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Abstract. By definition the asymptotic maximum principle (AMP) is valid for a class K
of analytic functions in the unit disk D if, whenever f ∈ K

sup
0≤θ<2π

lim sup
r→1

|f(reiθ)| = sup
z∈D
|f(z)|.

Let Kt (t ≥ 0) be the class of all f for which

lim sup
|z|→1

{(1− |z|)2 log |f(z)|} ≤ t.

Then AMP is valid for K0 and not valid for Kt with t > 0 .

1. Historical background and the main result

It is well known (Lusin–Privalov theorem) [3] that there are non-zero analytic
functions in D that have zero radial limits on a subset E of ∂D having full
Lebesgue measure. (However, this cannot happen if |E| > 0 and at the same time
E is of second Baire category.) More specifically, no matter how slowly k(r) tends
to +∞ as r → 1, there always is a non-zero analytic f with log |f(z)| ≤ k(|z|)
and limr→1 f(reiθ) = 0 almost everywhere on [0, 2π) (see [2] for this and other
similar results). Recently [1] a connection was found between such radial null sets
E and the notion of k -entropy of E .

The radial null sets represent only one kind of asymptotic behavior, namely
convergence to 0. If the radial null sets are replaced by sets of “asymptotic
boundedness”, then we are led to the following two general problems whose purpose
is to expand the scope of the classical maximum principle.

Problem 1. Given a class K , characterize those subsets E of ∂D such that
f ∈ K together with

sup
ζ∈E

lim sup
r→1

|f(rζ)| <∞

imply f ∈ H∞ .
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Problem 2 (Dual to the above). Given a subset E of ∂D , identify the class
K , in terms of maximal allowed radial growth, such that the above inequality
together with f ∈ K imply f ∈ H∞ .

Definition. We say that the asymptotic maximum principle (AMP) is valid
for the class K of analytic functions in the unit disk D if, whenever f ∈ K ,

sup
0≤θ<2π

lim sup
r→1

|f(reiθ)| = sup
z∈D
|f(z)|.

We give a solution to Problem 2 for the case E = ∂D , i.e. for AMP. More
specifically, we identify maximal radial growth of functions that implies validity of
the AMP.

Let Kt , t ≥ 0, be the class of all f for which

lim sup
|z|→1

{
(1− |z|)2 log |f(z)|

}
≤ t.

(Note that for t = 0 and a non-zero f the above inequality becomes an equality.)

We are now in a position to state our main result.

Theorem. AMP is valid for K0 and not valid for Kt with t > 0 .

Remark. A similar result holds for general subharmonic functions instead of
log |f(z)| . We emphasize here the analytic case for the sake of comparison with
Lusin–Privalov’s theorem and other results.

2. Use of a Baire-category argument

We proceed now to proving the above theorem. If t > 0 then the AMP fails
for Kt as the example

f(z) = exp

{
ci

(
1 + z

1− z

)2}

shows, where c is a suitable positive constant depending on t . We therefore
assume t = 0, which means for f ∈ K0 that

lim sup
|z|→1

{
(1− |z|)2 log |f(z)|

}
= 0,

and proceed to prove that

C = sup
ζ∈∂D

lim sup
r→1

|f(rζ)| = sup
z∈D
|f(z)|.

If the first supremum above is infinite then there is nothing to prove. We therefore
suppose that C <∞ .
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If now A > C , we define the following sets:

Er = Er,f =
{
ζ ∈ ∂D : |f(%ζ)| ≤ A, r ≤ % < 1

}
, 1

2 ≤ r < 1.

It is easily seen that {Er : 1
2 ≤ r < 1} is a nested family of closed sets whose

union equals ∂D . Let Gr denote the interior of Er and write G =
⋃
r≥1/2Gr ;

ζ ∈ G means that there is some δ = δ(ζ) such that |z − ζ| < δ , z ∈ D imply
|f(z)| ≤ A .

We now claim that the open set G is dense in ∂D , and therefore the closed
set F = ∂D\G is nowhere dense. In fact, picking an arbitrary monotone sequence
1
2 ≤ r1 < r2 < · · · → 1 we see that every ζ in G ultimately is in Grn and thus not
in Ern \Grn ; on the other hand, every ζ in ∂D is either in some Grn or in some
Ern \Grn . Therefore G ⊃ ∂D \⋃n(Ern \Grn) . By the Baire category theorem,
the set

⋃
n(Ern \ Grn) being a countable union of nowhere dense subsets of ∂D

must have a dense complement, which proves our claim.
By the Heine–Borel theorem, in order to prove our theorem it is enough to

show that F = ∅ . We proceed now to show that the assumption F 6= ∅ leads to
a contradiction.

Recall that F consists of those points ζ ∈ ∂D such that for every δ > 0 there
is some z in D with |z − ζ| < δ and |f(z)| > A .

Pick now some Ã , C < Ã < A , and construct the sets Ẽr , 1
2 ≤ r < 1, that

relate to F essentially as Er relate to ∂D :

Ẽr :
{
ζ ∈ F : |f(%ζ)| ≤ Ã, r ≤ % < 1

}
.

As before,
{
Ẽr : 1

2 ≤ r < 1
}

is a nested family of closed sets whose union equals F .
Since F , as well as all its relatively open subsets, are of second Baire category in
themselves, we can use again the Baire category argument to find that there is an
open arc I ⊂ ∂D and some r0 , 1

2 ≤ r0 < 1, such that ∅ 6= I ∩ F ⊂ Ẽr0 . Let

K = (Ī \ I) ∪ (I ∩ F ).

This set is a closed and nowhere dense subset of Ī such that

|f(%ζ)| ≤ Ã for all ζ ∈ K and r1 ≤ % < 1,

where r1 is some number between r0 and 1. It then follows that there is a constant
B > Ã such that

|f(%ζ)| ≤ B for all ζ ∈ K, 0 ≤ % < 1.

The critical step now is to extend this estimate to the whole sector S = {z ∈
D : z/|z| ∈ I} . Let Ī \ K =

⋃
n Jn where Jn are disjoint open arcs with end
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points eiαn and eiβn . Consider the open sector Sn abutting on Jn . We need to
prove that for all n , |f(z)| ≤ B , z ∈ Sn . Recall that Jn ⊂ G , which implies
that for every closed subarc γ ⊂ Jn there is some number a = a(γ) < 1 so
that |f(%ζ)| ≤ A if ζ ∈ γ and a ≤ % < 1. Construct an increasing sequence
of closed arcs J̄n1 ⊂ J̄n2 ⊂ J̄n3 ⊂ · · · having a common midpoint with Jn and
such that

⋃
k J̄nk = Jn . For the corresponding numerical sequence ank = a(J̄nk) ,

k = 1, 2, . . . , we assume that an1 < an2 < · · · → 1. This construction yields
a piecewise constant function ψn(θ) equal to ank if eiθ ∈ J̄nk \ J̄n,k−1 . By the
construction we have |f(%eiθ)| ≤ A if ψn(θ) ≤ % < 1, αn < θ < βn . We would like
to replace ψ by a continuous function ϕn(θ) ≥ ψn(θ) having similar properties;
this can be achieved by “cutting the corners” of the graph of ψn , i.e., linearly
interpolating between discontinuity points of ψn . We thus obtain a continuous
curve % = ϕn(θ) , αn ≤ θ ≤ βn , joining the end points eiαn and eiβn of J̄n and
satisfying

|f(%eiθ)| ≤ A if ϕn(θ) ≤ % < 1, αn < θ < βn.

The required estimate

|f(z)| ≤ B, z ∈ Sn,

is then a consequence of the following lemma that is in fact a sharper form of a
classical Phragmén–Lindelöf theorem (see [4], v.2, p. 214).

3. A Phragmén–Lindelöf type lemma

Lemma. Let S be an open sector bounded by an arc J = {z : |z| = 1, −α ≤
Arg z ≤ α} and two radii R± = {z : 0 ≤ |z| < 1, Arg z = ±α} . Let Γ be the
subdomain of S bounded by J and a curve γ whose polar equation is % = ϕ(θ)
with ϕ continuous on [−α, α] , 0 < ϕ(θ) < 1 , −α < θ < α , ϕ(±α) = 1 .

If f is analytic in S , continuous on R+ ∪R− ∪ S , and satisfies

(∗) lim sup
|z|→1, z∈S

{(1− |z|)2 log |f(z)|} = 0,

then
sup
{
|f(z)| : z ∈ R+ ∪R− ∪ Γ

}
= sup

{
|f(z)| : z ∈ S

}
.

Proof. It is convenient to change the setting from the sector S to that of the
half-strip

Ω = {x+ iy : −1 < x < 1, y > 0},

which is done by an elementary conformal mapping. We have

∂Ω = [−1, 1] ∪ l− ∪ l+ ∪ {∞},
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where l± = {±1+ iy : y > 0} . We are going to prove a somewhat stronger version
of the lemma (cf. Remark at the end of Section 1), in which log |f(z)| is replaced
by an arbitrary subharmonic v: Ω→ [−∞,∞) which extends to be continuous on
l− ∪ l+ ∪Ω∪{∞} . (Note that continuity here is equivalent to the usual continuity
of ev .) Our assumptions are:

(i) there is a region Γ between [−1, 1] and a continuous curve γ : y = ϕ(x) , with
ϕ(−1) = ϕ(1) = 0, ϕ(x) > 0, −1 < x < 1, such that

sup
{
v(z) : z ∈ l− ∪ l+ ∪ Γ

}
= M <∞;

(ii)

(∗∗) lim sup
y→0+,−1<x<1

{y2v(x+ iy)} = 0.

Our aim is to show that

sup{v(z) : z ∈ Ω} = M.

First we modify v by subtracting a harmonic function that is positive in Ω. Let

Ψ(x, y) = −1/2 Im z−2 =
xy

(x2 + y2)2 .

Clearly, Ψ is harmonic and positive for x > 0, y > 0, Ψ = 0 if x = 0 or y = 0,
and Ψ(x,mx) = m/(1 +m2)

2

x2 .
Consider now

va(z) = v(z)− a
(
Ψ(1 + x, y) + Ψ(1− x, y)

)
, a > 0.

Let Ω1 = {z = x + iy ∈ Ω : y > min(1 − x, 1 + x)} . By (∗∗) va(z) is bounded
above on ∂Ω1 . By applying the classical Phragmén–Lindelöf theorem referred to
earlier, we obtain that va(z) is bounded above in Ω1 ; it is also continuous on Ω1

except, perhaps, at ±1. To make it continuous on Ω1 we adjust it as follows with
ε1 > 0:

va,ε1(z) = va(z) + log |(z + 1)/(z + 1 + ε1)|+ log |(1− z)/(1 + ε1 − z)|.

We then have va,ε1(z) < va(z) < v(z) , z ∈ Ω1 ; also, va,ε1 is continuous on Ω1 ,
with va,ε1(±1) = −∞ .

The next step requires the curve γ : y = ϕ(x) , −1 ≤ x ≤ 1, to satisfy the
following additional condition: ϕ is differentiable, with |ϕ′(x)| ≤ 1

2 ; this does not
result in any loss of generality, as ϕ(x) can be replaced by any smaller positive
function. With this assumption made, we see that Γ∩Ω1 = ∅ ; also, every straight
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line with slope m , |m| > 1, intersects the boundary of the region Ω2 lying between
Ω1 and Γ at most at two points.

Consider now:

va,ε1,ε2(z) = va,ε1(z)− a
(
Ψ(x+ 1− ε2, y) + Ψ(1− ε2 − x, y)

)
, 0 < ε2 < 1.

This function is subharmonic in the region Ω(ε2) ⊂ Ω lying between the two lines
l±ε2 = {z = x+ iy : x = ±(1− ε2)} ; also,

va,ε1,ε2(z) < va,ε1(z) < va(z) < v(z), z ∈ Ω(ε2).

We apply now the classical maximum principle to va,ε1,ε2(z) in the region

Ω
(ε2)
3 ⊂ Ω(ε2) \ Γ whose boundary is made up of the following parts:

B1 : the segment of γ between the lines λ+
ε2 : y = −2(x − 1 + ε2) and λ−ε2 : y =

2(x+ 1− ε2) ;
B2 : the two segments of the above lines lying in Ω2 ;
B3 : the two segments of ∂Ω1 lying between l−ε2 and λ−ε2 , and between λ+

ε2 and
l+ε2 , respectively;

B4 : parts of l±ε2 lying in Ω1 .

We thus obtain for z0 ∈ Ω
(ε2)
3 that va,ε1,ε2(z0) is less than or equal to

max
(
max{v(z) : z ∈ B1},max{va,ε1,ε2(z) : z ∈ B2 ∪B3},max{va,ε1(z) : z ∈ B4}

)
.

Now, we let ε2 → 0, holding ε1 and a fixed. The second maximum in parentheses
then tends to 0 due to (∗∗) , and the third maximum tends to max{va,ε1(z) : z ∈
l+∪l−} due to continuity of va,ε1 on Ω1 ; at the same time va,ε1,ε2(z0)→ v2a,ε1(z0)

and Ω
(ε2)
3 eventually includes all z0 ∈ Ω3 = Ω \ Γ. Thus for all z0 ∈ Ω \ Γ

v2a,ε1(z0) ≤ max
(
sup{v(z) : z ∈ γ}, sup{v(z) : z ∈ l+ ∪ l−}

)
.

The right-hand side depends neither on a nor on ε1 . Letting a → 0, ε1 → 0 we
get

sup{v(z0) : z0 ∈ Ω \ Γ} ≤ max
(
sup{v(z) : z ∈ γ}, sup{v(z) : z ∈ l+ ∪ l−}

)
,

which obviously implies

sup{v(z) : z ∈ Ω} = sup{v(z) : z ∈ l− ∪ l+ ∪ Γ}.
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4. Completion of the proof of the theorem

Applying the above lemma to each Sn we obtain

sup{|f(z)| : z ∈ Sn} ≤ B.

Since the closure of
⋃
n Sn is the whole sector S we deduce that |f(z)| is bounded

by B in S . We also have lim sup%→1 |f(%ζ)| ≤ C < Ã on I . On the two boundary

radii R1 and R2 |f(%ζ)| ≤ Ã < A , r1 ≤ % < 1, ζ ∈ Ī \ I . This implies
that log |f(z)| is dominated in S by a harmonic function U(z) whose boundary
values on R1 and R2 are logB , 0 ≤ |z| < r1 , log Ã , r1 ≤ |z| < 1, and on
I , U(ζ) = logC . To make U(z) continuous we increase its piecewise constant
boundary values by linearly interpolating them between the discontinuity points.
The resulting harmonic function U1(z) ≥ U(z) is continuous in the closed sector
S , and on I U1(ζ) = log Ã . This implies that there is some r2 , r1 < r2 < 1, such
that

|f(z)| ≤ A, z ∈ S, r2 ≤ |z| < 1,

which means that I ∩ F = ∅ , contrary to the assumption. This contradiction
proves our theorem.
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