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Abstract. By a polygon we originally mean a plane disk ∆ with a finite number P of
distinguished boundary points ωi . Let (∆, P ) , P = {ωi} and (∆′, P ′) , P ′ = {ω′i} be two
polygons. The extremal quasiconformal mapping fn of (∆, P ) onto (∆′, P ′) , fn(ωi) = ω′i for all i ,
is a Teichmüller mapping, associated with a quadratic differential ϕn , called polygon differential.
To a given extremal qc mapping f : ∆ → ∆′ we can associate extremal polygon mappings fn ,
fn(ωi) = f(ωi) for all vertices ωi . This construction has applications in the theory of extremal
qc mappings. It is the purpose of this article to generalize the notion of polygon and polygon
mappings and prove their properties for arbitrary subdomains of compact Riemann surfaces.

I. Introduction: the disk case

Let ∆ : |z| < 1 and ∆′ : |w| < 1 be unit disks in the z - and w -plane
respectively and let w = f(z) be a quasiconformal mapping of ∆ onto ∆′ with
maximal dilatation K and complex dilatation µ , ‖µ‖∞ = (K − 1)/(K + 1). Let
P be a finite set of points ωi , i = 1, . . . , n , n ≥ 4 on ∂∆. The disk ∆ together
with the set P = {ωi} is called a polygon, the points ωi are its vertices. The
mapping f takes the polygon (∆, P ) with vertices ωi into a polygon (∆′, P ′)
with vertices ω′i = f(ωi) , i = 1, . . . , n . Let fn be the extremal qc mapping of ∆
onto ∆′ which takes the vertices ωi into the vertices ω′i . This mapping determines
a pair of quadratic differentials ϕn on ∆ and ψn on ∆′ . The trajectory structures
of ϕn and ψn partition the disks into finitely many horizontal strips Rjn in ∆

and R′jn in ∆′ . They are mapped by the integrals Φn(z) =
∫ √

ϕn(z) dz and

Ψn(w) =
∫ √

ψn(w) dw onto Euclidean horizontal rectangles

Φn(Rjn) : 0 < ξn < ajn, 0 < ηn < bjn,

Ψn(R′jn) : 0 < ξ′n < Knajn, 0 < η′n < bjn.

The extremal mapping fn satisfies the relation

Ψn ◦ fn ◦ Φ−1
n (ζn) = Knξn + iηn, ζn = ξn + iηn,
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with Kn ≥ 1 the constant dilatation of fn . This is a consequence of Teichmüller’s
theorem; the extremal fn is uniquely determined.

Next we introduce the metrics induced by the two quadratic differentials.
They are nothing else than the Euclidean length elements

|dΦn(z)| = |ϕn(z)|1/2|dz|, |dΨn(w)| = |ψn(w)|1/2|dw|

in the Φn - and Ψn -plane respectively. The length inequality is usually expressed
for closed trajectories. In our case the trajectories are cross cuts of ∆ and ∆′ , but
they become closed curves by reflection on ∂∆ and ∂∆′ respectively. The length
inequality says that every closed trajectory is shortest in its free homotopy class
with respect to the planes punctured at the points Pn and P ′n respectively. Here
we have actually trajectory intervals connecting vertical sides of the disks, with
lengths one half of the lengths of the closed trajectories.

Let αjn be a trajectory interval of ϕn in ∆. It is stretched by Kn onto the
corresponding trajectory interval α′jn of ψn in the w -plane. Let

dw = p(z) dz + q(z) dz̄

be the differential of the qc mapping f . Its length in terms of the ψn -metric is

|dw̃| = |ψn(w)|1/2|dw| = |ψn(w)|1/2|p(z) dz + q(z) dz̄|.

Now the length inequality reads

Knajn ≤
∫

f(αjn)

|dw̃| =
∫

f(αjn)

|ψn(w)|1/2|p(z) dz + q(z) dz̄|.

Integration over the disk ∆ gives the polygon inequality

(1) Kn ≤
∫∫

|z|<1

|ϕn(z)|

∣∣∣∣1 + µ(z)
ϕn(z)

|ϕn(z)|

∣∣∣∣
2

1− |µ(z)|2 dx dy,

z = x + iy , µ(z) = q(z)/p(z) the complex dilatation of f . Developing the
integrand gives the equivalent form

(1 ′ )

kn
1− kn

≤ Re

∫∫

|z|<1

µ(z)ϕn(z)

1− |µ(z)|2 dx dy +

∫∫

|z|<1

|ϕn(z)| |µ(z)|2
1− |µ(z)|2 dx dy,

kn =
Kn − 1

Kn + 1
,
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which is easier to explore. This is true for an arbitrary qc self-mapping of ∆ and
all inscribed polygons (for details, see [5], pp. 383–386).

Next, let f be extremal for its boundary values, with maximal dilatation K .
Then, Kn ≤ K for all polygons. Let the point sets Pn become dense on ∂∆ for
n→∞ . By general principles of qc mappings Kn → K . An easy consequence is
the so called Hamilton–Krushkal relation

(2) Re

∫∫

∆

µ(z)ϕn(z) dx dy → ‖µ‖ = ‖µ‖∞ = ess sup |µ(z)|

for ‖ϕn‖ =
∫∫

∆
|ϕn(z)| dx dy = 1, n → ∞ , as a necessary condition for f to be

extremal. (The computations are immediate if |µ(z)| = ‖µ‖ a.e. In the general
case we first realize that the integral tends to zero for every subset E ⊂ ∆ with
|µ(z)| < ‖µ‖ − ε , ε > 0. For a detailed discussion see [5].)

Another application of the polygon inequality is the following. Let K be the
maximal dilatation of an extremal mapping f . Can one have

supKn = K, n ≤ N <∞?

Can e.g. the above relation hold for quadrilaterals? Unless the boundary mapping
has a so called substantial (essential) boundary point, this is only possible if f
itself is a polygon mapping (see [7]).

II. The general case

The Hamilton–Krushkal relation (2) is an important ingredient in the theory
of extremal qc mappings. The polygon inequality (1) provides us with Hamilton
sequences which have an intuitive geometric meaning.

However, the inequality has so far only been proved for the disk (see [5],
inequality 3.2.6). It is the purpose of this paper to prove it for arbitrary plane
domains Ω and, slightly more generally, for arbitrary subdomains of compact
Riemann surfaces.

Let Ω be a subdomain of a compact Riemann surface R the boundary ∂Ω of
which contains infinitely many points. Let µ be an extremal Beltrami coefficient
in Ω. We set µ0 = µ in Ω and µ0 = 0 in R \ Ω. (This extension of µ was used
in [2] to investigate different kinds of local boundary dilatations.) Then, µ0 is a
Beltrami differential in R . For the norms we have ‖µ‖ = ‖µ0‖ .

Let f0 be a µ0 -quasiconformal mapping of R onto a compact surface R′ ,
and let Ω′ = f0(Ω). The complex dilatation of f0 in Ω is µ . Therefore any qc
mapping f of Ω with complex dilatation µ differs from the restriction f0 | Ω by a
conformal mapping. However, f0 is qc in all of R , and in particular homeomorphic
on ∂Ω. If µ is extremal on Ω, f0 | Ω is an extremal qc mapping of Ω onto f0(Ω).
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Choose a finite set Pn of points ωi on ∂Ω and let Gn be the surface R
punctured at the set Pn , Gn = R \ Pn . Let fn be the extremal qc mapping
of Gn onto G′n = R′ \ P ′n which takes ωi into ω′i = f0(ωi) for all indices i
and is homotopic to f0 modulo the boundary P ′n = ∂G′n . It is a Teichmül-
ler mapping associated with a rational quadratic differential ϕn of finite norm
‖ϕn‖ <∞ , which is holomorphic in R except for possible poles of the first order
at the points ωi . Changing the earlier nomenclature we call Gn a polygon, fn a
polygon mapping and ϕn a polygon differential.

We are trying to establish a polygon inequality similar to (1). In the disk
case we used reflection on the boundary of the disk and thus had actually to deal
with quadratic differentials with closed trajectories. The polygon differentials in
this more general case have no symmetry. Therefore we have to make use of
the general trajectory structure. This gives rise to a length inequality between
homotopic closed curves which can then be integrated over the whole surface R .
The fact that µ0 = 0 outside Ω finally reduces the domain of integration to Ω,
and we arrive at the polygon inequality (1), but now for general domains Ω ⊂ R .

III. Trajectory structure

This chapter is based on reference [6], where the definitions, statements and
their proofs can be found.

Let ϕ be a rational quadratic differential of finite norm on the extended plane
or, more generally, on an arbitrary compact Riemann surface R . Its critical points
are finitely many zeroes and, possibly, finitely many first order poles. The critical
trajectories, i.e. those which tend in at least one direction to a critical point of ϕ ,
are finite in number ([6], §7.1). All the other trajectories are either closed Jordan
curves or spirals. A spiral is a trajectory which is not closed but both ends of
which diverge, i.e. have a limit set which consists of at least two points ([6], §10.2).

Every closed trajectory α of an arbitrary quadratic differential ϕ on an ar-
bitrary Riemann surface R is embedded in a ring domain swept out by closed
trajectories homotopic to α and of the same ϕ -length ([6], §9.4).

The behaviour of non closed trajectories is more complicated. But on a com-
pact Riemann surface and for a rational quadratic differential of finite norm every
divergent trajectory ray α+ is recurrent ([6], §11, Theorem 11.1 and Corollary).
The limit set A of a recurrent ray α+ is the closure of a domain ([6], §11, Theo-
rem 11.2 and Corollaries). The boundary of A consists of critical trajectories of
finite length connecting zeroes of ϕ . Both subrays α+ and α− of a spiral have the
same limit set, which we call for short a spiral set. There are only finitely many
spiral sets, and different ones are non-overlapping. Therefore the entire surface R
is decomposed into finitely many ring domains and spiral sets.

Let A be a spiral set and choose a closed vertical interval β in the interior
A◦ of A . Then, A is covered by a finite set of closed, horizontal, non-overlapping
strips Si corresponding to horizontal rectangles in the Φ =

∫ √
ϕ -plane with both
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their vertical sides on β but no other points in common with β . Strips of the first
kind have their vertical intervals on different sides of β , strips of the second kind
on the same side, either both on the right-hand side or both on the left-hand side
(for the construction see ([6], §11.3).

The finitely many rays α+ and α− with initial point on β+ or β− which end
up in a critical point or an end point of β before they meet β again, together with
the endpoints of β , determine the strip decomposition of A .

IV. Length inequality

Let α be a closed trajectory of ϕ . If γ is any closed curve which is freely
homotopic to α , then its ϕ -length

∫
γ
|ϕ(z)|1/2 |dz| is at least as big as the ϕ -

length of α , with equality only if γ is a closed trajectory in the free homotopy
class of α ([6], §17.1). The length inequality, in combination with quasiconformal
mappings, will be integrated over the annulus swept out by the closed trajectories
of ϕ parallel to α .

Since we cannot restrict ourselves to quadratic differentials with closed tra-
jectories, we need a length inequality for spiral domains A◦ .

Let β be a compact vertical interval in A◦ and let S be a horizontal strip of
the first kind based on β . Let α be a trajectory interval in S with initial point
P+ and end point P− on the two different sides of β . Let δ be the subinterval
of β with initial point P− and end point P+ . The horizontal length of the closed
Jordan curve α+ δ is equal to a =

∫
α
|ϕ(z)|1/2 |dz| ([6], §24, Theorem 24.1, where

the property is expressed for the vertical trajectories and vertical length = height
rather than for the horizontal length).

Let γ be any closed curve in the free homotopy class of α + δ . Then, since
its ϕ -length is at least equal to its horizontal length with respect to ϕ and this
is minimized (see [6], Definition 24.1), in its free homotopy class, by a , we have∫
γ
|ϕ(z)|1/2 |dz| ≥ a .

The process is slightly more complicated for strips of the second kind, since
in this case the closed curve α + δ evidently would not minimize the horizontal
length in its free homotopy class. In order to get a minimizing closed curve we
must combine a trajectory interval α1 of the second kind on one side of β with
a trajectory interval α2 of the second kind on the other side of β . The two
connecting subintervals δ1 and δ2 on β can be chosen in such a way that the
curve α1 + δ1 + α2 + δ2 is a Jordan curve, possibly after a slight shift of δ1 , say,
away from β , (see [6], Fig. 68, p. 156, where again the reasoning is carried out
for heights instead of horizontal lengths). Then, again by ([6], Theorem 24.1), the
ϕ -length of any closed curve γ in the free homotopy class of the above step curve
is at least equal to the sum a1 + a2 of the lengths of α1 and α2 .
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V. Polygon inequality

We are now ready to prove the Polygon Inequality (1) and, equivalently (1 ′ ),
for the general case of Section II.

First, let α be a closed trajectory of ϕn . In the maximal annulus S deter-
mined by α on Gn = R−{ωi} we introduce the parameter ζ = ξ+ iη = Φn(z) =∫ √

ϕn(z) dz , z a local parameter on R . The Φn -image of S cut along a vertical
trajectory β is a rectangle 0 ≤ ξ ≤ a , 0 ≤ η ≤ b . The trajectory α is mapped by
fn onto a closed trajectory α′ = fn(α) of the image differential ψn = fn(ϕn) and
the ring domain S on Gn onto a ring domain S′ = fn(S) on R′ swept out by
closed trajectories of ψn . The mapping f0 takes α into a closed curve α̃ = f0(α)
of ψn -length at least equal to Kna , because it is freely homotopic on G′n to the
closed trajectory α′ with ψn -length Kna .

Let us introduce the notations, in terms of local parameters z and w on R
and R′ respectively, w = f0(z) , dw = p(z) dz + q(z) dz̄ ,

dz =
dz

dζ
dζ =

1

Φ′n(z)
dζ.

This gives, for the ψn -length of α̃ ,

(3) Kna ≤
∫

α̃

|dΨn| =
∫

α̃

|ψn(w)|1/2 |dw| =
∫

α

|ψn(w)|1/2|p(z) dz + q(z) dz̄|.

Along the horizontals in the ζ = ξ + iη -plane we have dz = dξ/Φ′n(z) , and thus

(4) Kna ≤
∫ |ψn(w)|1/2
|ϕn(z)|1/2

∣∣∣∣p(z) + q(z)
ϕn(z)

|ϕn(z)|

∣∣∣∣ dξ,

and hence by integration over the η -variable

(5)

Knab ≤
∫∫

Φn(S)

|ψn(w)|1/2
|ϕn(z)|1/2

∣∣∣∣p(z) + q(z)
ϕn(z)

|ϕn(z)|

∣∣∣∣ dξ dη

=

∫∫

S

|ψn(w)|1/2|ϕn(z)|1/2
∣∣∣∣p(z) + q(z)

ϕn(z)

|ϕn(z)|

∣∣∣∣ dx dy.

There is the variable w = f0(z) which has no place in S but in S̃ = f0(S) . By
means of the Jacobian du dv = J(w/z) dx dy =

(
|p(z)|2−|q(z)|2

)
dx dy we go back

to S ⊂ R with the integral

(6) Knab ≤
∫∫

S

|ψn(w)|1/2|ϕn(z)|1/2J1/2

∣∣∣∣p(z) + q(z)
ϕn(z)

|ϕn(z)|

∣∣∣∣
J1/2

dx dy.
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Secondly, let A be a spiral set of the trajectory structure of ϕn . Choose a
closed, regular vertical interval β in the interior A◦ of A . β is the basis of a
finite set of non overlapping horizontal ϕn -strips which cover A . They go over
into horizontal rectangles in the ζ = ξ + iη -plane by the conformal mapping Φn .
For given ε > 0 we can choose β so short that the ψn -length of β̃ = f0(β) is
smaller than ε .

Let S be a strip of the first kind. It connects an interval on the positive side
of β with one on the negative side. Let α be a trajectory interval of ϕn in S and
δ the interval on β which connects the two end points of α . It can be considered
as a shift vector on β pointing from the end point of α on the negative side of β
to its initial point on the positive side. It is the same for all trajectory intervals α
in S (for details see [6], p. 68).

The curve α + δ is mapped by fn onto a curve α′ + δ′ on R′ , composed
of a horizontal interval α′ and a vertical interval δ′ of the image differential
ψn = fn(ϕn) . The curve f0(α+ δ) = f0(α) +f0(δ) = α̃+ δ̃ has ψn -length at least
equal to the ψn -length of α′ , which is equal to |α′|ψn = Kn · |α|ϕn = Kn · a . For
the lengths of the vertical intervals δ , δ′ , we have |δ|ϕn = |δ′|ψn = d . We use the
rectangle 0 ≤ ξ ≤ a , 0 ≤ η ≤ b , b the ϕn -height of the strip S , in the ζ = ξ+ iη -
plane, ζ = Φn(z) , as parameter domain. From |α̃ + δ̃|ψn = |α̃|ψn + |δ̃|ψn ≥ Kna

and |δ̃|ψn < ε we get |α̃|ψn ≥ Kna− ε , and hence

(7)

Kna− ε ≤
∫

α

|ψn(w)|1/2|p(z) dz + q(z) dz̄|

=

∫

Φn(α)

|ψn(w)| 1

|ϕn(z)|1/2
∣∣∣∣p(z) + q(z)

ϕn(z)

|ϕn(z)|

∣∣∣∣ dξ.

Integration over η yields

(8)

Knab− εb ≤
∫∫
|ψn(w)|1/2 1

|ϕn(z)|1/2
∣∣∣∣p(z) + q(z)

ϕn(z)

|ϕn(z)|

∣∣∣∣ dξ dη

=

∫∫

S

|ψn(w)|1/2|ϕn(z)|1/2
∣∣∣∣p(z) + q(z)

ϕn(z)

|ϕn(z)|

∣∣∣∣ dx dy.

Here, z = x + iy is an arbitrary parameter on R . Since ψn(w) depends on
w = f0(z) , we introduce the Jacobian J(w/z) = |p(z)|2 − |q(z)|2 . Then, the
integral reads

(9) Knab− εb ≤
∫∫

S

|ψn(w)|1/2J1/2|ϕn(z)|1/2

∣∣∣∣p+ q
ϕn
|ϕn|

∣∣∣∣
J1/2

dx dy.
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We sum it up over all strips S of the first kind based on β . Denoting the area of
S in terms of ϕn by |S|ϕn we have

(10) Kn

∑
|S|ϕn − ε

∑
b ≤

∫∫

∑
S

|ψn(w)|1/2J1/2|ϕn(z)|1/2

∣∣∣∣p+ q
ϕn
|ϕn|

∣∣∣∣
J1/2

dx dy.

We pass now to the strips of the second kind. If we want to have a length
inequality, they have to be combined, each strip on the right-hand side with a strip
on the left-hand side of the same height. To that end take the highest strip Sr on
the right-hand side and the highest strip Sl on the left-hand side. Let br and bl
be the respective heights and let br > bl . Then we cut off a horizontal rectangle of
height br − bl from Sr to get S̃r with height bl . We can therefore glue S̃r to Sl .
The total number of strips is reduced by one. Therefore the process comes to an
end.

Let α1 + δ1 +α2 + δ2 be a closed step curve with respect to ϕn . It is mapped
by fn onto a similar step curve with respect to ψn , with horizontal ψn -length
Kna1 +Kna2 . The f0 image α̃1 + δ̃1 + α̃2 + δ̃2 has ψn -length greater or equal to
Kn(a1 + a2) . On the other hand, it is |α̃1|ψn + |α̃2|ψn + |δ̃1|ψn + |δ̃2|ψn . Setting

|δ̃1|ψn = d̃1 , |δ̃2|ψn = d̃2 we find

(11) |α̃1|ψn + |α̃2|ψn ≥ Kn(a1 + a2)− d̃1 − d̃2 > Kn(a1 + a2)− 2ε.

With the values |α̃1|ψn =
∫
α̃1
|dΨn| , |α̃2|ψn =

∫
α̃2
|dΨn| we get

(12)

Kn(a1 + a2)− 2ε <

∫

α̃1+α̃2

∣∣∣∣
dΨn

dw

∣∣∣∣ |dw| =
∫

α1+α2

|ψn(w)|1/2|p dz + q dz̄|

=

∫
|ψn(w)|1/2 1

|ϕn(z)|1/2
∣∣∣∣p(z) + q(z)

ϕn(z)

|ϕn(z)|

∣∣∣∣ dξ.

The integral with respect to ξ is thought to be extended over the rectangles
corresponding to the two strips. We integrate over η and get, with the height of
both strips Sr and Sl being equal to b

(13)

Kn(a1 + a2)b− 2εb ≤
∫∫
|ψn(w)|1/2 1

|ϕn(z)|1/2
∣∣∣∣p+ q

ϕn
|ϕn|

∣∣∣∣ dξ dη

=

∫∫

Sr+Sl

|ψn(w)|1/2|ϕn(z)|1/2
∣∣∣∣p+ q

ϕn
|ϕn|

∣∣∣∣ dx dy.
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Now we sum up over all strips S of the first kind and all pairs of strips Sr +Sl of
the second kind in A . We generically denote the height of the strips by b . Thus
Knab = Kn‖ϕn‖S , Kn(a1 + a2)b = Kn‖ϕn‖Sr+Sl . This gives

(14)
∑

(S)

Kn‖ϕn‖S − ε|β|ϕn ≤
∫∫

∑
S

|ψn(w)|1/2|ϕn(z)|1/2
∣∣∣∣p+ q

ϕn
|ϕn|

∣∣∣∣ dx dy

and

(15)
∑

(Sr+Sl)

Kn‖ϕn‖Sr+Sl − 2ε 1
2 |β|ϕn ≤

∫∫

∑
Sr+Sl

|ψn|1/2|ϕn|1/2
∣∣∣∣p+ q

ϕn
|ϕn|

∣∣∣∣ dx dy

and hence

(16) Kn‖ϕn‖A − 2ε|β|ϕn ≤
∫∫

A

|ψn|1/2|ϕn|1/2
∣∣∣∣p+ q

ϕn
|ϕn|

∣∣∣∣ dx dy.

The integral over A does not depend on the length of the vertical interval β , so
we can let |β|ϕn → 0. Then, ε becomes arbitrarily small too, which leads to

(17) Kn‖ϕn‖A ≤
∫∫

A

|ψn(w)|1/2|ϕn(z)|1/2
∣∣∣∣p+ q

ϕn
|ϕn|

∣∣∣∣ dx dy.

We add up the inequalities for all ring domains and spiral sets of ϕn and get the
inequality (17) for R instead of A . Finally, choosing ‖ϕn‖ = 1, we have, inserting
the Jacobian J(w/z)

(18) Kn ≤
∫∫

R

|ψn(w)|1/2J1/2|ϕn(z)|1/2

∣∣∣∣p+ q
ϕn
|ϕn|

∣∣∣∣
J1/2

dx dy.

To this expression we apply Schwarz’s inequality which gives

(19) K2
n ≤

∫∫

R

|ψn(w)|J dx dy ·
∫∫

R

|ϕn(z)|

∣∣∣∣p+ q
ϕn
|ϕn|

∣∣∣∣
2

|p|2 − |q|2 dx dy.

With
∫∫
R
|ψn(w)|J(w/z) dx dy = ‖ψn‖R′ = Kn‖ϕn‖R = Kn we finally get

(20)

Kn ≤
∫∫

R

|ϕn(z)|

∣∣∣∣p(z) + q(z)
ϕn(z)

|ϕn(z)|

∣∣∣∣
2

|p(z)|2 − |q(z)|2 dx dy

=

∫∫

R

|ϕn(z)|

∣∣∣∣1 + µ0
ϕn(z)

|ϕn(z)|

∣∣∣∣
2

1− |µ0(z)|2 dx dy.
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Remember that µ0(z) = 0 outside of Ω and µ0(z) = µ(z) in Ω. Then, the above
integral over R reduces to one over Ω,

(21) Kn ≤
∫∫

Ω

|ϕn(z)|

∣∣∣∣1 + µ(z)
ϕn(z)

|ϕn(z)|

∣∣∣∣
2

1− |µ(z)|2 dx dy.

This is the Polygon Inequality. The polygon mapping fn is the extremal qc
mapping on R which takes the points ωi ∈ ∂Ω into the points ω′i = f0(ωi) ∈ ∂Ω′

and is homotopic on Gn = R \ {ωi} to f0 modulo the points Pn = {ωi} . It is
a Teichmüller mapping associated with a quadratic differential ϕn of finite norm
(norm one, if normalized) which is holomorphic on R except for possible first order
poles at the vertices ωi .

VI. Homotopy

Let now the set of vertices Pn become arbitrarily dense on ∂Ω with n→∞ .
By general principles of qc mappings (see e.g. [4], II, §5) there is a subsequence of
the sequence (fn) which converges uniformly in R to a qc mapping with maximal
dilatation smaller or equal to limKn . Its values on ∂Ω are the same as the values
of f0 on ∂Ω. We denote its restriction to Ω by f∗ , with maximal dilatation K∗ .
Clearly, the maximal dilatation of f0 is the same as the maximal dilatation K of
its restriction f to Ω.

An extremal mapping we are looking for has the boundary values of f on ∂Ω
and is homotopic to f in Ω modulo the boundary (this is in fact the Teichmüller
class of f in Ω).

Let Gn = R \Pn , G′n = R \P ′n . In this notation the mappings fn:Gn → G′n
are homotopic (mod Pn ) to the mapping f0 . This property has an equivalent in

terms of covering surfaces. Let Ĝn , Ĝ′n be the universal covering surfaces of Gn
and G′n respectively. We lift the qc mappings fn and f0 to the universal covering

surfaces Ĝn , Ĝ′n . Lifting is done by corresponding arcs with a fixed initial point
z0 ∈ R \ Pn and its image point by fn or f0 in R′ \ P ′n , as the case may be.
In principle, the point z0 can be chosen anywhere in Gn . For our purposes it is
however important to choose z0 ∈ Ω.

Let f̂n be the lift of fn , (f0, Pn)̂ the lift of f0 to Ĝn → Ĝ′n .

Besides the multisheeted covering surfaces Ĝn , Ĝ′n over Gn , G′n (which

is easier for the lifting process) we represent Ĝn and Ĝ′n by the disks ∆, ∆′

respectively, without changing the notations of the lifts. The mappings f̂n and
(f0, Pn)̂ are thus quasiconformal mappings of the disks ∆→ ∆′ which agree on
the boundary ∂∆ → ∂∆′ . Their limits are quasiconformal mappings g and h of
∆ onto ∆′ respectively. Since the projection of (f0, Pn)̂ onto Gn is always equal

to f0 , the same is true if we restrict f0 to the original mapping f : Ω→ Ω′ . For f̂n
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the projection fn maps z0 onto fn(z0) = zn → f∗(z0) ∈ Ω′ . Therefore g = lim f̂n
cannot degerate. On the other hand, since ∆ is connected (by arcs), the projection
is connected. It cannot contain a point of ∂Ω, but contains all of Ω and is thus
equal to Ω. We have: The projection of g is f∗ and thus g = f̂∗ . The two lifts
f̂ and f̂∗ to the universal covering surfaces Ω̂→ Ω̂′ (which are represented by ∆
and ∆′ ) have the same boundary values. It follows that f∗ = lim fn | Ω and f
are homotopic in Ω modulo the boundary ∂Ω.

We conclude: f∗ is in the Teichmüller class of f in Ω. Since f is extremal,
we must have K ≤ K∗ , but evidently only equality is possible. It follows from
the Polygon Inequality that limn→∞Kn = K . We finally have the

Theorem. Let Ω be a subdomain of a compact Riemann surface R with
infinitely many boundary points. Let µ be an extremal Beltrami coefficient in Ω .
Let {ωi} be a sequence of points on ∂Ω which is dense in ∂Ω . Then, there
exists a sequence of polygon differentials ϕn of norm ‖ϕn‖ = 1 with vertices ωi ,
i = 1, . . . , n (n → ∞) which is a Hamilton–Krushkal sequence for µ in Ω . The
usual computations in fact show that the Teichmüller differentials of the extremal
polygon mappings satisfy

lim
n→∞

Re

∫∫

Ω

µ(z)ϕn(z) dx dy = ‖µ‖∞.
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