw)
Bole ) = gyl

Since ¢g*(x) — w as k — oo, the numbers By(z,k), k = 1,2,..., are bounded.
Write

9" B(z) — Bu)| = 89" (x) — B(u)| = |g" () — u|Bo(z, k).

Using Lemma 1 we find that ¢’ is loxodromic and ((u) is the attractive fixed point
of ¢’. Similarly we see that G maps the repelling fixed point of g to a repelling
fixed point of ¢’, and from the remark of Lemma 1 we deduce that both ¢ and ¢’
have the same multiplier. It is easy to see that the original proof of Lemma C1
in [5] works if we replace a in Lemma C1 by £ in our lemma here. Actually we
have proven that # maps distinct fixed points of ¢ to distinct fixed points of ¢’
and this is what we need for the modification. The rest of the claim of our lemma
follows from [5, Lemma C1] immediately. We remark that the right-hand side
formula (C2) of [5] should be (x1 + Aza, pze) but the proof of Lemma C1 in [5] is
unaffected (also S:(u) should be the union, rather than the family, of the circles
S mentioned in the defining formula). o

Let G, A and f be as in Theorem 1. Then there is a homomorphism ¢ of
G onto another Mébius group such that ¢(g)f = fg for all g € G. By composing
with M6bius transformations, we can assume that 0 € A is a radial point, f(0) =0
and f is differentiable at 0 and the rank of the differential is k. We also assume
that in the following lemmas 0 < k < D(A), where D(A) is the dimension of
the affine subspace V(A) generated by A. Denote by [ the differential and «
the affine part of f at the radial point. We extend a to R™ so that a maps an
affine subspace orthogonal to V(A) onto a constant. The assumption that 0 is a
radial point guarantees that we can find a sequence {g;}, where g; € G, such that
for any given x € H""! | there is m > 0 such that g;(x) € C,, and g;(z) — 0.
Without loss of generality, we assume that oo € A and g; 1(00) converges to a
point a # 0. Then g¢;(z) — 0 if z # a as follows, for instance, by an application
of 4°, p. 568, of [5].

Lemma 3. Let b € R"\{a}. Then we can pass to a subsequence so that
the following is true. There are xg, yo € A\{a}, a neighborhood U of xy and a
neighborhood V' of yo such that ag;(x), ag;(b), and ag;(y) are distinct for each
x € U and y € V beginning from some i = ig.
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Proof. Since b # a, then, as we have seen, g¢;(b) — 0 as i — oco. In particular,
gi(b) # oo for large i. Let V(0) be the subspace whose dimension is n — k and
a | V(0) is constant. For each ¢, there is a unique (n — k)-sphere or plane II;
containing b and g; '(co) such that g;(II;) is an (n — k)-plane parallel to V(0).
Since gi_l(oo) — a # b, we can find an (n — k)-sphere or plane S containing b
and a such that IT; — S in the sense of Hausdorff metric. Here we may substitute
a subsequence for {g;} if necessary. By the assumption about A there exists
xg € A\S. Since a € S and lim;_, gi_l(oo) = a, we have zg # a and hence
gi(zo) # oo for large i. Furthermore, there exists a neighborhood U of z( such
that UNS = (0 and UNII; = @ for large . Thus, by possibly shrinking U, we can
assume that if L is a line or a circle which contains b, g; ! (c0) and a point x € U,
then L intersects S at b at an angle at not less than a certain § > 0 for large <.
It follows that if € U, then ang (g:(b), g:(x), ¢;(I;)) > & and hence a(g;(b))
and a(gi(a:)) are distinct for large i. Now for each i, denote by II;" the unique
(n—Fk)-sphere or plane which contains zy and g; *(co) such that g;(II;") is parallel
to V(0). In the same way we can find an (n — k)-sphere or plane S’ containing
and a such that II;" — S’ in the sense of Hausdorff metric. Take yo € A\(SUS’)
and choose a neighborhood V of yy such that VN (SUS") =V NU = 0. Then,
possibly by shrinking V', we see that they satisfy the requirements of the lemma. o

An immediate consequence is the following lemma.

Lemma 4. Let b, {g;}, ©o and yo be as in Lemma 3. Then there exists
a neighborhood W of b such that a ¢ W and a number 6 > 0 such that the
following inequalities are true for all x € W and large i:

lagi(z) — agi(xo)| = 6]gi(x) — gi(zo)],
lagi(x) — agi(yo)| > 6|gi(x) — gi(yo)l,
lagi(yo) — agi(wo)| > 0]gi(yo) — gi(wo)l-

Proof. Since b # a, xg # a and yy # a, we have g¢;(b) # oo, gi(xo) #
oo and g;(yg) # oo for large i. It follows that the euclidean lines (cf. Sec-
tion 2) L(g;(b), 9i(w0)), L(g:(b), gi(yo)) and L(gi(x0), gi(yo)) are well defined for
large i. Let U and {II;} be as in Lemma 3 and C(b,z¢,1) = g; ' (L(9: (), g:(20)))
be the unique circle or line containing g, '(00), b and zg. Since II; do not
meet U for large ¢, we obtain that the angles of C(b,x¢,7) and II; at b are
bounded away from 0. It follows that ang (gi(b), 9i(zo), gi(Hi)) are bounded away
from O for large 7. In the same way we see that ang (gi(b),gi(yo),gi(ﬂi)) and
ang (gi(z0), 9i(yo), g:(IL;)) are bounded away from 0 for large i. This is also true
if we replace b by nearby points. The conclusion follows immediately. o
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Denote by Sq,m,s the set of all triples (z,y,2) € Cy,1 which satisfy

|a(z) — a(y)] = dlx —yl,
la(z) — az)] > |z — 2|, and
|a(z) — a(y)] = 0]z — yl.

Consider the map

Pa: Som,s — (H™, 0),
Pa(z,y,z) = P(a(z), a(y), o(2)).
It is easy to see Su,m,s is compact in the usual product topology. Conse-

quently, Pa(S, m,s) is also compact as the continuous image of a compact set.
This implies the following lemma.

Lemma 5. The image of S m.s by Pa is bounded in the hyperbolic metric.

Combining Lemmas 4 and 5, and Tukia’s methods, we can prove the following
result.

Lemma 6. Let {¢;}, W, z¢ and yo be as in Lemma 4. Then for each

reWNA,
f(z) = lim gjag;(z),

where g} = gp(gi)_l.

Proof. Denote by y1 = 2o, y2 = yo and y3 = z € WNA. Let z =
P(y1,92,y3). Since g; '(00) — a as i — oo, we can find gy > 0 such that

(2) ang(gi(2), 00, g:(y;)) = ang(2, ¢; ' (00),35) = €9

for all j if i exceeds a certain ig. Also since z; = g;(z) approach radially 0,
there exists m > 0 such that all z; are in C,,. Choose A\; > 0 such that
()\igi(yl),)\Z-gi(yz),)\igi(yg)) are in the compact set C,, 1 defined in Section 2.
By Lemma 4, the triples ()\igi(yl), Aigi(y2), )\igi(yg)) are in the set Sy s which
is also compact. By Lemma 5, Pa(/\igi(yl), Aigi(y2), )\igi(yg)) are contained in a
set of H™*! which is bounded in the hyperbolic metric. Set

2z = Pa(gi(y1), 9i(y2), 9i(y3)).

Then the hyperbolic distances o(z;,2) = o(M\izi, \iz!') are bounded. It follows
from (2) and 4° in [5, p. 568] that

ang(zél7fgl(y]>vagz(y])) - 07 1 — 00, .] = 17273'
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This together with 6° in [5, p. 568] implies that 2, = P(fg;(y1), f9:(y2), f9i(y3))
is defined for large ¢ and o(z],2]) — 0 as i — oo. It follows that f(y1), f(y2)

and f(y3) are distinct and ang (2], fg:(y;), agi(y;)) — 0 as i — oo for j =1,2,3.
Let

2 =gi(z) = P(9;f9:(1), 9 f9i(y2), 9i f9:(y3)) = P(f(y1), [ (y2), f(y3))-

Since
ang(2', f(ys), givgi(ys)) = ang(z;, f9i(ys), agi(ys)),

we deduce that
ang(z’, f(y3)7 g;agz(%)) - 07

implying that
flys) = lim giagi(ys). o

Lemma 7. There are Mobius transformations h and h’ such that h'fh is
an affine map on h='(A)N R™.

Proof. Choose b € A\{a} and a neighborhood W of b in R" as in Lemma 4.
Pass to the subsequence of {g;} such that Lemma 6 is true. By Lemma 6, we have

(3) f(z) = Z,lirélo giagi(x), reWnA.

We can assume that the affine space V(A) generated by A is generated
already by W N A. If this is not the case, we pick points by, ..., b, € A\ {a} such
that {b,} contain b and generate V(A). We choose for each p a subsequence
so that (3) is true for x € W; N A. We can choose the subsequence so that the
subsequence for p + 1 is a sub-subsequence of the subsequence for p. Thus the
subsequence for p satisfies (3) for all x € W =Wy U---UW,,. So we can assume
that W contains points by,...,b,, so that the affine subspace generated by {b,}
is V(A).

Assume that g/(co) — ¢ as i@ — oo. Let h;, hi, h and h’ be Mobius
transformations such that hlg.(co) = oo, g;h;(c0) = 0o, and h; — h' and h; — h
as i — oo on R" in the chordal metric. Thus h;(c0) = g; (c0) — a as i — oco.
Hence h; '(b,) — h~(b,) € R" as i — oco.

Now, for each i, o; = h'glag;h; is an affine map and since {h; *(b,)} generate
the affine space h; " (V(A)), it is the well-defined affine map of h; *(V(A)) sending
cpi = h; '(by) to dp; = higlagi(b,). Since cp; — h™i(b,) and dp; — K/ f(b,), it
follows that «; have a limit on A~! (V(A)) , which is the well-defined affine map
such that h=1(b,) — h'f(b,). Obviously, we can assume that a; have the limit 3

on the whole R™. Thus

(4) f(z)=R16h~Y(z), zeWnA.
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Actually, (4) is true for all z € A\ {a}. To see this, pick a point b € A\ {a}.
Choose a neighborhood W' of b’ and a subsequence of g; for which (3) is true
with W replaced by W’. We can pick the subsequence from the sequence for
which (3) was true (with W as above). Since limits do not change when passing
to a subsequence, we see that (4) is true for z € W/ N A. We conclude that (4) is
true for all x € A\ {a}. o

Proof of Theorem 1. If k = D(A), the dimension of the affine subspace
generated by A, then a can be extended to an affine homeomorphism on R™ and
the claim follows from Theorem D in [5] immediately.

Assume then that 0 < k < D(A). It follows from Lemma 7 that there are
Moébius transformations h and h' such that A’ fh is an affine map on h=1(A)NR™.
By (D14) in [5] we see that a € cl(A\{a}). If @ = h(cc) € A and f is not
continuous at a, then a must be fixed by all g since f is compatible with G and
is continuous on A\{a}.

Now suppose that A =R". Let h and k' be as above and suppose that h(oco)
is not fixed by every g € G. Thus f is continuous at h(oco) and if we replace f
by h'fh, we can assume that f is an affine map, extended to oo so that oo — oco.

By Lemma B2 in [5], there are loxodromic elements in G. Let g be such
a loxodromic element. Let u be its attractive fixed point. We can assume that
u € R™, otherwise replace g by ¢g~!. By Lemma 2, we see that ¢’ = ¢(g) is also
loxodromic. Now let u’ and v’ be the fixed points of g’. Suppose that f~!{u'}
contains more than one point. It is easy to check that f~1{u’} is closed and
invariant under both g and g~!. It follows that f~1{u’} contains all fixed points
of g. On the other hand, since the set f~'{v'} is also closed and invariant under
g, it must contain a fixed point of g. This leads to a contradiction. Thus f~1{u'}
contains exactly one point and we conclude that f is injective. An immediate
consequence is that k¥ = n and our theorem follows from [5]. The case that A is
a k’-sphere follows similarly. o

Obviously, Theorem 1 implies Corollary 1.

Proof of Theorem 2. We can assume by Theorem 1 that f is the restriction
of an affine map (which is extended to oo if necessary). Thus we can assume that
A is closed and hence L(G) C A. We see as in the proof of Theorem 1 that the
pre-images of fixed points of loxodromic g € GG elements are mapped onto the
fixed points of ¢(g) which is loxodromic and the pre-image of a fixed point of
©(g) is a point. It follows that if a € A and g € G are loxodromic, then f is a
similarity on the affine subspace generated by a and the fixed points of g. After
this fact, the proof of Theorem 2 follows as the proof of (c) of Theorem D of [5];
we only use Lemma 2 instead of Lemma C1 of [5]. o



230

N

=)

Min Chen

References

BEARDON, A.F.: The Geometry of Discrete Groups. - Springer-Verlag, Berlin, 1983.

BEARDON, A.F., and B. MASKIT: Limit points of Kleinian groups and finite sided fun-
damental polyhedra. - Acta Math. 132, 1974, 1-12.

CHEN, MIN: The extension of M&bius groups. - Complex Variables (to appear).

SEPPALA, M., and T. SORVALI: Geometry of Riemann Surfaces and Teichmiiller Spaces.
- Elsevier, 1992.

TukiA, P.: Differentiability and rigidity of Mobius groups. - Invent. Math. 82, 1985, 557—
578.

TuKiA, P.: A rigidity theorem for Mobius groups. - Invent. Math. 97, 1989, 405-431.

Received 6 March 2001



