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Abstract. We define a class of bounded domains Ω ⊂ Rn which we call (s,m) -uniform,
s ≥ 1 and 0 < m ≤ 1 . In this class we show that every Sobolev function u ∈W 1,p(Ω) , 1 ≤ p ≤ ∞ ,
satisfies

|u(x)− u(y)| ≤ C|x− y|α(M∇u(x) + M∇u(y))

for almost every x, y ∈ Ω with

α =
m

s
(n− s(n− 1)).

Our result extends the previous result for Sobolev extension domains by P. HajÃlasz. Classical
bounded uniform domains or equivalently bounded (ε,∞) domains form a proper subclass of the
(s,m) -uniform domains, when s > 1 or 0 < m < 1 , but our class of domains allows more irregular
behavior for the boundary than in the classical case.

1. Introduction

P. HajÃlasz showed that if Ω ⊂ Rn is a Sobolev extension domain or Ω = Rn ,
then every u ∈W 1,p(Ω), 1 ≤ p ≤ ∞ , satisfies

(1.1) |u(x)− u(y)| ≤ C|x− y|α
(
M∇u(x) + M∇u(y)

)

for almost every x, y ∈ Ω with α = 1, [H2]. Here M∇u is the Hardy–Littlewood
maximal operator of a weak gradient of a function u . HajÃlasz and O. Martio
proved that under a weak geometric condition the inequality (1.1) with α = 1
implies that the domain Ω is a Sobolev extension domain for 1 < p ≤ ∞ , [HM].
A variant of the inequality (1.1) in the domain whose boundary is locally a graph
of a Lipschitz continuous function, and also the case Ω = Rn , has been studied
in [DS], [H1] and [HM].

We define a new class of bounded domains which we call (s,m)-uniform, s ≥ 1
and 0 < m ≤ 1. The special case s = m = 1 is the class of bounded uniform
domains defined by Martio and J. Sarvas, [MS] or equivalently the class of bounded
(ε,∞) domains defined by P.W. Jones, [J]. An example of (s, 1)-uniform domains
in the plane is an s -cusp, {(x, y) ∈ R2 : 0 < x < 1, 0 < y < xs} , with s ≥ 1.
The class of (s,m)-uniform domains is a proper subclass of the class of s -John
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domains. We prove that if Ω is bounded and its boundary is locally a graph of
a λ -Hölder continuous function, 0 < λ ≤ 1, then Ω is (1/λ, λ)-uniform. In the
case λ = 1 this result seems to be well known, although we have not been able
to find a reference. The converse does not hold. There exists a bounded domain
which is even a (1, 1)-uniform domain, but whose boundary fails to be a graph of
a continuous function.

Our main theorem shows that if Ω ⊂ Rn is a bounded (s,m)-uniform domain,
1 ≤ s < n/(n− 1) and 0 < m ≤ 1, then every u ∈W 1,p(Ω), 1 ≤ p ≤ ∞ , satisfies
the inequality (1.1) for almost every x, y ∈ Ω with α = m

(
n−s(n−1)

)
/s . HajÃlasz

and Martio proved the case s = 1, [HM, Lemma 14, p. 243]. Our proof is based
on their proof. We calculate an upper bound for the exponent α of the inequality
(1.1) in the class of (s,m)-uniform domains: if 1 < s < n/(n− 1) then

0 < α ≤ s(n− 1) + 1

n

(
n− s(n− 1)

)
< 1

and if s ≥ n/(n− 1) then the inequality does not hold with any α > 0 for every
1 < p <∞ .

Acknowledgements. I wish to thank my teacher R. Hurri-Syrjänen for her
helpful guidance and kind advice.

2. Notation

Throughout this paper C will denote a constant which may change even in
a single string of an estimate. We write C(M) to denote that the constant C
depends on M . We let Ω and D be bounded domains in the Euclidean n -space
Rn , n ≥ 2. We denote the boundary of a domain Ω by ∂Ω. By an open ball
centered at x and with a radius r > 0 we mean the set Bn(x, r) = {y ∈ Rn :
|y − x| < r} . We write kB for the ball with the same center as B and dilated
by a factor k > 0. We let Ā denote the closure of a set A in Rn . The Lebesgue
n -measure of a set A ⊂ Rn is denoted by |A| .

Following J. Väisälä [V] we say that γ is a curve if it is either a path or an
arc. A path is a continuous mapping from a closed interval to Ω ⊂ Rn . A set
in Ω is an arc if it is homeomorphic to a closed interval. We assume that every
curve is rectifiable. A length of a curve γ is denoted by |γ| . If γ1 is a curve from
a point x to a point z and γ2 is a curve from a point z to y then by γ1 ∪ γ2 we
denote a curve from x to y via γ1 and γ2 .

The set of p -integrable functions in D is denoted by Lp(D) , 1 ≤ p ≤ ∞ . We
denote by W 1,p(D) , 1 ≤ p ≤ ∞ , the class of all functions in Lp(D) whose first
weak derivatives are in Lp(D) . We equip the Sobolev space W 1,p(D) with the
norm ‖u‖W 1,p(D) = ‖u‖Lp(D) + ‖∇u‖Lp(D) , where ∇u is the weak gradient.

The class of λ -Hölder continuous functions, 0 < λ ≤ 1, in a domain D is
denoted by C0,λ(D) : u ∈ C0,λ(D) if there exists a constant C > 0 such that

|u(x)− u(y)| ≤ C|x− y|λ
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for every x, y ∈ D . If λ = 1 we say that the function u is a Lipschitz-continuous
function.

For a measurable function defined in a set A , |A| > 0, we write

∫

A

u(x) dx =
1

|A|

∫

A

u(x) dx.

Let v ∈ L1(D) and x ∈ D . We put v = 0 in the complement of the
domain D . For every 0 < R ≤ ∞ we define

MRv(x) = sup
0<r<R

∫

Bn(x,r)

|v(z)| dz.

We let Mu denote M∞u . The operator M is the classical Hardy–Littlewood
maximal operator. Recall that for 1 < p ≤ ∞ we have ‖Mu‖Lp(D) ≤ A‖u‖Lp(D) ,
where the constant A depends only on the dimension n and p , [St, Theorem 1,
p. 6].

3. (s,m)-uniform domains

We define a new class of domains. The definition was suggested to the author
by P. HajÃlasz.

3.1. Definition. Let s ≥ 1 and 0 < m ≤ 1. A bounded domain Ω ⊂ Rn

is an (s,m)-uniform domain if there exists a constant M ≥ 1 such that each pair
x, y of points in Ω can be joined by a rectifiable curve γ: [0, l]→ Ω parametrized
by arclength, such that γ(0) = x , γ(l) = y ,

(3.2) l ≤M |x− y|m

and

(3.3) min(t, l − t)s ≤M dist
(
γ(t), ∂Ω

)
.

The idea of (s,m)-uniform domains is that every two points in Ω can be
joined by a twisted double cusp inside the domain Ω. The exponent s describes
which kind of outer peaks are allowed and the exponent m which kind of inner
peaks. The special case s = m = 1 is the class of bounded uniform domains defined
by Martio and J. Sarvas, [MS]. The class of bounded uniform domains, and thus
the class of (1, 1)-uniform domains, coincides with the class of bounded (ε,∞)
domains defined by P.W. Jones, [J]. It is easy to see that the class of (s,m)-
uniform domains is a proper subset of the class of (s′,m′)-uniform domains if
s < s′ and m′ ≤ m or if s ≤ s′ and m′ < m . The standard examples in the
plane are an s -cusp, {(x, y) ∈ R2 : 0 < x < 1, 0 < y < xs} , with s ≥ 1 which is
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(s, 1)-uniform, and the interior of its complement with respect to the ball B2(0, 1),
which is (1, 1/s)-uniform.

We say that ∂Ω is λ -Hölder, 0 < λ ≤ 1, if for every point x ∈ ∂Ω there
exists r(x) = (r1(x), . . ., rn(x)) , ri(x) > 0 for every i , and a λ -Hölder continuous
function φ: Rn−1 → R such that, upon rotating and relabeling the coordinate
axes such that x is at the origin, we have

Ω ∩ U
(
x, r(x)

)
=
{
y ∈ Rn : φ(y1, . . ., yn−1) > yn

}
∩ U

(
x, r(x)

)

and
1
2rn(x) > φ > − 1

2rn(x)

where U
(
x, r(x)

)
=
{
y ∈ Rn : |yi−xi| < ri(x), i = 1, . . ., n

}
is an open rectangle.

If λ = 1 we say that ∂Ω is Lipschitz.
In the case λ = 1 the following lemma seems to be well known, although we

have not been able to find a reference.

3.4. Lemma. Let 0 < λ ≤ 1 and let Ω ⊂ Rn be a bounded domain. If ∂Ω
is λ -Hölder then the domain Ω is (1/λ, λ) -uniform.

The converse does not hold. There exists even a (1, 1)-uniform domain, whose
boundary is not locally a graph of a continuous function at any point. An example
is the Koch snowflake domain. In Example 5.2 we construct for every s ≥ 1 an
(s, 1)-uniform domain whose boundary fails to be a graph of a continuous function.

Proof. Since ∂Ω is bounded we may choose a finite covering of open rectangles{
U
(
zi, r(zi)

)}k
i=1

. Let φi be a λ -Hölder continuous function with a constant Li
related to U

(
zi, r(zi)

)
. We write L = max1≤i≤k{Li} . For technical reasons we

assume that diam(Ω) = 1.
First we prove that every pair of points inside each U

(
zi, r(zi)

)
∩ Ω can be

joined by a curve satisfying the conditions (3.2) and (3.3). Let x = (x1, . . ., xn)
and y = (y1, . . ., yn) be in U

(
zi, r(zi)

)
∩ Ω. We fix a two-coordinate axis in Rn

so that x is the point (0, xn) and y is the point (l, yn) ,

l =
√

(x1 − y1)2 + . . .+ (xn−1 − yn−1)2 .

We may assume that xn ≥ yn . Let I1 be a curve

{
(ξ1, ξ2) : 0 ≤ ξ1 ≤ l, ξ2 = −Lξλ1 + xn

}

and I2 a curve

{
(ξ1, ξ2) : 0 ≤ ξ1 ≤ l, ξ2 = −L|ξ1 − l|λ + yn

}
,
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Figure 1. The curves I1 and I2 .

The curves I1 and I2 are presented in Figure 1 with L = 1, λ = 0.5, xn = 1,
yn = 0.75 and l = 0.5.

If the curve I1 intersects the curve I2 , as in Figure 1, we let J be a curve
connecting x and y via I1 and I2 . Let ξ be a point in I1 with dist(I1, y) =
dist(ξ, y) . Otherwise we let J be a curve connecting x to y via I1 and a line
segment from ξ to y . It is easy to see that l(J) ≤ C|x−y|λ here C is a constant,
depending on s , L and diam(Ω), and l(J) is the length of the curve J . Let J ∗

be a curve from x to y via the curves J∗1 =
{

(ξ1, ξ2) : ξ1 = 0, ξ2 ≤ xn
}

, J ′

and J∗2 = {(ξ1, ξ2) : ξ1 = |x − y|, ξ2 ≤ yn} . Here J ′ is defined as follows: if
(ξ1, ξ2) ∈ J then (ξ1, ξ2 − 1

10 |x− y|) ∈ J ′ . If necessary we replace a part of J∗ by
a line segment in the hyperplane

{
(ξ1, ξ2) ∈ U

(
zi, r(zi)

)
∩ Ω : ξ2 = − 3

4rn(zi)
}
.

This yields
dist(ξ, ∂Ω) ≥ C(L)|xn − ξ|1/λ

for every ξ ∈ J∗1 ,
dist(ξ, ∂Ω) ≥ C(L)|yn − ξ|1/λ

for every ξ ∈ J∗2 and

dist(ξ, ∂Ω) ≥ min
{

1
10 |x− y|, 1

4rn(zi)
}

for every ξ ∈ J ′ . It is easy to see that J∗ satisfies the conditions (3.2) and (3.3)
with s = 1/λ , m = λ and a constant M depending on L , diam

(
U
(
zi, r(zi)

))

and rn(zi) .
Let W0 be a Whitney composition of Ω, [St, Theorem 1, p. 167]. Let W be a

collection of cubes Qi from W0 dilated by a factor 9
8 with Qi 6⊂

⋃k
i=1 U

(
xi, r(zi)

)
.
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There exists ε > 0 depending on the collection
{
U
(
zi, r(zi)

)}k
i=1

such that for ev-

ery w ∈ Ω we have Bn(w, ε) ⊂ 9
8Qj for some 9

8Qj ∈ W or Bn(w, ε) ⊂ U
(
zi, r(zi)

)

for some i = 1, . . ., k . Since every cube is a (1/λ, λ)-uniform domain we see that
each pair of points x, y ∈ Ω with |x − y| < ε can be joined by a curve satisfying
the conditions (3.2) and (3.3) with the constant M .

To complete the proof we use the same method as in [HK1, Theorems 2.4
and 3.3, pp. 175 and 178].

Let x, y ∈ Ω with |x− y| ≥ ε . An elementary covering argument shows that
there exists a positive integer N , depending on diam(Ω), ε and n , such that Ω
can be covered by balls Bi , i = 1, . . ., N , with radius 1

4ε . Now there exists a
chain of balls Bi , i ∈ {1, . . .,K} and K ≤ N , such that x ∈ B1 , y ∈ BK and
Bi ∩Bi+1 ∩ Ω 6= ∅ for each j = 1, . . .,K − 1. We set x = z1 , y = zK and choose
zi ∈ Bi ∩Ω. Since |zi − zi+1| < ε , there exists a curve γi joining zi to zi+1 in Ω
with l(γi) ≤M |zi − zi+1|λ < Mελ . Thus we obtain

l(γ) = l

(
K⋃
i=1

γi

)
≤ KMελ ≤ KM |x− y|λ.

We choose points w1 = x,w2, . . ., wl = y on the curve γ satisfying
(

ε

2M

)1/λ

≤ |wi − wi+1| <
(
ε

M

)1/λ

for i = 1, 2, . . ., l− 1. Let βi be a curve joining wi to wi+1 as in the definition of
(s,m)-uniform domains, hence l(βi) ≤M |wi − wi+1|λ < ε and

l

(
l−1⋃
i=1

βi

)
≤ KM |x− y|λ
(

ε

2M

)1/λ
ε ≤ 21/λKM1+1/λε1−1/λ|x− y|λ.

By the definition of (s,m)-uniform domains every curve βi has arclength as its
parameter. We choose bi to be the arclength midpoint of βi . Since |bi− bi+1| < ε
there exists a curve αi joining bi to bi+1 as in the definition of (s,m)-uniform
domains. We denote by βi(ξ1, ξ2) that part of the curve βi from the point ξ1 to
the point ξ2 . We write

α = β1(x, b1) ∪ α1 ∪ . . . ∪ αl−2 ∪ βl−1(bl, y).

This yields
l(α) ≤ C|x− y|λ,

where the constant C depends on M , ε , λ , L , diam
(
U
(
zi, r(zi)

))
and rn(zi) for

each i = 1, . . ., k . Since |βi| ≥ 1
2ε and since the point bi is the arclength midpoint

of βi we obtain

dist(bi, ∂Ω) ≥ 1

M

(
1
4ε
)1/λ

.

Hence it is easy to see that the curve α satisfies the conditions (3.2) and (3.3).
This completes the proof of Lemma 3.4.
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Let s ≥ 1. A domain Ω ⊂ Rn is an s -John domain if there exists a distin-
guished point x0 ∈ Ω and a constant C ≥ 1 such that each point x ∈ Ω can be
joined to x0 by a rectifiable curve γ: [0, l] → Ω parametrized by arclength, such
that γ(0) = x , γ(l) = x0 ,

l ≤ C
and

ts ≤ C dist
(
γ(t), ∂Ω

)
.

The definition implies that every s -John domain is bounded. When s = 1 these
domains coincide with the class of John domains defined by Martio and Sar-
vas [MS]. The s -John domains for s > 1 are much wider than John domains.
If a domain Ω ⊂ Rn is an s -John domain with a distinguished point x0 ∈ Ω then
it is an s -John also with any other point x ∈ Ω. This means that the distin-
guished point can be changed. Note that the constant C depends on the distance
between the distinguished point and the boundary of Ω. For more information
about s -John domains we refer to [SS], [HK2] and [KM].

3.5. Lemma. Let s ≥ 1 and 0 < m ≤ 1 . A bounded (s,m) -uniform domain
is an s -John domain.

The case s = 1 of Lemma 3.5 is proved by F.W. Gehring and Martio, [GM,
Lemma 2.18, p. 209]. The case s > 1 is similar.

4. Main theorem

First we prove a chain condition for (s,m)-uniform domains. This is a modifi-
cation of the standard chaining argument for uniform domains and John domains,
see [HM] and [HK2].

4.1. Lemma. Let Ω ⊂ Rn be a bounded (s,m) -uniform domain. Let
x, y ∈ Ω . Then there exists a sequence of balls {Bi}∞i=−∞ , where Bi = Bn(xi, ri) ,
and constants C, d ≥ 1 with the following properties:

(1) |Bi ∪Bi+1| ≤ C|Bi ∩Bi+1| ,
(2) dist(x,Bi) ≤ dr1/s

i , Bi ⊂ Bn(x,C|x−y|m/s) if i ≤ 0 and ri → 0 as i→ −∞ ,

(3) dist(y,Bi) ≤ dr1/s
i , Bi ⊂ Bn(y, C|x− y|m/s) if i ≥ 0 and ri → 0 as i→∞ ,

(4) no point of the domain Ω belongs to more than C balls Bi .

The constants depend only on s , m , the dimension n and the uniform constant
M of the domain Ω .

Proof. We may assume that diam(Ω) ≤ 1. Fix x, y ∈ Ω and let γ be a
curve joining x and y as in the definition of (s,m)-uniform domains, γ(0) =
x and γ(l) = y . Fix x0 = γ( 1

2 l) . Let B′0 = Bn
(
x0,

1
4 dist

(
x0, ∂Ω ∪ {x}

))
.

We let γ′ be the subcurve of γ from x to x0 . We cover γ′ \ {x} with balls
as follows. Consider the collection of balls Bn

(
γ(t), 1

4 dist(γ(t), ∂Ω ∪ {x})
)

, t ∈
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(0, 1
2 l) , and B′0 . By Besicovitch covering theorem [M, Theorem 2.7, p. 30] we find

a sequence of closed balls B′0, B
′
1, B

′
2, . . . that cover γ′ \ {x} and have uniformly

bounded overlap depending only on n .

We define open balls Bi = 2B′i , i = 0, 1, 2, . . . . Here 2B′i is the ball with
same center as B′i but twice the radius of the ball B′i . We write xi = γ(ti) and
ri = 1

2 dist(xi, ∂Ω ∪ {x}) .

If ri = 1
2 |xi − x| then dist(x,Bi) = 2ri ≤ 2r

1/s
i . If ri = 1

2 dist(xi, ∂Ω) then
the definition of an (s,m)-uniform domain yields

dist(x,Bi) ≤ dist(x, xi) ≤ ti ≤M1/s dist(xi, ∂Ω)1/s ≤ 2M1/sr
1/s
i .

We choose d = max{2, 2M 1/s} . Since ri ≤ ti properties of (s,m)-uniform do-
mains imply

dist(x,Bi) + 2ri ≤ dr1/s
i + 2ri ≤ (d+ 2)r

1/s
i

≤ 1
2 (d+ 2)t

1/s
i ≤ 1

2M
1/s(d+ 2)|x− y|m/s.

Hence, we obtain Bi ⊂ Bn(x,C|x − y|m/s) for every i , i = 0, 1, . . . , where
C = 1

2M
1/s(d+ 2).

We renumber the balls. Let B0 be as above. If we have chosen balls Bi ,
i = 0, 1, . . . ,m , then we choose a ball Bm+1 that is the ball for which xj ∈ Bm
and tj < tm . We recall that γ′(tj) = xj and γ′(tm) = xm . Hence ri → 0 and
xi → x , as i→∞ .

Next we prove that every point in the domain Ω belongs to a finite number
of balls Bi only. The point x does not belong to any ball. Let x′ be an arbitrary
point in the domain Ω. Let r = |x′ − x| . The point x′ cannot belong to those
balls Bi for which ri ≤ 1

2 |xi − x| < 1
2r . If x′ ∈ Bi then dist(x,Bi) < r and

furthermore |x−xi| ≤ 2r . Thus we obtain that if x′ ∈ Bi then 1
2r ≤ ri ≤ r . The

construction of the Besicovitch covering theorem [M, Theorem 2.7, p. 30] implies
that balls with radius of 1

4 of original balls are disjoint. Thus x′ belongs to less
than or equal to

C
|Bn(x′, 2r)|
|Bn(0, 1

8r)|
= 16nC

balls Bi . The constant C is from the Besicovitch covering theorem.

Finally we prove the property (1). Assume that ri = 1
2 dist(xi, ∂Ω) and

ri+1 = 1
2 dist(xi+1, ∂Ω). Since xi+1 ∈ B(xi, ri) we obtain dist(xi+1, ∂Ω) ≥ ri .

This yields

|Bi|
|Bi+1|

≤
(
ri
1
2ri

)n
= 2n.
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If ri = 1
2 |xi − x| and ri+1 = 1

2 |xi+1 − x| then

|Bi|
|Bi+1|

≤
(
ri
1
2ri

)n
= 2n.

If ri = 1
2 dist(xi, ∂Ω) and ri+1 = 1

2 |xi+1 − x| we obtain

|Bi|
|Bi+1|

=

(
ri
ri+1

)n
≤
( 1

2 |xi − x|
ri+1

)n
= 2n.

Similarly if ri = 1
2 |xi − x| and ri+1 = 1

2 dist(xi+1, ∂Ω) then

|Bi|
|Bi+1|

≤ 2n.

We have proved that |Bi| ≤ 2n|Bi+1| . Similar arguments imply that |Bi| ≥
3−n|Bi+1| . This yields |Bi ∪Bi+1| ≤ C|Bi ∩Bi+1| ; here the constant C depends
only on the dimension n .

Using again the same arguments for the point y imply Lemma 4.1.

Next we prove our main theorem. In the proof we need only the chain of balls
constructed in Lemma 4.1, the Lebesgue differentiation theorem, the Poincaré
inequality in a ball and properties of the Riesz potential.

4.2. Theorem. Let 1 ≤ s < n/(n− 1) , 0 < m ≤ 1 and 1 ≤ p ≤ ∞ . If
Ω ⊂ Rn is a bounded (s,m) -uniform domain then there exists a constant C > 0
such that every u ∈W 1,p(Ω) satisfies the inequality

(4.3) |u(x)− u(y)| ≤ C|x− y|α
(
M∇u(x) + M∇u(y)

)
,

for almost every x, y ∈ Ω with α = m
(
n− s(n−1)

)
/s . Here M∇u is the Hardy–

Littlewood maximal operator of the function ∇u . The constant C depends only
on n , s , m and the uniform constant of Ω .

HajÃlasz and Martio proved that if Ω ⊂ Rn is a bounded uniform domain then
every u ∈W 1,p(Ω) satisfies the inequality (4.3) for every 1 ≤ p ≤ ∞ , with α = 1,
[HM, Lemma 14, p. 243]. Our proof is a modification of the proof of HajÃlasz and
Martio.

Proof. We may assume that diam(Ω) ≤ 1. Let {Bi}∞i=−∞ be a chain of balls
from the point x ∈ Ω to the point y ∈ Ω as in Lemma 4.1. Then by the Lebesgue
differentiation theorem [St, Chapter 1, Section 1.8] we have uBi → u(x) , whenever
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i→ −∞ , and uBi → u(y) , whenever i→∞ , for almost every x, y ∈ Ω. Thus we
have

|u(x)− u(y)| ≤
∞∑

i=−∞
|uBi − uBi+1 |

≤
∞∑

i=−∞

(
|uBi − uBi∩Bi+1 |+ |uBi+1 − uBi∩Bi+1 |

)

≤
∞∑

i=−∞

(∫

Bi∩Bi+1

|u− uBi |+
∫

Bi∩Bi+1

|u− uBi+1 |
)

and furthermore by Lemma 4.1

|u(x)− u(y)| ≤
∞∑

i=−∞

(
1

|Bi ∩Bi+1|

∫

Bi∩Bi+1

|u− uBi |

+
1

|Bi ∩Bi+1|

∫

Bi∩Bi+1

|u− uBi+1 |
)

≤
∞∑

i=−∞

(
1

|Bi ∩Bi+1|

∫

Bi

|u− uBi |

+
1

|Bi ∩Bi+1|

∫

Bi+1

|u− uBi+1 |
)

≤
∞∑

i=−∞

(
C

|Bi|

∫

Bi

|u− uBi |+
C

|Bi+1|

∫

Bi+1

|u− uBi+1 |
)

≤ 2 · C
∞∑

i=−∞

∫

Bi

|u− uBi |.

The Poincaré inequality in a ball with a radius ri , [GT, 7.45, p. 157], yields

|u(x)− u(y)| ≤ C
∞∑

i=−∞
ri

∫

Bi

|∇u| ≤ C
∞∑

i=−∞

∫

Bi

|∇u|
rn−1
i

.

Lemma 4.1 implies that for each z ∈ Bi , |x − z| ≤ (d + 2)r
1/s
i and Bi ⊂

Bn(x,C|x − y|m/s) , when i ≤ 0 and |y − z| ≤ (d + 2)r
1/s
i and, when i ≥ 0,
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Bi ⊂ Bn(y, C|x− y|m/s) . We obtain

|u(x)− u(y)| ≤ C
0∑

i=−∞

∫

Bi

|∇u(z)|
|x− z|s(n−1)

dz + C
∞∑

i=0

∫

Bi

|∇u(z)|
|y − z|s(n−1)

dz

≤ C
∫

Bn(x,C|x−y|m/s)

|∇u(z)|
|x− z|s(n−1)

dz

+ C

∫

Bn(y,C|x−y|m/s)

|∇u(z)|
|y − z|s(n−1)

dz.

We put |∇u| = 0 in the complement of the domain Ω. Since s(n − 1) < n
we obtain by [Z, Lemma 2.8.3, p. 85] that

|u(x)− u(y)| ≤ C
(
|x− y|m(n−s(n−1))/sMC|x−y|m/s∇u(x)

+ |x− y|m(n−s(n−1))/sMC|x−y|m/s∇u(y)
)

= C|x− y|m(n−s(n−1))/s
(
MC|x−y|m/s∇u(x) + MC|x−y|m/s∇u(y)

)
.

This completes the proof of Theorem 4.2.

5. Sharpness of Theorem 4.2

Assume that a bounded domain Ω ⊂ Rn satisfies the inequality (4.3) for all
1 < p <∞ with some exponent α > 0. We obtain by the inequality (4.3) that

(5.1)

∣∣∣∣u(x)−
∫

Ω

u(y) dy

∣∣∣∣ ≤
∫

Ω

|u(x)− u(y)| dy

≤ C diam(Ω)α
(
M∇u(x) +

∫

Ω

M∇u(y) dy

)

≤ C diam(Ω)α
(
M∇u(x) +

(∫

Ω

(
M∇u(y)

)p
dy

)1/p)

and the boundedness of the Hardy–Littlewood maximal operator, [St, Theorem 1,
p. 6], yields

‖u− uΩ‖Lp(Ω) ≤ C diam(Ω)α‖M∇u‖Lp(Ω) ≤ C diam(Ω)α‖∇u‖Lp(Ω)

as in [H2, Lemma 2, p. 407]. Thus Theorem 4.2 implies that a bounded (s,m)-
uniform domain Ω ⊂ Rn , 1 ≤ s < n/(n− 1) and 0 < m ≤ 1, is a p -Poincaré
domain for every 1 < p <∞ . W. Smith and D. Stegenga showed that an s -John
domain is a p -Poincaré domain for every 1 < p < ∞ , if 1 ≤ s ≤ n/(n− 1), [SS,
Theorem 10, p. 86]. HajÃlasz and Koskela proved with a “mushroom” example that
the limit is sharp in the sense that s cannot be greater than n/(n− 1), [HK2,
Corollary 6].

We show that if s > n/(n− 1) then an (s, 1)-uniform domain is not necessar-
ily a p -Poincaré domain for every 1 < p <∞ . The following rooms and passages
example is by R. Hurri [Hu, Chapter 5, p. 17].
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5.2. Example. Let Ω =
⋃∞
i=1(R2i−1 ∪ P2i) , where the sets R2i−1 and P2i

are defined as follows. Let a ≥ 1. Let hi = 2−i , δ2i = 2 ·2−2ai and di =
∑i
j=1 2−j

for every i = 1, 2, . . . . We define

R2i−1 = (d2i−1 − h2i−1, d2i−1)×
(
− 1

2h2i−1,
1
2h2i−1

)n−1
,

P2i =
[
d2i−1, d2i−1 + h2i

]
×
(
− 1

2δ2i,
1
2δ2i

)n−1
.

By Hurri [Hu, Remark 5.9, p. 19] the domain Ω is a p -Poincaré domain if and
only if p ≥ (n− 1)(a− 1).

Since there exists a constant C > 0 so that 1
2δ2i ≥ C(1 − d2i−1)a for every

i = 1, 2, . . . , the domain Ω is an (a, 1)-uniform domain. Let ε > 0 be arbitrary.
If a =

(
n/(n− 1)

)
+ ε , then the domain Ω is not a p -Poincaré domain for any

1 ≤ p < 1 + ε(n− 1).

5.3. Corollary. Let s > n/(n− 1) and 0 < m ≤ 1 . There exists a
bounded (s,m) -uniform domain where the inequality (4.3) does not hold for all
1 < p < (s− 1)(n− 1) with any α > 0 .

Proof. Let ε > 0. Let Ω ⊂ Rn be the bounded (s,m)-uniform domain,
s =

(
n/(n− 1)

)
+ ε and m = 1, constructed in Example 5.2. Assume that there

exist constants C,α > 0 such that for every u ∈W 1,p(Ω), 1 < p <∞ , we have

(5.4) |u(x)− u(y)| ≤ C|x− y|α
(
M∇u(x) + M∇u(y)

)
,

for almost every x, y ∈ Ω. As in (5.1) this implies that the domain Ω is a p -
Poincaré domain for all 1 < p <∞ .

In Example 5.2 we showed that the domain Ω is not a p -Poincaré domain
for any 1 < p < 1 + ε(n − 1). Thus the inequality (5.4) cannot hold for all
1 < p < 1 + ε(n− 1) with any α > 0 in the domain Ω.

Following HajÃlasz, [H2], we say that a domain D is δ -regular, δ > 0, if there
exists a constant b > 0 such that

(5.5) |Bn(x, r) ∩D| ≥ brδ

for every x ∈ D and for every 0 < r ≤ diam(D) . It is easy to see that every
bounded (s,m)-uniform domain is

(
s(n− 1) + 1

)
-regular.

Using the method of HajÃlasz, [H2, Theorem 6, p. 410], it is easy to prove the
following Sobolev–Poincaré inequality. In the proof we need only the inequality
(4.3) and the property (5.5).

5.6. Lemma. Assume that Ω ⊂ Rn is a bounded δ -regular domain, δ > 1 ,
which satisfies the inequality (4.3) with an exponent 0 < α ≤ 1 . If 1 < p < δ/α ,
then for every u ∈W 1,p(Ω) we have

(5.7) ‖u− uΩ‖Lp∗ (Ω) ≤ C‖∇u‖Lp(Ω),

with p∗ = δp/(δ − αp) .
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Proof. We may assume that diam(Ω) ≤ 1. Let

Ek = {x ∈ Ω : M∇u(x) ≤ 2k}, k ∈ Z.

There exists a constant C > 0 such that

(5.8) C−1
∞∑

i=−∞
2kp|Ek \ Ek−1| ≤

∫

Ω

M |∇u|p dx ≤ C
∞∑

i=−∞
2kp|Ek \ Ek−1|.

Let ak = ess supx∈Ek |u(x)| . We will estimate ak in terms of ak−1 . Let x ∈ Ek .

Let Bn(x, r) be a ball with a radius r = 2b−1/δ|Ω \ Ek−1|1/δ . We obtain by the
δ -regularity property (5.5)

|Bn(x, r) ∩ Ω| ≥ brδ > |Ω \ Ek−1|.

Hence there exists y ∈ Bn(x, r)∩Ek−1 . By the inequality (4.3) the function u|Ek
is α -Hölder continuous with a constant C2k+1 . We obtain

|u(x)| ≤ |u(x)−u(y)|+|u(y)| ≤ C|x−y|α2k+1+ak−1 ≤ C|Ω\Ek−1|α/δ2k+1+ak−1.

The definition of Ek yields

(5.9) |Ω \ Ek−1|2kp ≤ C‖M∇u‖pLp(Ω);

hence we obtain that

(5.10)
ak ≤ C2−kpα/δ‖M∇u‖pα/δLp(Ω)2

k+1 + ak−1

≤ C2k(1−(pα/δ))‖M∇u‖pα/δLp(Ω) + ak−1.

We may assume that M∇u(x) > 0 for every x ∈ Ω since otherwise |∇u| = 0
which implies that u is a constant function almost everywhere in Ω. Let bk =
ess infx∈Ek |u(x)| . It is clear that bk ≤ ‖u‖Lp(Ω)|Ek|−1/p . Since M∇u > 0 ev-

erywhere then there exists k0 such that |Ek0−1| < 1
2 |Ω| and |Ek0 | ≥ 1

2 |Ω| . We
obtain by the inequality (5.9) that

2k0 ≤ C‖M∇u‖Lp(Ω)|Ω \ Ek0−1|−1/p.

Since the function u|Ek is α -Hölder continuous with a constant C2k+1 we
obtain ak ≤ bk + 2k+1 diam(Ω)α . This yields

(5.11)
ak0 ≤ ‖u‖Lp(Ω)|Ek0 |−1/p + C diam(Ω)α‖M∇u‖Lp(Ω)|Ω|−1/p

≤ C|Ω|−1/p
(
‖u‖Lp(Ω) + diam(Ω)α‖M∇u‖Lp(Ω)

)
.



304 Petteri Harjulehto

Since p < δ/α , it follows, for k > k0 , by the inequality (5.10) and the monotonicity
of ak that

(5.12)

ak ≤ C‖M∇u‖pα/δLp(Ω)

( k∑

i=k0

2i(1−(pα/δ))

)
+ ak0

≤ C‖M∇u‖pα/δLp(Ω)

( k∑

i=−∞
2i(1−(pα/δ))

)
+ ak0

≤ C‖M∇u‖pα/δLp(Ω)2
k(1−(pα/δ)) + ak0 .

Since p∗ = pδ/(δ − αp) the inequalities (5.8), (5.11), (5.12) and the regularity
property (5.5) yield that
(∫

Ω

|u|p∗
)1/p∗

≤
( ∞∑

k=k0+1

ap
∗

k |Ek \ Ek−1|+ ap
∗

k0
|Ek0 |

)1/p∗

≤ C
(
‖M∇u‖pαp

∗/δ
Lp(Ω)

∞∑

k=−∞
2k(1−(pα/δ))p∗ |Ek \ Ek−1|+ ap

∗

k0
|Ω|
)1/p∗

≤ C
(
‖M∇u‖pαp

∗/δ
Lp(Ω) ‖M∇u‖

p
Lp(Ω)

+
(
C|Ω|−1/p

(
‖u‖Lp(Ω) + diam(Ω)α‖M∇u‖Lp(Ω)

)p∗ |Ω|
)1/p∗

≤ C(‖u‖Lp(Ω) + ‖M∇u‖Lp(Ω)).

Since u−uΩ ∈W 1,p(Ω), Ω is a p -Poincaré domain and the Hardy–Littlewood
maximal operator is bounded, [St, Theorem 1, p. 5], we obtain

‖u− uΩ‖Lp∗ (Ω) ≤ C(‖u− uΩ‖Lp(Ω) + ‖M∇(u− uΩ)‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

We write δ = s(n−1)+1. HajÃlasz and P. Koskela have proved the inequality
(5.7) for s -John domains with a better exponent. Let Ω ⊂ Rn be an s -John
domain, s ≥ 1, then the inequality (5.7) holds with 1 ≤ p ≤ p∗ ≤ np/(δ − p) ,
[HK2, Corollary 6, p. 20]. The limiting case p∗ = np/(δ − p) is by T. Kilpeläinen
and J. Malý [KM]. The exponent is the best possible in the class of s -John do-
mains, [HK2]. It is also the best possible in the class of (s,m)-uniform domains.
Let s > 1. Using the (s, 1)-uniform domain constructed by Hurri, see Exam-
ple 5.2, we obtain as in [Hu, Remark 5.8, p. 19], by replacing the exponent −n/p
by the exponent −n/p∗ , that the exponent np/(δ − p) is the best possible.

5.13. Corollary. Let Ω ⊂ Rn be a bounded (s,m) -uniform domain, with
1 < s < n/(n− 1) and 0 < m ≤ 1 . If there exists an α > 0 such that the
inequality (4.3) holds for all 1 < p <∞ then

α ≤ s(n− 1) + 1

n

(
n− s(n− 1)

)
< 1.
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If s = n/(n− 1) then Ω does not satisfy the inequality (4.3) for all 1 < p < ∞
with any α > 0 .

Proof. Let 1 ≤ s < n/(n− 1). Lemma 5.6 shows that the inequality (4.3)
with an exponent α > 0 and the δ -regular property (5.5), δ = s(n−1)+1, implies
the Sobolev–Poincaré inequality with p∗ = δp/(δ − αp) .

The exponent δp/(δ − αp) has to be less than or equal to the best possible
exponent np/(δ − p) for every 1 < p <∞ . This gives

α ≤ δ

np
(n− δ + p)

for every 1 < p <∞ . As p→ 1 we see that

α ≤ δ

n
(n− δ + 1).

Let s = n/(n− 1). Assume that Ω is a bounded (s,m)-uniform domain
which satisfies the inequality (4.3) with some α > 0 for every 1 < p < ∞ .
By Lemma 5.6 we obtain that Ω satisfies the Sobolev–Poincaré inequality with
(n+ 1)p/(n+ 1− αp) . Thus we obtain

α ≤
(

1 +
1

n

)(
1− 1

p

)

for every 1 < p <∞ . As p→ 1 we see that α ≤ 0. Hence the domain Ω cannot
satisfy the inequality (4.3) with any α > 0 for small p > 1. This completes the
proof of Corollary 5.13.
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