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Abstract. It was conjectured in a previous work [7] that every non-trivial solution of

y′′ +Ay = 0

has infinite exponent of convergence of zeros, where A(z) = B(ez) , B(ζ) =
∑p
j=1 b−jζ

−j +g(ζ) , p
is an odd positive integer and g(ζ) is an entire function of order not equal to a positive integer. We
give an affirmative answer to this conjecture and obtain generalizations of some previous results.
In addition, perturbation results for periodic equations are found. Some new properties of periodic
equations have been found in order to solve the above problems.

1. Introduction

We use standard notation from Nevanlinna theory in this paper (see [8], [9]
and [10]). In addition, we use the notation σ(f) and λ(f) respectively to denote
the order of growth and exponent of convergence of the zeros of a meromorphic
function f .

The following result was proved in [7].

Theorem A. Let B(ζ) = g(1/ζ)+
∑p
j=1 bjζ

j , where g(ζ) is a transcendental
entire function with σ(g) < 1 , p is an odd positive integer and bp 6= 0 . Let
A(z) = B(ez) . Then any non-trivial solution f of

(1.1) f ′′ +A(z)f = 0

must have λ(f) = +∞ . In fact, the stronger conclusion

(1.2) log+N(r, f) 6= o(r)

holds.
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We remark that Theorem A remains valid when we define

B(ζ) = g(ζ) +

p∑

j=1

b−jζ
−j , b−p 6= 0.

An example is given in [7] showing that Theorem A does not hold when σ(g)
is any positive integer. It was conjectured in [7] that the conclusion of Theorem A
remains valid when the order σ(g) > 1 but is not a positive integer. We now
give an affirmative answer to this problem in this paper. In fact, we show that
Theorem A remains valid when σ(g) is not a positive integer or infinity. We also
give examples showing that Theorem A is no longer valid when σ(g) is infinity.
Thus our results are the best possible. The second author acknowledges useful
discussions with Jim Langley while he was visiting the Mathematics Department
of St Andrews University in 1990.

The proof of the above conjecture is based on a generalization of the following
result.

Theorem B ([7, Lemma 5] or [8, Lemma 3.6]). Let A(z) = B(ez) where
B(ζ) is transcendental and analytic in 0 < |ζ| < +∞ . Suppose A(z) satisfies

(1.3) lim
r→+∞

log T (r,A)

r
< 1.

Then for any non-trivial solution f(z) of (1.1) with

(1.4) log+N(r, 1/f) = o(r),

f(z) and f(z + 2πi) must be linearly dependent.

The generalization of Theorem B we obtain is when (1.1) has the coefficient
of the form A(z) = B(ez) where

(1.5) B(ζ) = g1(1/ζ) + g2(ζ),

and g1(ζ) and g2(ζ) are entire functions. Thus the equation (1.1) we consider
here is related to the well-known equation of G.H. Hill in mathematical physics
concerning lunar theory (see [1, Chapter VII], [11] and [12]). We also prove some
related perturbation results for equation (1.1) in the second half of this paper.

The main tools that we use in this paper are Nevanlinna theory in C0 (see
[3, p. 4], [6, pp. 97–107] and [10, pp. 101–102]) where C0 = C\{z : |z| ≤ R0} ,
Valiron representation for functions analytic in C0 [14, p. 15] and the fact that
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if f1 and f2 are two non-trivial, linearly independent solutions of (1.1), then the
product E(z) = f1(z)f2(z) satisfies the differential equation

(1.6) 4A(z) =

(
E′

E
(z)

)2

− 2
E′′

E
(z)− c2

E(z)2

where c 6= 0 is the Wronskian of f1 and f2 [1, p. 354] (see also [6, p. 81] or [8,
p. 5]), and

(1.7) T (r, E) = N(r, 1/E) + 1
2T (r,A) +O

(
log rT (r, E)

)
n.e.

In general, we use “n.e.” to denote that an asymptotic relation holds except possi-
bly outside a set of finite linear measure (i.e., finite length). Our argument actually
depends on an analogue of (1.7) on the Valiron representation of periodic func-
tions. We also make use of the following properties of periodic entire coefficient
in (1.1). Let A(z) = B(ez) where A(z) and B(ζ) are defined in Theorem B. Then
B(ζ) = g1(1/ζ) + g2(ζ) , where both g1 and g2 are entire functions in C . Using
this decomposition and coupled with the above tools, we show that the oscillation
properties of solutions of (1.1) depend largely on the properties of g1 or g2 . The
proof of the conjecture is based on the above tools as well as on new concepts and
methods which we shall develop in Sections 2 and 3. This also allows us to obtain
new perturbation results for (1.1).

This paper is organized as follows. Some new concepts and preparatory results
will be introduced in Sections 2 and 3. The main results are stated in Section 4,
and their proofs are given in Section 5. In Section 6, we discuss perturbation type
results for periodic equations of the form (1.1). We note that the notations c , c1 ,
c2, . . . , are used to denote constants that may have different values at different
occurrences in this paper.

2. Preliminaries for the proof of the main results

Let A(z) be an entire function. We define

(2.1) σe(A) = lim
r→+∞

log T (r,A)

r

to be the e-type order of A(z) . We also define

(2.2) lim
r→+∞

log+N(r, 1/A)

r
,

denoted by λe(A) , to be the e-type exponent of convergence of the zeros of A(z) .
We shall have occasions to consider the zeros of A(z) in the right-half plane only.
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In that case, we define the upper limit in (2.2) by λeR(A) when we only count
the zeros of A(z) in the right-half plane. Similarly, we define λeL(A) to be the
upper limit in (2.2) when we only count the zeros of A(z) in the left-half plane.
We shall derive some new relations for (2.1) and (2.2) when A(z) is in the form
B(ez) for some function B(ζ) below.

Let B(ζ) be analytic in 0 < |ζ| < +∞ . Hence we have a representation
B(ζ) = g1(1/ζ) + g2(ζ) , where both g1(ζ) and g2(ζ) are entire functions. Let
A(z) = B(ez) = A1(z) + A2(z) , where A1(z) = g1(e−z) and A2(z) = g2(ez) .
Observe that the transformation ζ = ez is a one-one correspondence between the
sets {z : − log % ≤ Re z ≤ log %, −π < Im z ≤ π} and {ζ : %−1 ≤ |ζ| ≤ %} . By the
periodicity of ez , we have

max
%−1 ≤ |ζ| ≤ %

|B(ζ)| = max
− log %≤Re z≤log %
−π<Im z≤π

|A(z)| ≤ max |A(z)|
|z|≤log %+π

≤ max
−(log %+π)≤Re z≤log %+π

−π<Im z≤π

|A(z)| = max
(eπ%)−1 ≤ |ζ| ≤ eπ%

|B(ζ)|.

We deduce that

(2.3) σe(A) = lim
%→+∞

log log max
%−1≤|ζ|≤%

|B(ζ)|

log %
.

From
max

%−1≤|ζ|≤%
B(ζ) = max

{
max
|ζ|=%−1

|B(ζ)|,max
|ζ|=%
|B(ζ)|

}
,

and the fact that

(2.4)

lim
%→+∞

log log max
|ζ|=%−1

|B(ζ)|

log %
= σ(g1),

lim
%→+∞

log log max
|ζ|=%
|B(ζ)|

log %
= σ(g2),

we deduce that

lim
%→+∞

log log max
%−1≤|ζ|≤%

|B(ζ)|

log %
= max{σ(g1), σ(g2)}.

This together with (2.3) yields

(2.5) σe(A) = max{σ(g1), σ(g2)}.
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In particular,

(2.6) σe(A1) = σ(g1), σe(A2) = σ(g2).

Let us now turn to the discussion of zeros. Let n(D, 1/F ) be the number of
zeros of F (z) in the set D . Then we deduce

n
(
%−1 ≤ |ζ| ≤ %, 1/B(ζ)

)
= n

({− log % ≤ Re z ≤ log %

−π < Im z ≤ π

}
, 1/A(z)

)

≤ n
(
|z| ≤ log %+ π, 1/A(z)

)

≤ 2

(
(log %+ π)− π

2π
+ 1

)
(2.7)

× n
({−(log %+ π) ≤ Re z ≤ log %+ π

−π < Im z ≤ π

}
, 1/A(z)

)

=

(
log %

π
+ 2

)
n

(
(eπ%)−1 ≤ |ζ| ≤ eπ%, 1/B(ζ)

)
.

Thus

(2.8) λe(A) = lim
%→+∞

log n
(
%−1 ≤ |ζ| ≤ %, 1/B(ζ)

)

log %
.

From

n
(
%−1 ≤ |ζ| ≤ %, 1/B(ζ)

)
= n

(
1 < |ζ| ≤ %, 1/B(ζ)

)
+ n

(
%−1 ≤ |ζ| ≤ 1, 1/B(ζ)

)
,

we deduce

lim
%→+∞

log n
(
%−1 ≤ |ζ| ≤ %, 1/B(ζ)

)

log %

= max

{
lim

%→+∞
log n

(
1 < |ζ| ≤ %, 1/B(ζ)

)

log %
, lim
%→+∞

log n
(
%−1 ≤ |ζ| ≤ 1, 1/B(ζ)

)

log %

}
.

As in (2.8), we have

(2.9)

λeR(A) = lim
%→+∞

log n
(
1 < |ζ| ≤ %, 1/B(ζ)

)

log %
,

λeL(A) = lim
%→+∞

log n
(
%−1 ≤ |ζ| ≤ 1, 1/B(ζ)

)

log %
.
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Thus

(2.10) λe(A) = max{λeR(A), λeL(A)}.

If f is analytic in C0 , then [14, p. 15] implies that

(2.11) f(z) = znΘ(z)u(z),

where n is an integer, Θ(z) is analytic and non-vanishing on C0∪{∞} , and u(z)
is an entire function with

(2.12) u(z) = π(z)eh(z).

The function π(z) is a Weierstrass product formed from the zeros of f in C0 ,
and h(z) is an entire function. We remark that the assumption that f has an
essential singularity at infinity made in [14, p. 15] in order for f to have (2.11) is
redundant (see [5, Section 2]).

Letting R0 = 1, we may regard B(ζ) to be analytic in C∗ , where C∗ :=
C\{z : |z| ≤ 1} . By (2.11) we have a similar representation

(2.13) B(ζ) = ζnR(ζ)b(ζ),

where n is an integer, R(ζ) is analytic and non-vanishing on C∗ ∪{∞} , and b(ζ)
is an entire function. From (2.13) we easily deduce

(2.14) lim
%→+∞

log log max
|ζ|=%

|B(ζ)|

log %
= lim
%→+∞

log logM
(
%, b(ζ)

)

log %
= σ

(
b(ζ)

)
.

From (2.4) we obtain

(2.15) σ(g2) = σ(b).

Let us now consider B(ζ) as an analytic function in 0 < |ζ| < 1. If t = 1/ζ ,
then the function B∗(t) = B(1/t) is analytic in C∗ . Thus we have a similar
Valiron representation in C∗∪{∞} as (2.13) with b(ζ) replaced by another entire
function, denoted by b∗(t) . We deduce from (2.4) again that

(2.16) σ(g1) = σ(b∗).

We further deduce, from (2.5), (2.15) and (2.16), that

(2.17) σe(A) = max
{
σ
(
b(ζ), σ(b∗(t)

)}
.
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We also deduce, from (2.6), (2.15) and (2.16), that

(2.18) σe(A1) = σ
(
b∗(t)

)
, σe(A2) = σ

(
b(ζ)

)
.

Since the zeros of B(ζ) and b(ζ) coincide in 1 < |ζ| < +∞ , we deduce from (2.9)
that

(2.19) λeR(A) = λ
(
b(ζ)

)
.

Similarly

(2.20) λeL(A) = λ
(
b∗(t)

)
.

It follows from (2.10) that

(2.21) λe(A) = max
{
λ
(
b(ζ)

)
, λ
(
b∗(t)

)}
.

3. Nevanlinna characteristic functions in |z| > R0

Suppose w(z) is meromorphic in C0 := {z : R0 < |z| < +∞} . By a similar
argument as in Valiron [14, p. 15], w(z) has a representation

(3.1) w(z) = znΘ(z)f(z),

where n is an integer, Θ(z) is analytic and non-vanishing on C0 ∪ {∞} , f is a
meromorphic function in C . In fact we may write

(3.2) f(z) =
u(z)

v(z)
eg(z),

where u(z) and v(z) are Weierstrass products formed respectively from the zeros
and poles of w in C0 , and g(z) is an entire function. Thus we can apply the
Nevanlinna theory to (3.1) in the region C0 (see [6, pp. 97–107]). Let T (r, w)
denote the usual Nevanlinna characteristic function in C and T1(r, w) denote the
Nevanlinna characteristic function (see [3, p. 4]) for w(z) in C0 , which is defined
by

T1(r, w) = m1(r, w) +N1(r, w),

where

(3.3) m1(r, w) =
1

2π

∫ 2π

0

log+ |w(reiϕ)| dϕ,

and N1(r, w) is the counting function for the poles of w in C0 .
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We deduce, from (3.1), that

(3.4) m1(r, w) = m(r, f) +O(log r),

and

(3.5) N1(r, w) = N(r, f).

Thus

(3.6) T1(r, w) = T (r, f) +O(log r).

But T (r, f) = T (r, 1/f) +O(1), so

(3.7)

T1(r, 1/w) = T (r, 1/f) +O(log r)

= T (r, f) +O(log r)

= T1(r, w) +O(log r).

That is,

(3.8) T1(r, 1/w) = T1(r, w) +O(log r).

Note that (3.8) is similar to a special case of the first fundamental theorem of the
usual Nevanlinna characteristic function.

As in [3, p. 4], we define the order of w in C0 by

(3.9) σ1(w) = lim
r→+∞

log T1(r, w)

log r
.

4. Main results

Theorem 1. Let A(z) = B(ez) , where B(ζ) = g1(1/ζ) + g2(ζ) , g1 and
g2 are entire functions with g2 transcendental and σ(g2) not equal to a positive
integer or infinity, and g1 arbitrary.

(i) Suppose σ(g2) > 1 . (a) If f is a non-trivial solution of (1.1) with λe(f) <
σ(g2) , then f(z) and f(z+ 2πi) are linearly dependent. (b) If f1 and f2 are any
two linearly independent solutions of (1.1) , then λe(f1f2) ≥ σ(g2) .

(ii) Suppose σ(g2) < 1 . (a) If f is a non-trivial solution of (1.1) with λe(f) <
1 then f(z) and f(z + 2πi) are linearly dependent. (b) If f1 and f2 of (1.1) are
any two linearly independent solutions, then λe(f1f2) ≥ 1 .
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We remark that the conclusion of Theorem 1 remains valid if we assume
σ(g1) is not equal to an integer or infinity, and g2 arbitrary and still assume
B(ζ) = g1(1/ζ) + g2(ζ) . In the case when g1 is transcendental with its order
not equal to an integer or infinity and g2 is arbitrary, we need only consider
B∗(η) = B(1/η) = g1(η) + g2(1/η) in 0 < |η| < +∞ , η = 1/ζ .

From Part (ii)(a) of Theorem 1, and (2.5), we immediately generalize Theo-
rem B on the growth restriction on A(z) , and on λe(f) . Part (i) and (ii)(b) of
Theorem 1 are new results.

We easily deduce the following result from Theorem 1.

Corollary 1. Under the assumption of A(z) = B(ez) in Theorem 1, any two
linearly independent solutions f1 and f2 of (1.1) must have λe(f1f2) ≥ 1 , and
hence λ(f1f2) = +∞ .

Theorem 1 also leads to an affirmative answer to the conjecture in [7] men-
tioned in Section 1.

Theorem 2. Let g(ζ) be a transcendental entire function and its order be not
a positive integer or infinity. Let A(z) = B(ez) , where B(ζ) = g(1/ζ)+

∑p
j=1 bjζ

j

and p is an odd positive integer, then λ(f) = +∞ for each non-trivial solution f
to (1.1) . In fact, the stronger conclusion (1.2) holds.

We remark that the above conclusion remains valid if

B(ζ) = g(ζ) +

p∑

j=1

b−jζ
−j .

The following examples show that the above results are the best possible.

Example 1. Let E(z) = epz/2 exp
(
− 1

2e
mz
)

, where m is a positive integer
and p is an odd positive integer. We further let

(4.1) fj(z) = E(z)1/2 exp

(∫ z

0

(−1)j

E(t)
dt

)
,

j = 1, 2. Then f1 and f2 are two linearly independent zero-free entire solutions
of (1.1). In fact, the Wronskian of f1 and f2 is W (f1, f2) = 2. The coefficient
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A(z) can be calculated from (1.5):

−4A(z) =
22

E2
−
(
E′

E

)2

+ 2
E′′

E
=

4

E2
+ 2

(
E′

E

)′
+

(
E′

E

)2

=
4

epz
exp(emz) +

p2

4
−
(
m2 +

pm

2

)
emz +

m2

4
e2mz

=
4

ζp
eζ
m

+
p2

4
−
(
m2 +

pm

2

)
ζm +

m2

4
ζ2m

=

p∑

j=1

b−jζ
−j + g(ζ) = −4B(ζ),

where ζ = ez and b−j are constants, b−p 6= 0, and B(ζ) has a pole of odd order
at ζ = 0. Moreover, σ(g) = m .

This example shows that Theorem 2 is the best possible in the sense that the
assumption that σ(g) is not a positive integer cannot be dropped. The case when
σ(g) = +∞ will be discussed in the next example. Since the solutions f1 and f2

are zero-free, the example also shows that both (i)(b) and (ii)(b) of Theorem 1
under the assumption that σ(g) is not a positive integer are the best possible.
The same situation applies to Corollary 1. Moreover, since f1(z + 2πi) = cf2(z) ,
the example shows that (i)(a) and (ii)(a) of Theorem 1 are the best possible.

Example 2. Let E(z) = epz/2 exp
(
− 1

2e
ez
)

, where p is an odd positive
integer. If f1 and f2 are given by (4.1), then W (f1, f2) = 2. Thus, they are
linearly independent, zero-free solutions of (1.1) with A(z) given by

−4A(z) =
4

epz
exp(ee

z

) +
p2

4
−
(

1 +
p

2

)
ee
z

ez − eeze2z +
1

4
e2eze2z

=
4

ζp
exp(eζ) +

p2

4
−
(

1 +
p

2

)
eζζ − eζζ2 +

1

4
e2ζζ2

=

p∑

j=1

b−jζ
−j + g(ζ) = −4B(ζ),

where ζ = ez , b−j are again constants, b−p 6= 0, and B(ζ) has a pole of odd
order at ζ = 0. Moreover, σ(g) = +∞ .

This example shows that Theorem 2, (i)(a), (ii)(a), (i)(b), (ii)(b) of Theorem 1
and Corollary 1 are the best possible, in the sense that none of the above holds if
the order of g(ζ) is replaced by infinity.
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5. Proofs of Theorems 1 and 2

Proof of Theorem 1. (i)(a) Let us assume that f(z) and f(z + 2πi) are
linearly independent. Since λe(f) < σ(g2) < +∞ , [5, Theorem 1] implies that
f(z) and f(z+4πi) must be linearly dependent. Let E(z) = f(z)f(z+2πi) , then
E(z + 2πi) = c1E(z) for some non-zero constant c1 . Clearly E′/E and E′′/E
are both periodic functions with period 2πi , while A(z) is periodic by definition.
Hence (1.6) shows that E(z)2 is also periodic with period 2πi . Thus we can find
an analytic function Φ(ζ) in 0 < |ζ| < +∞ , so that E(z)2 = Φ(ez) . Substituting
this expression into (1.6) yields

(5.1) −4B(ζ) =
c2

Φ
+ ζ

Φ′

Φ
− 3

4
ζ2

(
Φ′

Φ

)2

+ ζ2 Φ′′

Φ
.

Since both B(ζ) and Φ(ζ) are analytic in C∗ := {z : 1 < |ζ| < +∞} , the Valiron
theory gives their representations as

(5.2) B(ζ) = ζnR(ζ) b(ζ), Φ(ζ) = ζn1K1(ζ)φ(ζ),

where n , n1 are some integers, R(ζ) and K1(ζ) are functions that are analytic
and non-vanishing on C∗ ∪ {∞} and b(ζ) and φ(ζ) are entire functions. We
deduce from (5.1) that

(5.3) m1(%, 1/Φ) = m1(%,B) + S1(%,Φ),

where

S1(%,Φ) = 3m1

(
%,

Φ′

Φ

)
+m1

(
%,

Φ′′

Φ

)
+O(log %).

It is not difficult to show that

(5.4) S1(%,Φ) = S(%, φ) = o
(
T (%, φ)

)
n.e.

Thus, (5.3) implies

(5.5) T1(%, 1/Φ) = N1(%, 1/Φ) + T1(%,B) + S1(%,Φ).

Applying (3.6), (3.7), (5.4) to (5.5) and using the fact that N1(%, 1/Φ) = N(%, 1/φ) ,
we deduce

(5.6) T (%, φ) = N(%, 1/φ) + T (%, b) + S(%, φ).

Notice that (5.6) satisfied by φ is an analogous formula to (1.7) satisfied by E . It
is easy to see that λe(f) = λe(E) = λe(E

2) . Since λe(f) < σ(g2) , so λeR(E2) ≤
λe(E

2) < σ(g2) . As in (2.19), λ(φ) = λeR(E2) . But σ(g2) = σ
(
b(ζ)

)
by (2.15).

Hence λ(φ) < σ(b) . It follows from (5.6) and Fact (A) of [2, Section 2] (see also
[8, Lemma 1.5] or [10, Lemma 1.1.1]) that σ(φ) = σ(b) . Thus λ(φ) < σ(φ) . So
σ(φ) is either a positive integer or infinity. So is σ(b) . But σ(g2) = σ(b(ζ)) which
is a contradiction. Hence f(z) and f(z + 2πi) must be linearly dependent.
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(i)(b) Let us assume that λe(f1f2) < σ(g2) . Hence we have λe(f1) < σ(g2)
and λe(f2) < σ(g2) . From (i)(a), fj(z) and fj(z + 2πi) are linearly dependent,
for j = 1, 2. Let E(z) = f1(z)f2(z) . Then, as in (i)(a), E(z + 2πi) = c2E(z)
for some non-zero constant c2 , and E(z)2 is a periodic function with period 2πi .
Following the argument in (i)(a) yields σ(g2) to be a positive integer or infinity,
which is a contradiction. Hence λe(f1f2) ≥ σ(g2) .

(ii)(a) Let us assume that σ(g2) < 1 and that f is a non-trivial solution of
(1.1) with λe(f) < 1. Suppose, as in the proof of (i)(a), that f(z) and f(z+ 2πi)
are linearly independent, and we obtain (5.6) by following the same argument
there.

As in (i)(a), we deduce from λe(f) = λe(E) = λe(E
2) and (2.19) that λ(φ) =

λeR(E2) ≤ λe(E
2) = λe(f) < 1. We further deduce from the hypothesis on g2

and (2.15) that σ(b) = σ(g2) < 1. Using this result, (5.6) and Fact (A) in [2,
Section 2] (see also [8, Lemma 1.5] or [10, Lemma 1.1.1]), we deduce σ(φ) < 1.

The remaining proof now closely parallels certain parts of [7, Lemma 5]. We
offer the full details here for the sake of completeness.

We turn to the representation (5.2). Since K1(ζ) is analytic at ∞ , we deduce

K
(k)
1 (ζ)/K1(ζ) = o(1), as |ζ| → +∞ . It follows from (5.2) and a standard estimate

on the logarithmic derivative (see [8, Section 3.6] or [10, Proposition 5.12]) that
there exists a positive constant M such that

∣∣∣∣ζ
Φ′

Φ
− 3

4
ζ2

(
Φ′

Φ

)2

+ ζ2 Φ′′

Φ

∣∣∣∣ ≤ |ζ|M ,

for ζ /∈ V , where V is an R -set (see [8, Section 3.6] or [10, p. 84]).
In addition to ζ /∈ V , let us further assume that |φ(ζ)| > 1. Then we easily

see from (5.1) that there exists a positive integer N so that

(5.7) |B(ζ)| ≤ |ζ|N .

On the other hand, we have the expansion

B(ζ) =
+∞∑

k=−∞
bkζ

k, 0 < |ζ| < +∞,

where g2(ζ) =
∑+∞
k=0 bkζ

k is a transcendental entire function with σ(g2) < 1. We
now rewrite B(ζ) = h1(ζ) + h2(ζ) , where

h1(ζ) =
∑

k≤N
bkζ

k, h2(ζ) =
∑

k>N

bkζ
k.
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Clearly |h1(ζ)| = O(|ζ|N ) . Let u1(ζ) = φ(ζ) , and by the earlier choice that ζ /∈ V
and |u1(ζ)| = |φ(ζ)| > 1 we deduce from (5.7) that |h2(ζ)| = O(|ζ|N ) holds.
We can therefore find a positive constant K such that |ζ−Nh2(ζ)/K| ≤ 1, where
ζ /∈ V and |u1(ζ)| > 1. Let u2(ζ) = ζ−Nh2(ζ)/K , then it is easy to see that
u2(ζ) is an entire transcendental function with σ(u2) < 1. It follows from above
that if ζ /∈ V, |u1(ζ)| > 1, then |u2(ζ)| ≤ 1.

In addition, we note that since g2(ζ) is transcendental, B(ζ) = g1(1/ζ)+g2(ζ)
and hence b(ζ) is also transcendental by (5.2). Therefore formula (5.6) implies
that u1(ζ) = φ(ζ) must also be transcendental.

We define D∗j = {ζ : |uj(ζ)| > 1} , j = 1, 2. Clearly both D∗1 and D∗2 are open
sets. We denote the boundary of D∗j by ∂D∗j , j = 1, 2, and so we have |uj(ζ)| = 1
for ζ belongs to ∂D∗j , j = 1, 2. But both u1(ζ) and u2(ζ) are transcendental,
so each D∗j must contain an unbounded component Dj for j = 1, 2. Denote the

boundary of Dj by ∂Dj , j = 1, 2. Let Ej(%) = {θ : %eiθ ∈ Dj} , j = 1, 2, and
E(%) = {θ : %eiθ ∈ V } . Clearly E1(%)∩E2(%) ⊂ E(%) . We also let θj(%) , j = 1, 2,
and θ(%) respectively, to be the angular measures of Ej(%) , j = 1, 2, and E(%) .

We note that since V is an R -set, so given ε > 0, there exists %0 > 0 such
that θ(%) < ε for % > %0 . We also note that we can choose % > %0 so that the
circle |ζ| = % intersects Dj , j = 1, 2.

We now define

(5.8) θ∗j (%) =

{
θj(%), if Ej(%) 6= [0, 2π],

+∞, if Ej(%) = [0, 2π].

Then the Beurling–Tsuji inequality [13, Theorem III 68, p. 117] gives

(5.9) π

∫ %/2

%0

dt

tθ∗j (t)
< log logM(%, uj) +O(1), j = 1, 2,

where M(%, uj) , j = 1, 2, denotes the usual maximum modulus of uj on |ζ| = % .
It was shown in the remark in [7, pp. 153–154] (see also [8, pp. 96–97]) that even
when Ej(%) = [0, 2π] , j = 1, 2, the inequality (5.9) is replaced by

(5.10) π

∫ %/2

%0

dt

tθj(t)
< log logM(%, uj) +

ε

2π
Kj log %+O(1), j = 1, 2,

if Ki > σ(uj) , i 6= j and % is sufficiently large. Since σ(uj) < 1, j = 1, 2, we
deduce from (5.10) that there exists a constant 0 < β < 1 so that

π

∫ %/2

%0

dt

tθj(t)
< (1− β) log %,
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for % > %1 > %0 , j = 1, 2. Summing the above inequalities for j = 1, 2 yields

π

∫ %/2

%0

θ1(t) + θ2(t)

θ1(t)θ2(t)

dt

t
< 2(1− β) log %.

But 2
√
ab ≤ a+ b , (a, b ≥ 0). Hence

4π

∫ %/2

%0

dt

t
(
θ1(t) + θ2(t)

) < 2(1− β) log %.

Notice that θ1(%) + θ2(%) ≤ 2π + ε for % > %1 . This gives

(5.11)
4π

2π + ε
log

%

2%0
< 2(1− β) log %.

Since ε > 0 is arbitrary, we obtain a contradiction after dividing both sides
by log % . Thus we conclude that f(z) and f(z+2πi) must be linearly dependent.

(ii)(b) Suppose f1 and f2 are linearly independent and λe(f1f2) < 1. Then
λe(f1) < 1 and λe(f2) < 1. We deduce from the conclusion of (ii)(a) that fj(z)
and fj(z+ 2πi) are linearly dependent, j = 1, 2. Let E(z) = f1(z)f2(z) , then we
can find a non-zero constant c3 such that E(z + 2πi) = c3E(z) . Repeating the
same argument in (ii)(a) by using the fact that E(z)2 is also periodic, we obtain
a contradiction as (5.11). Hence λe(f1f2) ≥ 1.

This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose there exists a non-trivial solution f that sat-
isfies (1.4). We deduce λe(f) = 0. Theorem 1(i)(a) and (ii)(a) imply that f(z)
and f(z+2πi) are linearly dependent. However, [7, Lemma 6] or [8, Theorem 3.7]
implies that f(z) and f(z + 2πi) are linearly independent. This is impossible.
Hence (1.2) holds for each non-trivial solution f . This completes the proof of
Theorem 2.

6. Perturbation results

Suppose (1.1) admits a non-trivial solution that has a finite e -type exponent
of convergence of zeros. If

∏
(z) is a periodic entire function with period 2πi and

σe(Π) < σe(A) , what can we say about the e -type exponent of convergence of
zeros of any two linearly independent solutions of the equation

(6.1) f ′′ +
(
A(z) +

∏
(z)
)
f = 0?

A perturbation result for (6.1) where the coefficients are not necessarily periodic
is given in [4, Theorem 3.1]. We answer the above perturbation problem based on
the method used in [4] coupled with the special properties of periodic coefficients
established in Section 2.
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Theorem 3. Let B(ζ) = g1(1/ζ) + g2(ζ) , C(ζ) = g3(ζ) , where g1 , g2 and
g3 are entire functions of finite order such that σ(g2) is a positive integer, and
σ(g3) < σ(g2) . Suppose A(z) = B(ez) ,

∏
(z) = C(ez) and furthermore that (1.1)

admits a non-trivial solution f with λe(f) < σ(g2) and that f(z) and f(z+ 2πi)
are linearly independent. Then

(i) for any non-trivial solution h of equation (6.1) with λe(h) < σ(g2) , h(z)
and h(z + 2πi) are linearly dependent,
and

(ii) for any two linearly independent solutions h1 and h2 of (6.1) , we must
have λe(h1h2) ≥ σ(g2) .

Let us consider Example 1 in Section 4 where f1(z + 2πi) = cf2(z) for some
non-zero constant c . This implies that f1(z) , f1(z+2πi) are linearly independent
solutions of (1.1) with the A(z) given in Example 1. Clearly λe(f) = 0 < σ(g) .
Suppose h is a non-trivial solution of (6.1) with λe(h) < σ(g) = m , then Theo-
rem 3(i) shows that h(z) and h(z + 2πi) are linearly dependent. Part (ii) implies
λe(h1h2) ≥ σ(g) = m for any two non-trivial linearly independent solutions h1

and h2 .

Theorem 2 investigates the oscillation properties of any non-trivial solution
to (1.1) with B(ζ) =

∑p
j=1 b−jζ

−j + g(ζ) , where p is an odd positive integer and
σ(g) is not a positive integer or infinity. We now investigate perturbation problem
for (6.1) precisely when σ(g) is a positive integer.

Theorem 4. Let g(ζ) be a transcendental entire function of an integer order
σ(g) and C(ζ) 6≡ 0 be an entire function with σ(C) < σ(g) . Let A(z) = B(ez) ,
where B(ζ) =

∑p
j=1 b−jζ

−j+g(ζ) , p is an odd positive integer and
∏

(z) = C(ez) .
Suppose (1.1) admits a non-trivial solution f with λ(f) < +∞ . Then any non-
trivial solution h of (6.1) must have λ(h) = +∞ . In fact, the stronger conclusion
(1.2) holds.

Example 1 shows that A(z) satifies the hypothesis of Theorem 4, and that
(1.1) possesses two zero-free solutions. Thus any non-trivial solution h to (6.1)
must have λ(h) = +∞ .

Proof of Theorem 3. (i) Let f be a non-trivial solution of (1.1) with λe(f) <
σ(g2) , and f(z) and f(z + 2πi) be linearly independent. Let E(z) = f(z)f(z +
2πi) , then (1.5) implies that E(z)2 is a periodic function with period 2πi since
both E′/E and E′′/E are periodic functions with period 2πi . Thus, we can find

an analytic function Φ(ζ) in 0 < |ζ| < +∞ so that E(z)
2

= Φ(ez) . Substituting
this representation into (1.5) with ζ = ez yields (5.1). We recall that B(ζ) and
Φ(ζ) have the Valiron representations in C∗ given in (5.2).

Although the proof now closely parallels that of [4, Theorem 3.1], the mod-
ifications needed to apply the argument there are sufficiently intricate that it
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warrants the inclusion of the details here. Let us now suppose (6.1) possesses a
non-trivial solution h(z) such that σe(h) < σ(g2) but h(z) and h(z + 2πi) are
linearly independent. Let F (z) = h(z)h(z + 2πi) . By a similar argument that
we have applied to E(z) above, we conclude that there exists an analytic func-

tion Ψ(ζ) in 0 < |ζ| < ∞ such that F (z)
2

= Ψ(ez) . Similary, Ψ has a Valiron
representation

(6.2) Ψ(ζ) = ζn2K2(ζ)ψ(ζ)

in C∗ , where n2 is an integer, K2(ζ) is analytic and non-vanishing on C∗∪{∞} ,
and ψ(ζ) is an entire function in C .

We now substitute F (z)
2

= Ψ(ez) , with ζ = ez , into (1.5) with A(z) replaced
by A(z) +

∏
(z) . This yields

(6.3) −4
(
B(ζ) + C(ζ)

)
=
c21
Ψ

+ ζ
Ψ′

Ψ
− 3

4
ζ2

(
Ψ′

Ψ

)2

+ ζ2 Ψ′′

Ψ
,

where c1 6= 0 is the Wronskian of h(z) and h(z + 2πi) .
Since, as in (2.19), we have λ(φ) = λeR(E2) = λeR(f) < σ(g2) = σ

(
b(ζ)

)
,

so (5.6) implies that σ(φ) = σ
(
b(ζ)

)
= σ(g2) , and hence σ(φ) is an integer with

λ(φ) < σ(φ) . Thus we may write φ(ζ) = π1e
P , where P (ζ) = αzσ , α is a

constant, σ = σ(g2) and σ(π1) < σ .
In a similar fashion, we have λ(ψ) = λeR(F 2) = λeR(h) < σ(g2) = σ

(
b(ζ)

)
.

We then apply a similar argument to (6.3) to obtain

(6.4) T (%, ψ) = N(%, 1/ψ) + T (%, d) + S(%, ψ),

as to (5.1) for (5.6), where d(ζ) is an entire function appearing in the Valiron
representation of

B(ζ) + C(ζ) = ζn3Rd(ζ)d(ζ),

where the functions Rd(ζ) and d(ζ) play the same roles of the corresponding
functions in (5.2), and it is easy to check that σ(d) = σ(b) . But then σ(ψ) =
σ
(
d(ζ)

)
= σ(g2) > λ(ψ) . Thus we may write ψ(ζ) = π2e

Q , where Q = βzσ , β is
a constant, σ = σ(g2) , and σ(π2) < σ .

Let Φ(ζ) = R1e
P and Ψ(ζ) = R2e

Q , where R1(ζ) = ζn1K1(ζ)π1(ζ) , R2(ζ) =
ζn2K2(ζ)π2(ζ) , σ1(R1), σ1(R2) < σ = σ(g2) , and substitute them into (5.1) and
(6.3) respectively yielding

(6.5)

−4B(ζ) =
c2

R1eP
+ ζ

(
R′1
R1

+ P ′
)
− 3

4

((
ζ
R′1
R1

)2

+ 2ζ
R′1
R1

P ′ + ζ2P ′
2
)

+ ζ2

(
R′′

R1
+ 2

R′1
R1

P ′ + P ′
2

+ P ′′
)
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and

(6.6)

−4
(
B(ζ) + C(ζ)

)
=

c21
R2eQ

+ ζ

(
R′2
R2

+Q′
)

− 3

4

((
ζ
R′2
R2

)2

+ 2ζ
R′2
R2

Q′ + ζ2Q′
2
)

+ ζ2

(
R′′2
R2

+ 2
R′2
R2

Q′ +Q′
2

+Q′′
)
.

Substracting (6.6) from (6.5) yields

(6.7) 4C(ζ) =
c2

R1eP
− c21
R2eQ

+H(ζ),

where H(ζ) is meromorphic in C∗ . In fact H(ζ) is a differential polynomial in
R′1/R1 , R′2/R2 , P ′ , Q′ and their derivatives. We can deduce from the definitions
of R1 , R2 , P , Q that σ1(H) < σ(g2) . Rewriting (6.7) as

(6.8) e−P +H1e
−Q = H2,

where H1 and H2 are meromorphic functions in C∗ with max{σ1(H1), σ1(H2)} <
σ(g2) and H1 = −c21/c2R1/R2 . Differentiating (6.8) and using the resulting equa-
tion to eliminate e−P from (6.8) yields

(6.9) H3e
−Q = H4,

where H3 = H ′1 + (P ′ − Q′)H1 and H4 is a meromorphic function in C∗ with
σ1(H3), σ1(H4) < σ(g2) = σ . Thus H3 ≡ 0, i.e., H1 = c2e

Q−P , where c2 is a non-
zero constant, from a simple order consideration in (6.9). This is a contradiction to
σ1(H1) < σ(g2) unless P ≡ Q = αzσ . Thus R1 = c3R2 , where c3 is a constant,
and R′1/R1 = R′2/R2 . Substituting R′1/R1 = R′2/R2 , P = Q into (6.5) and (6.6)
and subtracting the resulting equations yields (6.7) with H(ζ) ≡ 0. Substituting
R1 = c3R2 into this new equation and considering its order yields immediately
C(ζ) ≡ 0 in C∗ , and hence in C . This is a contradiction. Hence h(z) and
h(z + 2πi) must be linearly dependent.

(ii) Suppose (6.1) possesses two non-trivial solutions h1 and h2 that are
linearly independent and λe(h1h2) < σ(g2) . Part (i) implies that hj(z) , and
hj(z + 2πi) are linearly dependent, for j = 1, 2. Let E(z) = f(z)f(z + 2πi) and
F (z) = h1(z)h2(z) . Then F (z + 2πi) = c4F (z) , for some non-zero constant c4 .
Applying a similar argument to E(z) and F (z) as in (i) yields C(ζ) ≡ 0. This is
a contradiction. Hence λe(h1h2) ≥ σ(g2) . This completes the proof of Theorem 3.
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Proof of Theorem 4. Let g , C and A be defined in Theorem 4. Suppose (1.1)
possesses a non-trivial solution f with λ(f) < +∞ . Hence λe(f) = 0 < σ(g) .
Thus [7, Lemma 6] implies that f(z) and f(z + 2πi) are linearly independent
solutions of (1.1). Thus f(z) and f(z + 2πi) satisfy the hypotheses of Theo-
rem 3. Suppose that (6.1) admits a non-trivial solution h with λe(h) = 0 < σ(g) .
Then [7, Lemma 6] again implies that h(z) and h(z + 2πi) are linearly inde-
pendent. Theorem 3(ii) implies that λe

(
h(z)h(z + 2πi)

)
≥ σ(g) > 0. But

λe(h) = λe
(
h(z)h(z + 2πi)

)
> 0. Hence (1.2) holds. This completes the proof.
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