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Abstract. We extend Strebel’s theory of variability sets to the setting of arbitrary hyperbolic
Riemann surfaces. Our extended theory depends on the behavior of the Teichmüller metric on the
fibers of forgetful maps between Teichmüller spaces. We obtain new results about the metric
properties of these fibers.

Introduction

Let f be a quasiconformal mapping of the open unit disk ∆ onto itself, and
let K0(f) be the smallest number K such that there is a K -quasiconformal self-
mapping of ∆ with the same boundary values as f . A quasiconformal mapping of
∆ onto itself is called f -extremal if it has the same boundary values as f and it
is K0(f)-quasiconformal. There is always at least one f -extremal mapping, and
Strebel showed in [19] that there can be more than one.

Given any a in ∆, Strebel [20] defined the variability set V [a] to be the set
of all points b in ∆ such that b = g(a) for some f -extremal map g . In the
groundbreaking paper [22] he proved that V [a] is compact and that both V [a]
and its complement in ∆ are connected. In this paper we shall extend that result
to the case when ∆ is replaced by any Riemann surface whose universal covering
surface is conformally equivalent to ∆. We call such Riemann surfaces hyperbolic.

Let x0 be a point on the hyperbolic Riemann surface X , and let f be a
quasiconformal map of X onto a (necessarily hyperbolic) Riemann surface Y . To
define the variability set of x0 with respect to f we begin by giving X and Y
the basepoints x0 and y0 = f(x0) and forming the universal covering surfaces

(X̃, x̃0) and (Ỹ , ỹ0) . This means we are given basepoints x̃0 in X̃ and ỹ0 in Ỹ

and basepoint preserving holomorphic universal covering maps $X : X̃ → X and
$Y : Ỹ → Y . Since X̃ and Ỹ are conformally equivalent to ∆ they have Poincaré
metrics ρ

X̃
and ρ

Ỹ
.

2000 Mathematics Subject Classification: Primary 30F60, 30C62, 32G15.

The second author was supported in part by NSF Grant DMS 9970654.



308 C.J. Earle and N. Lakic

Let g be any quasiconformal map of X onto Y . By definition a lift of g is
a quasiconformal map g̃ of X̃ onto Ỹ that satisfies g ◦$X = $Y ◦ g̃ . The given
map f has a unique lift f̃ such that f̃(x̃0) = ỹ0 . If g has a lift g̃ such that the

distance ρ
Ỹ

(
f̃(x̃), g̃(x̃)

)
is bounded by a number M independent of x̃ in X̃ , we

say that g is Teichmüller equivalent to f and we use the symbol g̃ to denote the
unique lift of g with this bounded distance property. (This property means that

f̃ and g̃ have the same boundary values if we identify X̃ and Ỹ with ∆.)

Let K0(f) be the smallest number K such that there is a K -quasiconformal
map g: X → Y that is Teichmüller equivalent to f . We call g an f -extremal
map if it is both Teichmüller equivalent to f and K0(f)-quasiconformal.

By definition the variability set Ṽf [x0] of x0 with respect to f is the subset

of Ỹ consisting of the points ỹ such that ỹ = g̃(x̃0) for some f -extremal map g .
This definition reduces to Strebel’s when X and Y are both the unit disk, so the
following theorem generalizes Theorem 7 of [22].

Theorem 1. The variability set Ṽf [x0] is compact, and both Ṽf [x0] and its

complement in Ỹ are connected.

Like Strebel’s, our proof depends on a study of the level curves of an appro-
priate dilatation function, but we base our study on the implicit function theorem,
as applied to a certain map from one Teichmüller space to the product of another
Teichmüller space and the real numbers. Theorem 3 in Section 5, which estab-
lishes the crucial properties of that map, is one of our main results. We shall derive
Theorem 1 from it in Section 6.

Since our approach depends on embedding variability sets in appropriate
Teichmüller spaces we review some Teichmüller theory in Sections 1–4. Bers fiber
spaces and forgetful maps between Teichmüller spaces play a central role. So does
Strebel’s frame mapping criterion, as it has in all previous work on variability sets.

Studying variability sets by embedding them in Teichmüller spaces is a promis-
ing technique. Li Zhong used it in the classical unit disk setting to prove Theorem 5
of his interesting paper [13].

Our study of Bers fiber spaces and forgetful maps led to new results about
their fibers, which we prove in Sections 7–11. The most striking of them is the
following result, which shows conclusively that the restriction of Teichmüller’s
metric to the fibers of the forgetful map is not an arc length metric.

Theorem 2. Let X be a hyperbolic Riemann surface that is not conformally
equivalent to C \ {0, 1} , let x0 be a point of X , and let dX′ be Teichmüller’s
metric on the Teichmüller space T (X ′) of X ′ = X \ {x0} . If a and b are distinct
points on some fiber of the forgetful map from T (X ′) to the Teichmüller space
of X , then that fiber contains only finitely many points c such that

dX′(a, b) = dX′(a, c) + dX′(c, b).
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Unlike some previous studies of the metric properties of these fibers (see [9],
[14], and [16]) ours relies primarily on elementary construction of quasiconformal
mappings and makes no use of the mapping class group.

We thank Kurt Strebel both for writing his inspirational paper [22] and for
encouraging our work on this paper.

1. Teichmüller spaces and forgetful maps

In this section and the next we review some classical Teichmüller theory and
introduce notation that will be used throughout this paper. More information
about Teichmüller spaces can be found in the books [8] and [17]. Section 3 of
the paper [5] offers a more detailed explanation of our description of the tangent
spaces to Teichmüller space.

Let X be a hyperbolic Riemann surface. A measurable Beltrami form µ on
X is called a Beltrami coefficient if its L∞ norm is less than one. The set M(X)
of all Beltrami coefficients on X has a natural complex structure, as it is the open
unit ball in the complex Banach space of bounded measurable Beltrami forms.

Let H be the upper half plane, and let $: H → X be a holomorphic
universal covering map. Every quasiconformal self-mapping g of X lifts to a
quasiconformal self-mapping g̃ of H . We call g Teichmüller trivial if it has a
lift g̃ whose continuous extension to the closed half plane equals the identity on
the extended real axis. The Teichmüller trivial quasiconformal self-mappings of
X form a group that we denote by QC0(X) .

Every µ in M(X) is the Beltrami coefficient of a quasiconformal map of X
onto some Riemann surface. We say that µ and ν in M(X) are Teichmüller
equivalent on X if there exist g in QC0(X) and a quasiconformal map f with
domain X such that µ is the Beltrami coefficient of f and ν is the Beltrami
coefficient of f ◦ g . We denote the Teichmüller equivalence class of µ on X
by [µ]X .

The Teichmüller space T (X) is the space of Teichmüller equivalence classes
[µ]X of Beltrami coefficients on X . By a fundamental theorem of Bers (see [8]
and [17]), T (X) has a unique complex manifold structure such that the quotient
map ΦX(µ) = [µ]X from M(X) to T (X) is a holomorphic split submersion.

The derivative of ΦX at µ = 0 has the following useful description. Let
Q(X) be the complex Banach space of L1 holomorphic quadratic differentials on
X , and let Q(X)∗ be its dual space. The tangent space to T (X) at its basepoint
[0]X can be uniquely identified with Q(X)∗ in such a way (see Section 3 of [5])
that Φ′X(0) is the map that takes a bounded measurable Beltrami form µ on X
to the linear functional lµ on Q(X) defined by

lµ(ϕ) =

∫∫

X

µϕ, ϕ ∈ Q(X).
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If x0 is a point of X , the Riemann surface X ′ = X \ {x0} is also hyperbolic.
Quadratic differentials in Q(X ′) are holomorphic in X except for a possible simple
pole at x0 , and Q(X) is a codimension one subspace of Q(X ′) .

Since the set {x0} has measure zero, the spaces M(X) and M(X ′) are the
same. Further, every quasiconformal map with domain X ′ is the restriction of a
quasiconformal map with domain X , and every map in QC0(X ′) is the restriction
of a map in QC0(X) . Therefore [µ]X′ ⊂ [µ]X for all µ in M(X) . We define the
forgetful map Px0 : T (X ′)→ T (X) by the formula Px0([µ]X′) = [µ]X , µ in M(X) .

Since both ΦX′ and ΦX are holomorphic split submersions, Px0 is also a
holomorphic split submersion. By definition, Px0 maps the basepoint of T (X ′) to
the basepoint of T (X) . A trivial chain rule calculation shows that the derivative
of Px0 at [0]X′ is the restriction map l 7→ l | Q(X) from Q(X ′)∗ to Q(X)∗ .

2. The Bers fiber space and isomorphism theorem

The Bers fiber space and its projection onto Teichmüller space provide an
alternative model for the forgetful map defined in Section 1. We shall review the
relevant facts here. See [2] or [17] for more details.

As in Section 1, we consider a hyperbolic Riemann surface X with a basepoint
x0 , and we write X ′ = X \ {x0} . We give H the basepoint i , and we require
the holomorphic universal covering $: H → X of X by the upper half plane to
preserve basepoints.

Let Γ be the group of covering transformations of $ . By definition the
set M(Γ) of Beltrami coefficients for Γ consists of the measurable functions µ
on H that have L∞ norm less than one and satisfy the Γ-invariance condition
(µ ◦ γ)γ′/γ′ almost everywhere for all γ in Γ. For each µ in M(Γ) let wµ be

the quasiconformal mapping of the Riemann sphere Ĉ onto itself that fixes the
points 0, 1, and ∞ , is conformal in the lower half plane, and satisfies the Beltrami
equation wz̄ = µwz in H .

Each µ in M(Γ) projects to a well-defined Beltrami coefficient on X . The
resulting map from M(Γ) to M(X) is a norm-preserving bijection, and we use
it to identify M(X) with M(Γ). In particular, from now on we shall regard the
Teichmüller equivalence classes [µ]X and [µ]X′ as subsets of M(Γ). It is not
hard to verify that for each µ in M(Γ) the class [µ]X consists of the ν in M(Γ)
such that wν = wµ on the extended real axis. Thus wν(H ) = wµ(H ) for all ν
in [µ]X .

The Bers fiber space

F (Γ) =
{

([µ]X , ζ) : µ ∈M(Γ) and ζ ∈ wµ(H )
}

is defined in [2] (see also [17]) and is shown to be an open subset of T (X) × C .
According to the Bers isomorphism theorem (see [2] or [17]), the formula

(1) B([µ]X′) =
(
[µ]X , w

µ(i)
)
, µ ∈M(Γ),
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produces a well defined biholomorphic map B of T (X ′) onto F (Γ). In particular,
for each µ in M(Γ), [µ]X′ consists of the ν in M(Γ) such that wν = wµ on the
union of the extended real axis and the set {i} .

Let P : F (Γ) → T (X) be the projection map that sends ([µ]X , ζ) to [µ]X
for each µ in M(Γ) and ζ in wµ(H ) . The Bers isomorphism B maps each
fiber P−1

x0
([µ]X) of the forgetful map biholomorphically to the fiber P−1([µ]X) =

{[µ]X} × wµ(H ) of P . Thus P−1
x0

([µ]X) is biholomorphically equivalent to the
region wµ(H ) for each µ in M(Γ). In particular, P−1

x0
([0]X) is biholomorphically

equivalent to H .

Remark 1. In equation (1) and the subsequent discussion the point i can be
replaced by any other point a in H , provided that X ′ = X \ {$(i)} is replaced
by the Riemann surface X \ {$(a)} .

Example. We can take X to be ∆, x0 to be 0, $ to be the map z 7→
(z− i)/(z+ i) , and Γ to be the trivial group {I} . Then M({I}) is the open unit
ball of L∞(H ) and the Bers isomorphism identifies F ({I}) with the Teichmüller
space of the punctured disk ∆′ = ∆ \ {0} .

3. Extremal Beltrami coefficients and variability sets

Both T (X) and T (X ′) carry Teichmüller metrics, which we denote by dX and
dX′ respectively. We are particularly interested in distances from the basepoints
[0]X and [0]X′ of T (X) and T (X ′) . These are defined as follows.

For each µ in M(Γ) let ‖µ‖ be the L∞ norm of µ and let

K(µ) = (1 + ‖µ‖)/(1− ‖µ‖)

be the maximal dilatation of the quasiconformal mapping wµ . Then

(2)
dX([0]X , [µ]X) = min

{
1
2 logK(ν) : ν ∈ [µ]X

}
and

dX′([0]X′ , [µ]X′) = min
{

1
2 logK(ν) : ν ∈ [µ]X′

}
, µ ∈M(Γ).

The Beltrami coefficients µ that attain these minima are called extremal. More
precisely, we call µ in M(Γ) X -extremal if 1

2 logK(µ) = dX([0]X , [µ]X) and X ′ -
extremal if 1

2 logK(µ) = dX′([0]X′ , [µ]X′) . Since [µ]X′ ⊂ [µ]X for all µ in M(Γ),
every X -extremal µ is X ′ -extremal and

(3) dX([0]X , [µ]X) ≤ dX′([0]X′ , [µ]X′) for all µ in M(Γ).

Now let f be a quasiconformal map of X onto a Riemann surface Y . In
the introduction we defined the variability set Ṽf [x0] as a subset of the universal

covering surface Ỹ of Y . The following lemma allows us to identify Ṽf [x0] with
a subset of T (X ′) that we can study more conveniently.
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Lemma 1. Let f : X → Y be a quasiconformal map and let µ be the element
of M(Γ) that determines its Beltrami coefficient. There is a biholomorphic map

of Ỹ onto the fiber P−1
x0

([µ]X) of the forgetful map such that the image of Ṽf [x0]
is the set

(4) V µ(x0) =
{

[ν]X′ ∈ P−1
x0

([µ]X) : dX([0]X , [ν]X) = dX′([0]X′ , [ν]X′)
}
.

Proof. Our assumptions on f and µ make the map $µ = f ◦ $ ◦ (wµ)−1

of wµ(H ) onto Y holomorphic. With i and wµ(i) as basepoints for H and
wµ(H ) respectively, the maps $: H → X and $µ: wµ(H )→ Y are models for

the holomorphic universal covering maps $X : X̃ → X and $Y : Ỹ → Y of the
introduction. In these models the basepoint preserving lift f̃ of f is wµ , and the
variability set is

Ṽf [x0] =
{
wν(i) : ν ∈ [µ]X and ν is X -extremal

}
.

That set is mapped to V =
{

([ν]X′ ∈ P−1
x0

([µ]X) : ν is X -extremal
}

by the

biholomorphic map ζ 7→ B−1([µ]X , ζ) of wµ(H ) (= Ỹ ) onto P−1
x0

([µ]X) .
It remains to show that V equals the set V µ(x0) defined by (4). This is easy.

If ν in M(Γ) is X -extremal then it is also X ′ -extremal, so

dX′([0]X′ , [ν]X′) = 1
2 logK(ν) = dX([0]X , [ν]X)

and V ⊂ V µ(x0) . Conversely, if [ν]X′ is in V µ(x0) and σ in [ν]X′ is X ′ -extremal,
then

1
2 logK(σ) = dX′([0]X′ , [ν]X′) = dX([0]X , [ν]X),

so σ is X -extremal. Since [ν]X′ = [σ]X′ it belongs to V , so V µ(x0) ⊂ V .

4. Boundary dilatations

Like Strebel’s, our study of variability sets requires the notion of boundary
dilatation, which we shall review in this section. We denote the characteristic
function of a set S by χS .

For any µ in M(Γ) set

(5)

H∗X(µ) = inf
{
K
(
µχ$−1(X\E)

)
: E is a compact subset of X

}
,

H∗X′(µ) = inf
{
K
(
µχ$−1(X′\E)

)
: E is a compact subset of X ′

}
,

HX(µ) = inf
{
H∗X(ν) : ν ∈ [µ]X

}
, and

HX′(µ) = inf
{
H∗X′(ν) : ν ∈ [µ]X′

}
.

The numbers HX(µ) and HX′(µ) are called the boundary dilatations of µ (with
respect to X and X ′ ).

We need to prove the intuitively obvious fact that HX(µ) = HX′(µ) for all
µ in M(Γ). The inequalities H∗X(µ) ≤ H∗X′(µ) ≤ K(µ) and HX(µ) ≤ HX′(µ) ≤
K(µ) are clear from (5). Our proof that HX′(µ) ≤ HX(µ) uses the following useful
lemma, which is closely related to a result obtained by Aleksander Bulatovic in
the course of the proof of Theorem 11 in his dissertation [3].



Variability sets and forgetful maps 313

Lemma 2. For any a and b in H and µ in M(Γ) there exists ν in [0]X
such that H∗X(ν) = 1 , wν(a) = b , and ν = µ in some neighborhood of a .

Proof. The set of restrictions to H of the maps wν with ν in [0]X and
H∗X(ν) = 1 is a group G of quasiconformal self-mappings of H . To show that
for each a and b in H there is g in G with g(a) = b it suffices to prove that the
G -orbit of each a in H contains a neighborhood of a . For that purpose choose
any a in H and choose r > 0 so small that the closed disk D (a; r) with center a
and radius r is contained in H and the map $: H → X is injective on D (a; r) .

For any t in ∆ we define gt: H → H as follows. For z in D (a; r) and γ
in Γ set

gt
(
γ(z)

)
= γ

(
z + t(r − |z − a|)

)
,

and for z in H \⋃γ∈Γ γ
(
D (a; r)

)
set gt(z) = z . It is easy to see that gt ∈ G .

Since gt(a) = a + rt , the G -orbit of a contains the interior of D (a; r) , which is
the required neighborhood of a .

Now let a and b in H and µ in M(Γ) be given. We have already proved
that there is g in G with g(a) = b . Let σ be the Beltrami coefficient of the
quasiconformal map wµ ◦ g−1 . Suppose for the moment that h in G fixes b and
that its Beltrami coefficient equals σ in a neighborhood of b . Then the Beltrami
coefficient ν of h ◦ g equals µ in a neighborhood of a . In addition wν = h ◦ g
in H , so ν ∈ [0]X , H∗X(ν) = 1, and wν(a) = b as required.

It remains to produce h . Choose r > 0 so that the closed disk D (b; r) is
contained in H and $ is injective on D (b; r) . Set σ̂ = σχD (b;r/3) . Let h0 be

the quasiconformal self-mapping of D
(
b; 1

2r
)

that fixes b and b+ 1
2r and has the

Beltrami coefficient σ̂ in D
(
b; 1

2r
)

. It is easy to extend h0 to a quasiconformal

self-mapping h of D (b; r) that equals the identity on the boundary. As above,
we set h

(
γ(z)

)
= γ

(
h(z)

)
for z in D (b; r) and γ in Γ, and we set h(z) = z in

H \⋃γ∈Γ γ
(
D (b; r)

)
. Clearly h ∈ G , h(b) = b , and the Beltrami coefficient of

h equals σ in a neighborhood of b .

Corollary 1. We have HX(µ) = HX′(µ) for all µ in M(Γ) .

Proof. Let µ in M(Γ) be given. Suppose σ ∈ [µ]X . Let a be the point in
H where wσ(a) = wµ(i) . By Lemma 2, there is ν in [0]X such that H∗X(ν) = 1,
wν(a) = i , and ν = σ in a neighborhood of a .

Define % in M(Γ) by the equation w% ◦ wν = wσ . Then w%(i) = wσ(a) =
wµ(i) and % ∈ [σ]X = [µ]X , so % ∈ [µ]X′ . Since % = 0 in a neighborhood of i
and H∗X(ν) = 1, H∗X′(%) = H∗X(%) = H∗X(σ) . Thus for each σ in [µ]X there is
% in [µ]X′ with H∗X′(%) = H∗X(σ) , so HX′(µ) ≤ HX(µ) . We already know that
HX(µ) ≤ HX′(µ) .
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5. Strebel points and Theorem 3

Following the terminology of [7] and [10] we call the point [µ]X′ in T (X ′) a
Strebel point if every X ′ -extremal ν in [µ]X′ satisfies the strict inequality K(ν) >
HX′(µ) . The following lemma generalizes an important observation that was made
by Strebel when X is the open unit disk (see [20] and [22]).

Lemma 3. Every point in the open set

(6) W =
{

[µ]X′ ∈ T (X ′) : dX([0]X , [µ]X) < dX′([0]X′ , [µ]X′)
}

is a Strebel point.

Proof. Let ν in [µ]X′ be X ′ -extremal and let σ in [µ]X be X -extremal.
If [µ]X′ ∈ W , then K(ν) > K(σ) ≥ H∗X(σ) ≥ HX(µ) = HX′(µ) and [µ]X is a
Strebel point. Clearly (6) defines an open set.

By (3), (4), and (6), T (X ′) \W is the union of the variability sets V µ(x0) ,
µ in M(Γ). That fact will allow us in Section 6 to deduce Theorem 1 from the
following theorem.

Theorem 3. The map Ψ: T (X ′)→ T (X)×R defined by

(7) Ψ([µ]X′) =
(
Px0([µ]X′), dX′([0]X′ , [µ]X′)

)
, µ ∈M(Γ),

is continuous and proper. Its image is the closed subset

(8) Ψ
(
T (X ′)

)
=
{

([µ]X , r) ∈ T (X)×R : dX([0]X , [µ]X) ≤ r
}

of T (X)×R . The inverse image of the interior of Ψ
(
T (X ′)

)
is the set W defined

by (6). The restriction of Ψ to W is a proper C1 split submersion, and the
inverse image under Ψ of each point in Ψ(W ) is a simple closed curve.

Proof. The forgetful map Px0 is holomorphic and the function dX′([0]X′ , · )
is continuous, so Ψ is continuous. To see that Ψ is proper, let {[µn]X′} be a
sequence in T (X ′) such that the sequence {Ψ([µn]X′)} converges in T (X) ×R .
We must show that {[µn]X′} has a convergent subsequence. We may assume that
each µn is X ′ -extremal.

Since the sequence {dX′([0]X′ , [µn]X′)} converges in R , the numbers K(µn)
are uniformly bounded. We can therefore pass to a subsequence {µnj} such that
wµnj converges uniformly on compact subsets of C to a quasiconformal map wµ .
In particular wµnj (i)→ wµ(i) as j →∞ .

Since each µn belongs to M(Γ) and the sequence {[µn]X} converges in T (X) ,
it is easy to verify that µ belongs to M(Γ) and [µnj ]X → [µ]X as j → ∞ .
Therefore the sequence

{(
[µnj ]X , w

µnj (i)
)}

in F (Γ) converges to
(
[µ]X , w

µ(i)
)

as j → ∞ . Since the Bers isomorphism B is a homeomorphism, {[µnj ]X′} is a
convergent subsequence of {[µn]X′} , and Ψ is proper.
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Now choose µ in M(Γ) and consider the set

J =
{
r ∈ R : ([µ]X , r) ∈ Ψ

(
T (X ′)

)}
=
{
dX′([0]X′ , [ν]X′) : [ν]X′ ∈ P−1

x0
([µ]X)

}
.

Since Px0 has connected fibers, J is an interval. It is unbounded because Ψ is
proper and Ψ−1({[µ]X} × S) is the non-compact set P−1

x0
([µ]X) if J ⊂ S ⊂ R .

By (3), J is a subinterval of [rµ,∞) , where rµ = dX([0]X , [µ]X) . If ν in [µ]X is
X -extremal, then Ψ([ν]X′) = ([µ]X , rµ) , so rµ ∈ J . That proves (8).

By (8), the open set Ω =
{

([µ]X , r) ∈ T (X)×R : dX([0]X , [µ]X) < r
}

is the

interior of Ψ
(
T (X ′)

)
. By the definitions of Ψ and W , Ψ−1(Ω) = W . It follows

that Ψ is a proper map of W onto Ω.
By Lemma 3, each point of W is a Strebel point, so by Corollary 2 in Section 6

of [10] the function [µ]X′ 7→ dX′([0]X′ , [µ]X′) is C1 on W . Therefore Ψ is a C1

map of W onto its image. We must study its derivative in W .
For that purpose choose µ in M(Γ) so that [µ]X′ belongs to W . Choose a

Riemann surface Y and a quasiconformal map f of X onto Y whose Beltrami
coefficient is the element of M(X) determined by µ . Then f maps X ′ onto Y ′ =
Y \ {f(x0)} . The map f induces biholomorphic maps of T (X) and T (X ′) onto
T (Y ) and T (Y ′) respectively (see [5]), allowing us to identify the tangent spaces
to T (X ′) and T (X) at [µ]X′ and [µ]X with Q(Y ′)∗ and Q(Y )∗ respectively.
Under that identification the derivative of Px0 at [µ]X′ becomes the restriction
map l 7→ l | Q(Y ) from Q(Y ′)∗ to Q(Y )∗ , as in Section 1 above.

Since [µ]X′ is a Strebel point, Strebel’s frame mapping theorem (see [8])
implies that there is a unique X ′ -extremal Beltrami coefficient ν in [µ]X′ , and
wν induces a Teichmüller mapping f0: X ′ → Y ′ . The inverse mapping from Y ′

to X ′ is also a Teichmüller mapping, so its Beltrami coefficient equals k|ϕµ|/ϕµ ,
with 0 < k < 1, for a uniquely determined ϕµ of norm one in Q(Y ′) .

Since [µ]X′ belongs to W , ν is not X -extremal. Therefore f0 and f−1
0

cannot be extended to Teichmüller mappings between X and Y , so ϕµ has a pole
at f(x0) .

According to Section 6 of [10], the derivative at [µ]X′ of the function τ 7→
d([0]X′ , τ) on T (X ′) is the map l 7→ Re

(
−l(ϕµ)

)
from Q(Y ′)∗ to R . Therefore

Ψ′([µ]X′) is the R -linear map from Q(Y ′)∗ to Q(Y )∗ ⊕R defined by

(9) Ψ′([µ]X′)(l) =
(
l | Q(Y ),Re

(
−l(ϕµ)

))
for all l ∈ Q(Y ′)∗.

Since ϕµ has a pole at y0 , (9) implies that Ψ′([µ]X′) is a surjective map whose
kernel is the real one-dimensional subspace of Q(Y )∗ generated by the linear
functional that equals zero on Q(Y ) and maps ϕµ to i . Every finite dimensional
subspace has a closed complement, and [µ]X′ is an arbitrary point of W , so the
restriction of Ψ to W is a proper C1 split submersion.

Finally, we must examine the fibers Ψ−1(p) , p ∈ Ψ(W ) . Each fiber is a com-
pact one-dimensional real submanifold of W . It therefore has finitely many con-
nected components, each of which is a simple closed curve in W . It follows readily
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from the implicit function theorem and the properness of Ψ that the number n(p)
of components of Ψ−1(p) is a locally constant function of p in Ψ(W ) . The ho-
meomorphism ([µ]X , r) 7→

(
[µ]X , r−dX([0]X , [µ]X)

)
of Ψ(W ) onto T (X)×(0,∞)

shows that Ψ(W ) is connected, so n = n(p) is independent of p .
Evaluating n requires a more detailed study of Ψ−1(p) . Choose any µ in

M(Γ) and any positive number r > rµ = dX([0]X , [µ]X) . Then p = ([µ]X , r)
belongs to Ψ(W ) , and Ψ−1(p) is contained in the submanifold Dµ = P−1

x0
([µ]X)

of T (X ′) . Define the function h: Dµ → R by h([ν]X′) = dX′([0]X′ , [ν]X′) , [ν]X′

in Dµ . The definition (7) of Ψ implies that Ψ−1(p) = h−1(r) . Since Ψ is a
C1 split submersion in W , (7) also implies that h is C1 with a non-vanishing
gradient in the set Dµ ∩W = Dµ \ V µ(x0) . Therefore h has no local maximum,
and its only local minima are located at the points of V µ(x0) .

Recall from Section 2 that Dµ is biholomorphically equivalent to the simply
connected region wµ(H ) , so we may think of Dµ as an open disk in C . Let C
be a component of h−1(r) . Since C is a simple closed curve in Dµ , it bounds a
closed disk D in Dµ . Since h has no local maximum, we must have h(τ) < r
for all τ in the interior of D . Since the only local minima of h are at points of
V µ(x0) , the interior of D must contain at least one point of V µ(x0) .

We conclude that there are n disjoint closed disks D1, D2, . . . , Dn in Dµ such
that h(τ) ≤ r for τ in

⋃
1≤j≤nDj , h(τ) 6= r for τ in Dµ \⋃1≤j≤nDj , and each

Dj contains at least one point of V µ(x0) . Since Dµ \ ⋃1≤j≤nDj is connected
and, by (8), h takes arbitrarily large values in Dµ , we can conclude further that
h(τ) > r for τ in Dµ \⋃1≤j≤nDj .

To see that n = 1 we observe that V µ(x0) contains at least n points for any
µ in M(Γ) and that V 0(x0) consists of the single point [0]X′ .

Remark 2. The proof of Proposition 4(A) in [4] shows that Ψ: W → Ψ(W )
is topologically a locally trivial fibration. Since Ψ(W ) is contractible, the fibration
is globally trivial and W is homeomorphic to the product of Ψ(W ) and the unit
circle. As we do not need this result here, we shall not go into detail.

6. Proof of Theorem 1

Lemma 1 reduces the proof of Theorem 1 to showing that for each µ in
M(Γ) the set V µ(x0) is compact and the sets V µ(x0) and P−1

x0
([µ]X) \ V µ(x0)

are connected.
These properties of V µ(x0) follow easily from Theorem 3 and its proof. Con-

sider again the fiber Dµ = P−1
x0

([µ]X) and the function h: Dµ → R obtained by
restricting the distance function [ν]X′ 7→ dX′([0]X′ , [ν]X′) to Dµ . By its defini-
tion (4), V µ(x0) is the set of points in Dµ where h attains its minimum value
rµ = dX([0]X , [µ]X) .

In the proof of Theorem 3 we showed that for each r > rµ the set h−1([rµ, r])
is a closed Jordan domain whose boundary is the level set h−1(r) . Since V µ(x0) is
the intersection of these domains it is compact and connected. Since Dµ \V µ(x0)
is the union of the annular regions Dµ\h−1([rµ, r]) , r > rµ , it is also connected.
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7. The Teichmüller metric on the fibers of the forgetful map

Lemma 1 and its proof made essential use of the fact that for each µ in M(Γ)
the Bers isomorphism induces a biholomorphic map between the region wµ(H )
and the fiber P−1

x0
([µ]) of the forgetful map. The question whether that map is an

isometry with respect to the Poincaré metric %µ on wµ(H ) and the Teichmüller
metric dX′ on P−1

x0
([µ]) has been thoroughly investigated.

Kra [9] and Nag [16] independently showed that the answer is negative when
T (X) has positive finite dimension. Liu [14] extended the Kra–Nag result to all
infinite dimensional Teichmüller spaces T (X) with three exceptions: the cases
when X is ∆, ∆ with one puncture, or an annulus. In Section 8 we shall give
a more explicit and elementary proof of the Kra, Nag, and Liu results, and in
Section 9 we shall extend them to the remaining exceptional cases, thus obtaining
the following theorem.

Theorem 4 (Kra–Nag–Liu). Given µ in M(Γ) , the map φ: wµ(H )→ T (X ′)
defined by φ(ζ) = B−1([µ]X , ζ) , ζ ∈ wµ(H ) , is not an isometry unless X is
conformally equivalent to C \ {0, 1} .

In the finite dimensional case part one of the following corollary was proved
in [9] and [16], and the second part was proved in [6]. The infinite dimensional
case follows immediately from Theorem 4 above and Theorem 5 of [6], as Liu and
Yang pointed out in [15].

Corollary 2. Given µ in M(Γ) , let φ: wµ(H ) → T (X ′) be the map in
Theorem 4. If X is not conformally equivalent to C \ {0, 1} , then

(10) dX′
(
φ(ζ1), φ(ζ2)

)
< %µ(ζ1, ζ2)

for any pair of distinct points ζ1 and ζ2 in wµ(H ) . In addition,

(11) lim
h→0+

dX′
(
φ(ζ), φ(ζ + hv)

)

h
< lim
h→0+

%µ(ζ, ζ + hv)

h

for any ζ in wµ(H ) and any nonzero v in C .

Notice that h approaches zero through positive real values in (11). The
metrics %µ on wµ(H ) and dX′ on T (X ′) are arc length metrics. Inequality (11)
says that f strictly decreases the infinitesimal length of nonzero tangent vectors.

8. Proof of Theorem 4: the generic case

We begin with some general remarks. Let f be a quasiconformal map of X
onto Y , and let Y ′ = f(X ′) . The biholomorphic maps from T (X) onto T (Y ) and
from T (X ′) to T (Y ′) that f induces (see [5]) preserve Teichmüller distances and
respect the forgetful maps. Therefore, in the proof of Theorem 4 we can assume
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that µ is identically zero, and we can also choose any convenient basepoint x0

on X .
When µ = 0 the map φ: H → T (X ′) in Theorem 4 satisfies the equation

B
(
φ(ζ)

)
= ([0]X , ζ) for all ζ in H . Hence, if ζ in H and ν in M(Γ) are given,

then φ(ζ) = [ν]X′ if and only if [ν]X = [0]X and wν(i) = ζ .
Suppose ν in M(Γ) satisfies

(12) ν ∈ [0]X and 1
2 logK(ν) < %0

(
i, wν(i)

)
,

where %0 is the Poincaré metric on H . Put ζ = wν(i)(∈H ) . Then

dX′
(
φ(i), φ(ζ)

)
= dX′([0]X′ , [ν]X′) ≤ 1

2 logK(ν) < %0(i, ζ).

Therefore Theorem 4 will be proved as soon as we find ν in M(Γ) satisfying (12).
In this section we shall consider hyperbolic Riemann surfaces X on which

there is a simple closed geodesic C . We require the point x0 = $(i) to lie on
C and we choose the covering map $ so that the component of $−1(C) that
contains the point i is the positive imaginary axis.

The stabilizer of ∞ in the group Γ of covering transformations is the cyclic
subgroup Γ∞ of Γ generated by a transformation z 7→ cz with c > 1. Since the
image of the imaginary axis under $ is a simple closed curve, the collar lemma
(see for instance Theorem 11.7.1 in [1]) gives us a number α such that 0 < α ≤ 1

2π
and the subregion

Ωα =
{
z = reiθ : r > 0 and |θ − 1

2π| < α
}

of H is precisely Γ∞ -invariant with respect to Γ. This means that γ(Ωα) = Ωα
for γ in Γ∞ and γ(Ωα) ∩ Ωα is empty for γ in Γ \ Γ∞ .

Now, given t > 0 we define a quasiconformal map ft of Ωα onto itself by

(13) ft(re
iθ) =

{
reiθ+t(α+θ−π/2), r > 0 and 0 ≤ 1

2π − θ < α,

reiθ+t(α−θ+π/2), r > 0 and 0 ≤ θ − 1
2π < α.

It is obvious that ft(cz) = cft(z) for all z in Ωα , so ft ◦ γ = γ ◦ ft in Ωα for all
γ in Γ∞ . Since Ωα is precisely Γ∞ -invariant, the formula

ft
(
γ(z)

)
= γ

(
ft(z)

)
, z ∈ Ωα and γ ∈ Γ,

extends ft to a well-defined quasiconformal map of
⋃
γ∈Γ γ(Ωα) onto itself. We

extend ft to a quasiconformal map of C onto itself by setting ft(z) = z for z in
the complement of

⋃
γ∈Γ γ(Ωα) .

Since the extended quasiconformal map ft: C→ C equals the identity in the
complement of H , ft = wν for some ν in M({I}) . Since wν ◦ γ = γ ◦ wν for
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all γ in Γ, ν belongs to M(Γ). We shall verify that ν satisfies condition (12) for
sufficiently large values of t .

First, ν ∈ [0]X because wν = ft is the identity on R . Second, wν(i) = eαti
by (13), so %0

(
i, wν(i)

)
= 1

2αt . Third, we must compute K(ν) .
The definition of wν shows that ν has the same L∞ norm on H and Ωα .

An elementary calculation using (13) shows that in Ωα

ν(reiθ) =





(
ti

2− ti

)
e2iθ, r > 0 and 0 ≤ 1

2π − θ < α,

( −ti
2 + ti

)
e2iθ, r > 0 and 0 ≤ θ − 1

2π < α.

Therefore ‖ν‖ = t/
√

4 + t2 , K(ν) = 1
4

(√
4 + t2 + t

)2
, and condition (12) holds if

(14) 2 log
(

1
2

(√
4 + t2 + t

))
< αt.

Elementary calculus shows that the set of t > 0 where (14) holds is a
nonempty open interval (t0,∞) , so Theorem 4 holds for all hyperbolic Riemann
surfaces X that have simple closed geodesics.

Remark 3. The maps ft induce quasiconformal mappings of X onto itself
that are closely related to the spins about C used in the proofs of Theorem 4 in
[9], [14], and [16].

9. Proof of Theorem 4: the remaining cases

The only hyperbolic Riemann surfaces with no simple closed geodesics are
conformally equivalent to ∆, ∆ \ {0} , or C \ {0, 1} . Since Theorem 4 excludes
the case when X is C\{0, 1} , we need only consider ∆ and ∆′ (= ∆\{0}). It is
easy to handle these cases directly (see Section 11), but it is even easier to deduce
them from the generic case. First we shall prove two elementary results.

Lemma 4. Let X and Y be hyperbolic Riemann surfaces with basepoints
x0 and y0 respectively, and let f : X → Y be a holomorphic covering map with
f(x0) = y0 . Let $X : H → X be a holomorphic universal covering map with
$X(i) = x0 , let $Y = f ◦ $X , and let ΓX and ΓY be the groups of covering
transformations of $X and $Y respectively. Then M(ΓY ) ⊂M(ΓX) , and

(15) dX′([0]X′ , [ν]X′) ≤ dY ′([0]Y ′ , [ν]Y ′) for all ν in M(ΓY ),

where X ′ = X \ {x0} and Y ′ = Y \ {y0} .

Proof. Since ΓX is clearly a subgroup of ΓY , the inclusion M(ΓY ) ⊂M(ΓX)
and the inequality (15) follow immediately from the definitions.
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Corollary 3. Under the conditions of Lemma 4 let BX′ : T (X ′) → F (ΓX)
and BY ′ : T (Y ′)→ F (ΓY ) be the Bers isomorphisms associated with ΓX and ΓY
respectively. For ζ in H , let φX′(ζ) = B−1

X′ ([0]X , ζ) and φY ′(ζ) = B−1
Y ′ ([0]Y , ζ) .

Then

(16) dX′
(
φX′(i), φX′(ζ)

)
≤ dY ′

(
φY ′(i), φY ′(ζ)

)
for all ζ in H .

Proof. If ζ ∈ H , ν ∈ M(ΓY ) , and φY ′(ζ) = [ν]Y ′ , then φX′(ζ) = [ν]X′ .
Therefore (15) implies (16).

We shall apply these results with Y equal to the quotient of H by the Fuch-
sian group ΓY generated by the transformations z 7→ z + 1 and z 7→ z/(5z + 1).
We take X to be the quotient space H /ΓX , where ΓX is either the trivial sub-
group of ΓY or the subgroup generated by z 7→ z + 1. We denote the quotient
maps from H to X and Y by $X and $Y respectively, give X and Y the base-
points $X(i) and $Y (i) , and define f : X → Y by setting f

(
$X(z)

)
= $Y (z) ,

z in H .
Since Y is conformally equivalent to a twice punctured disk, it contains a

simple closed geodesic. Therefore Theorem 4 and Corollary 2 hold for Y .
Choose any ζ 6= i in H , and let %0 be the Poincaré metric on H . Inequality

(10) in Corollary 2 gives

dY ′
(
φY ′(i), φY ′(ζ)

)
< %0(i, ζ).

Combining this inequality with the inequality (16) we obtain

dX′
(
φX′(i), φX′(ζ)

)
< %0(i, ζ),

which proves Theorem 4 for X . Since our choices of ΓX allow us to make X con-
formally equivalent to either ∆ or ∆ \ {0} , the proof of Theorem 4 is complete.

10. Proof of Theorem 2

Using appropriate biholomorphic maps between Teichmüller spaces as in the
proof of Theorem 4, we may assume that a is the basepoint [0]X′ of T (X ′) . We
choose an X ′ -extremal µ in M(Γ) so that b = [µ]X′ . By hypothesis Px0(a) =
Px0(b) and a 6= b , so [µ]X = [0]X and [µ]X′ 6= [0]X′ . Therefore Lemma 3 implies
that [µ]X′ is a Strebel point of T (X ′) . Since µ is X ′ -extremal, Strebel’s frame
mapping theorem (see [8]) implies that µ is the unique X ′ -extremal Beltrami
coefficient in [µ]X′ and that µ has the special Teichmüller form described in the
proof of Theorem 3 in Section 5.

Now let ν in M(Γ) be X ′ -extremal and let c = [ν]X′ be distinct from
a and b . Since µ is uniquely X ′ -extremal and has constant absolute value, a
calculation due to Li Zhong (see the proof of Theorem 3 in [12]) shows that

dX′(a, b) = dX′(a, c) + dX′(c, b)
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if and only ν = rµ for some real r with 0 < r < 1. We shall now obtain a
contradiction from the assumption that P−1

x0
([0]X) contains infinitely many such

points c = [rµ]X′ .
Consider first the holomorphic map f(t) = [tµ/‖µ‖]X′ from ∆ into T (X ′) .

Let g be any holomorphic function on T (X) such that g([0]X) = 0. By
our assumption there are infinitely many numbers r in [0, 1] such that
g
(
Px0

(
f(r‖µ‖)

))
= 0. Hence g◦Px0 ◦f has infinitely many zeros in the closed disk

D (0; ‖µ‖) , so it is identically zero. The Bers embedding (see [8] or [17]) and the
Hahn–Banach theorem imply that the holomorphic functions on T (X) separate
points, so our assumption implies that Px0

(
f(t)

)
= [0]X for all t in ∆.

Now recall the biholomorphic map φ(ζ) = B−1([0]X , ζ) from H to
P−1
x0

([0]X) that we studied in Theorem 4. Since f maps ∆ into P−1
x0

([0]X) ,
there is a holomorphic map h from ∆ to H such that f = φ ◦ h . Let %∆ be the
Poincaré metric on ∆. Inequality (10) and the Schwarz–Pick lemma imply that

(17) dX′([0]X′ , [µ]X′) = dX′
(
φ
(
h(0)

)
, φ
(
h(‖µ‖)

))
< %∆(0, ‖µ‖) = 1

2 logK(µ).

Since µ is X ′ -extremal, the inequality (17) provides the desired contradiction.

11. An example

Finally, we shall use some explicit extremal quasiconformal mappings to re-
prove Theorem 4 for the nongeneric cases X = ∆ and Y = ∆ \ {0} . Our compu-
tations will also show that the ratio of the two sides of the inequality (15) can be
arbitrarily large.

Let ΓY be the cyclic Fuchsian group generated by z 7→ z + 1, ΓX be the
trivial subgroup of ΓY , and %0 be the Poincaré metric on H . For each positive
integer n let νn be the constant function νn(z) = −n/(n+ 2i) , z in H .

Observe that νn belongs to M(ΓY ) (⊂M(ΓX)). Since wνn(z) = z+ Im(nz)
for all z in H , we have [νn]X = [0]X , [νn]Y = [0]Y , and wνn(i) = i + n
for all n . We shall compare the numbers %0

(
i, wνn(i)

)
, dY ′([0]Y ′ , [νn]Y ′) , and

dX′([0]X′ , [νn]X′) .
The number %0

(
i, wνn(i)

)
is easily seen to equal log

(
1
2

(√
n2 + 4 + n

))
, which

is asymptotic to log n as n→∞ .
The number dX′([0]X′ , [νn]X′) equals 1

2 logKn , where Kn is the maximal
dilatation of the extremal quasiconformal mapping of H onto itself that fixes
the extended real axis pointwise and maps i to i + n . Both Teichmüller [23]
and Reich [18] give elegant geometric constructions of that map. We shall follow
Section 4 of [18] because of misprints on the last page of [23], where every K or
D in a displayed formula must be replaced by its square root.

The first step is to map H one-to-one and conformally onto ∆ so that i
and i + n go to 0 and rn = |n/(n+ 2i)| respectively. Next we map the region
∆ \ [0, rn] one-to-one and conformally to an annulus An = {ζ : 1 < |ζ| < Rn} ,
sending 0 and rn to −1 and 1 respectively. The map w = 1

2 (ζ+ ζ−1) carries An
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to En \ [−1, 1] , where En is the interior of the ellipse whose axes are the segments
[− 1

2 (Rn+R−1
n ), 1

2 (Rn+R−1
n )] and [− 1

2 i(Rn−R−1
n ), 1

2 i(Rn−R−1
n )] . The composed

map from ∆ \ [0, rn] to En \ [−1, 1] extends to a conformal homeomorphism fn
of ∆ onto En . Composing fn with the original map from H to ∆ we obtain a
conformal homeomorphism gn of H onto En with gn(i) = −1 and gn(i+n) = 1.

It is easy to verify (see Theorem 4 of Reich [18]) that the desired extremal
map of H onto itself is g−1

n ◦ hn ◦ gn , where hn is the mapping of En onto itself
given by

hn(w) =
(R2

n + 1)2

(R2
n − 1)2

(
(w + 1)− 4Rn

R2
n + 1

|w + 1|+ 4R2
n

(R2
n + 1)2

(w + 1 )

)
+ 1.

An easy calculation shows that the Beltrami coefficient of hn is

− 2Rn
R2
n + 1

w + 1

|w + 1| ,

so

(18) Kn =

(
Rn + 1

Rn − 1

)2

and dX′([0]X′ , [νn]X′) =
1

2
logKn = log

(
Rn + 1

Rn − 1

)
.

A study of Rn as a function of rn can be found in Section 2 of Chapter II
of [11], where logRn is denoted by µ(rn) . According to equations (2.7) and (2.11)
in that chapter

µ(rn)µ
(√

1− r2
n

)
= π2/4 and lim

n→∞

(
µ
(√

1− r2
n

)
− log

(
4/
√

1− r2
n

))
= 0.

These equations, together with the definition of rn and equation (18) above, imply
that dX′([0]X′ , [νn]X′) is asymptotic to log log n as n→∞ .

It remains to study dY ′([0]Y ′ , [νn]Y ′) . Our universal covering map from H to
Y = ∆\{0} will be $(z) = e2πiz , the basepoint of Y will be $(i) = e−2π , and Y ′

will equal Y \{e−2π} . The restriction of wνn to H is a lift of the quasiconformal
self-mapping

fn(ζ) = ζe−ni log |ζ|, ζ ∈ Y,
of Y . Clearly fn maps Y ′ onto itself and dY ′([0]Y ′ , [νn]Y ′) equals 1

2 logKn ,
where Kn is the maximal dilatation of the extremal quasiconformal self-mapping
of Y ′ that is Teichmüller equivalent to fn in Y ′ .

Construction of the extremal mapping again involves mapping a slit disk onto
an annulus. Let w = g(ζ) map ∆ \ [0, e−2π] one-to-one and conformally to the
annulus A = {w : 1 < |w| < R} , sending 0 and e−2π to −1 and 1 respectively.

The quasiconformal self-mapping

(19) hn(w) = we−2πin log |w|/ logR, w ∈ A ,
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of A fixes the boundary of A pointwise, so g−1 ◦hn ◦g extends to a quasiconfor-
mal self-mapping of ∆ that fixes the segment [0, e−2π] pointwise. The restriction
of that mapping to Y ′ is the desired extremal mapping, for it is easily seen to be
Teichmüller equivalent to fn in Y ′ and, as we shall now verify, it is a Teichmüller
mapping of Y ′ onto itself.

First consider the mapping hn . By (19) its Beltrami coefficient is the function

(20) σn(w) =

( −πin
logR− πin

)
w

w
, w ∈ A ,

so hn is a Teichmüller mapping whose associated quadratic differential is a (com-
plex) scalar multiple of −dw2/w2 . The self-mapping g−1 ◦ hn ◦ g of ∆ \ [0, e−2π]
is therefore a Teichmüller mapping, and its associated quadratic differential is a
scalar multiple of q = −dg2/g2 .

Now q is determined up to a positive multiple by the properties that it has no
zeros in ∆ \ [0, e−2π] and all its horizontal trajectories in ∆ \ [0, e−2π] are simple
closed curves (see Section 9 of [21]). The quadratic differential

q0 =
dζ2

ζ(ζ − e−2π)(e−2πζ − 1)
, ζ ∈ C \ {0, e−2π, e2π},

has all these properties. Indeed, either direct calculation or a symmetry argument
will show that the unit circle is a horizontal trajectory of q0 , and all non-critical
trajectories of q0 are simple closed curves because the only critical horizontal
trajectories of q0 in the extended plane are the segments [0, e−2π] and [e2π,∞]
on the extended real axis (see Section 12.2 of [21]). Therefore q is a positive
multiple of q0 .

Since q extends to an integrable holomorphic quadratic differential on Y ′ the
extension of g−1 ◦ hn ◦ g to Y ′ is a Teichmüller mapping, as we claimed. Since
the extremal mapping equals g−1 ◦ hn ◦ g almost everywhere in Y ′ we can use
equation (20) to compute its maximal dilatation Kn . We find that

dY ′([0]Y ′ , [νn]Y ′) =
1

2
logKn = log

(√
(πn)2 + (logR)2 + πn

logR

)
.

Thus dY ′([0]Y ′ , [νn]Y ′) and %0

(
i, wνn(i)

)
are both asymptotic to log n as

n→∞ , while dX′([0]X′ , [νn]X′) is asymptotic to log log n .
Finally, since the module (1/2π) logR of ∆ \ [0, e−2π] is greater than one,

our formulas for dY ′([0]Y ′ , [νn]Y ′) and %0

(
i, wνn(i)

)
imply that

dY ′([0]Y ′ , [νn]Y ′) < %0

(
i, wνn(i)

)
for each n ≥ 1.
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