ON THE COMPLEXIFICATION OF THE WEIERSTRASS NON-DIFFERENTIABLE FUNCTION

Krzysztof Barański

Warsaw University, Institute of Mathematics ul. Banacha 2, PL-02-097 Warsaw, Poland; baranski@mimuw.edu.pl

Abstract. It is shown that for the Weierstrass nowhere differentiable functions $X_{a,b}(t) = \sum_{n=0}^{\infty} a^n \cos(b^n t)$ and $Y_{a,b}(t) = \sum_{n=0}^{\infty} a^n \sin(b^n t)$ the set $(X_{a,b}, Y_{a,b})([0, 2\pi])$ has a non-empty interior in \mathbb{R}^2 , provided $b \in \mathbb{N}$, $b \ge 2$ and a < 1 is sufficiently close to 1. It follows that the box dimension of graph $(X_{a,b}, Y_{a,b})$ is equal to $3 - 2\alpha$ where $\alpha = -\log a/\log b$ and its Hausdorff dimension is at least 2. Moreover, the level sets L(s) for $X_{a,b}$ and $Y_{a,b}$ have Hausdorff dimension at least α for open sets of $s \in \mathbb{R}$, so the Hausdorff dimension of graph $X_{a,b}$ and graph $Y_{a,b}$ is at least $1 + \alpha$.

1. Introduction

This paper concerns the famous functions

$$X_{a,b}(t) = \sum_{n=0}^{\infty} a^n \cos(b^n t), \qquad Y_{a,b}(t) = \sum_{n=0}^{\infty} a^n \sin(b^n t)$$

for $t \in [0, 2\pi]$ and 0 < a < 1, b > 1, $ab \ge 1$. The first one was introduced by Weierstrass in 1872 as an example of a continuous, nowhere differentiable function. In fact, the non-differentiability for all given above parameters a, b was proved by Hardy in [Ha]. Later, the graphs of these and related functions were studied as fractal curves. A basic question which arises in this context is computing the Hausdorff dimension (HD) of these curves. However, this problem is still unsolved for the classical functions $X_{a,b}$ and $Y_{a,b}$.

For ab = 1, the graphs of $X_{a,b}$ and $Y_{a,b}$ have Hausdorff dimension 1 and σ -finite 1-dimensional Hausdorff measure, as was proved by Mauldin and Williams in [MW]. For ab > 1, it is easy to check that the functions $X_{a,b}$ and $Y_{a,b}$ are Hölder continuous with exponent α for

$$\alpha = -\frac{\log a}{\log b}$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 28A80, 28A75, 28A78. Research supported by Polish KBN Grant 2 P03A 009 17.

(i.e. $a = b^{-\alpha}$). Consequently, the box dimension (BD) of their graphs is at most $2 - \alpha$ (see Lemma 2.2). In fact, it is equal to $2 - \alpha$, as was proved in [KMY]. Hence, HD(graph $X_{a,b}$), HD(graph $Y_{a,b}$) cannot exceed $2 - \alpha$. Moreover, the packing dimension of these graphs is $2 - \alpha$ (see [R]).

It is believed that the Hausdorff dimension of these graphs should also be equal to $2 - \alpha$. Note that

$$X_{a,b}(t) = aX_{a,b}(bt) + \cos t, \qquad Y_{a,b}(t) = aY_{a,b}(bt) + \sin t,$$

which means that the graphs are roughly self-similar for the scaling with horizontal factor b and vertical factor a.

The difficulties lie in the lower estimates of the Hausdorff dimension. There are not too many results in this direction. Mauldin and Williams in [MW] gave the lower bound of the form $2 - \alpha - C/\log b$ for a constant C > 0 independent of b, which approaches the upper bound as $b \to \infty$. Przytycki and Urbański proved in [PU] that the Hausdorff dimension of graph $X_{a,b}$, graph $Y_{a,b}$ is greater than 1 for $b \in \mathbf{N}$, $b \geq 2$. In [Hu], Hunt showed that the Hausdorff dimension of the graph of the function

$$\sum_{n=0}^{\infty} a^n \cos(b^n t + \theta_n)$$

with θ_n chosen independently with respect to the uniform probability measure on $[0, 2\pi]$, is almost surely equal to $2 - \alpha$.

It turns out that it is easier to consider the problem for the Weierstrass function with cosine replaced by some other continuous periodic function $g: \mathbf{R} \to \mathbf{R}$. For instance, take $g(t) = \operatorname{dist}(t, \mathbf{Z})$ (the sawtooth function), which was studied by Besicovitch and Ursell in [BU]. For a = b, we obtain the van der Waerden–Tagaki function, which has Hausdorff dimension 1 and σ -finite 1-dimensional Hausdorff measure. This was proved by Anderson and Pitt in [AP]. Moreover, by the work of Ledrappier [L], the case b = 2, $a > \frac{1}{2}$ can be brought to the case of the Bernoulli convolutions $\sum \pm a^n$, where the signs are chosen independently with probability $\frac{1}{2}$ on [0, 1]. Then the work of Solomyak [S] implies that the Hausdorff dimension of the graph is $2 - \alpha$ for almost all $a \in (\frac{1}{2}, 1)$.

Another interesting problem is studying various measures related to these graphs. For a function $f: [t_0, t_1] \to \mathbf{R}^m$ denote by μ_f the image under f of the uniform probability measure on $[t_0, t_1]$. Little is known about the measures $\mu_{X_{a,b}}$ and $\mu_{Y_{a,b}}$. It is conjectured that the Hausdorff dimension of graph $X_{a,b}$ (or graph $Y_{a,b}$) is $2-\alpha$ if and only if the measure $\mu_{X_{a,b}}$ (or $\mu_{Y_{a,b}}$) is absolutely continuous with respect to the Lebesgue measure on \mathbf{R} . This holds for the Bernoulli convolutions, as was proved in [PU]. Kôno showed in [K] that if $b \in \mathbf{N}$ and ab is sufficiently large and the suitable measure $\mu_{X_{a,b}}$ or $\mu_{Y_{a,b}}$ has a bounded density function with respect to the Lebesgue measure, then the Hausdorff dimension of the graph is $2-\alpha$.

In this paper we consider the complexification of the functions $X_{a,b}$ and $Y_{a,b}$, i.e.

$$F_{a,b}(z) = \sum_{n=0}^{\infty} a^n z^{b^n}, \qquad z \in \mathbf{C}, \ |z| \le 1,$$

for $a \in (0,1)$ and $b \in \mathbb{N}$, $b \ge 2$. Then $F_{a,b}$ is holomorphic in the open unit disc, continuous in the closed unit disc and

$$\operatorname{Re}(F_{a,b}(e^{it})) = X_{a,b}(t), \qquad \operatorname{Im}(F_{a,b}(e^{it})) = Y_{a,b}(t).$$

We prove that if a is sufficiently close to 1, then the image of the unit circle \mathbf{S}^1 under $F_{a,b}$ (i.e. the image of the segment $[0, 2\pi]$ under the map $(X_{a,b}, Y_{a,b})$) is a curve which has non-empty interior in the topology of the plane. More precisely, we show

Theorem 1.1. There exist $a_0 < 1$ and c > 0, such that for every $a \in [a_0, 1)$ and every $b \in \mathbf{N}$, $b \ge 2$, the set $F_{a,b}(\mathbf{S}^1)$ contains a disc of radius c/(1-a). Moreover, $F_{a,b}(\mathbf{S}^1)$ is the closure of its interior in the topology of the plane.

Figure 1. The curve $F_{a,2}(\mathbf{S}^1)$ for a = 0.7 (left) and a = 0.8 (right).

The idea of complexifying the Weierstrass function is not new. In [Ha] Hardy used its harmonic extension to prove non-differentiability. Our approach, however, is not analytical but relies on some elementary geometric facts (Lemma 3.3).

Apart from presenting an interesting example of a "plane-filling" curve, Theorem 1.1 has some consequences concerning the graphs of the functions $X_{a,b}$, $Y_{a,b}$. First, we can compute the exact value of the box dimension of graph $(X_{a,b}, Y_{a,b})$ (as a subset of \mathbf{R}^3), which is equal to $3 - 2\alpha$. The Hausdorff dimension of this graph is at least 2. These results are shown in Corollary 4.1.

For $s \in \mathbf{R}$ define the level sets of $X_{a,b}$, $Y_{a,b}$ as

$$L_{X_{a,b}}(s) = \{t \in \mathbf{R} : X_{a,b}(t) = s\}, \qquad L_{Y_{a,b}}(s) = \{t \in \mathbf{R} : Y_{a,b}(t) = s\}.$$

In Corollary 4.3 we show that the Hausdorff dimension of $L_{X_{a,b}}(s)$ and $L_{Y_{a,b}}(s)$ is at least α for some open sets of $s \in \mathbf{R}$. This implies (Corollary 4.4) that

$$\operatorname{HD}(\operatorname{graph} X_{a,b}), \operatorname{HD}(\operatorname{graph} Y_{a,b}) \ge 1 + \alpha.$$

Krzysztof Barański

Theorem 1.1 and the corollaries are true for a close to 1, i.e. for α close to 0. The functions $X_{a,b}$, $Y_{a,b}$ are Hölder continuous with exponent α , so the map $(X_{a,b}, Y_{a,b})$ is also Hölder continuous with the same exponent. This implies (see Lemma 2.2) that

$$\mathrm{HD}(F_{a,b}(\mathbf{S}^{1})) = \mathrm{HD}((X_{a,b}, Y_{a,b})([0, 2\pi])) \leq \underline{\mathrm{BD}}((X_{a,b}, Y_{a,b})([0, 2\pi])) \leq 3 - 2\alpha,$$

so for $\alpha > \frac{1}{2}$ we have $\text{HD}(F_{a,b}(\mathbf{S}^1)) < 2$. In particular, $F_{a,b}(\mathbf{S}^1)$ has 2-dimensional Lebesgue measure 0, $\mu_{(X_{a,b},Y_{a,b})}$ is singular with respect to this measure and Theorem 1.1 cannot be true. It would be of interest to check whether Theorem 1.1 holds for every $\alpha \leq \frac{1}{2}$. (See Figure 1, where the left picture shows the curve for $\alpha = 0.5145...$ and the right one for $\alpha = 0.3219...$) The most interesting case is $\alpha = \frac{1}{2}$. Indeed, we have the following:

Fact. Suppose $\alpha = \frac{1}{2}$ and $F_{a,b}(\mathbf{S}^1)$ has positive 2-dimensional Lebesgue measure. Then $\mu_{(X_{a,b},Y_{a,b})}$ is not singular with respect to this measure and the measures $\mu_{X_{a,b}}$, $\mu_{Y_{a,b}}$ are not singular with respect to 1-dimensional Lebesgue measure. Moreover, $\operatorname{HD}(\operatorname{graph} X_{a,b}) = \operatorname{HD}(\operatorname{graph} Y_{a,b}) = 2 - \alpha = \frac{3}{2}$.

Proof. Let Leb_m be the *m*-dimensional Lebesgue measure. By Lemma 2.2, we have Leb₂ $|_{F_{a,b}(\mathbf{S}^1)} \leq C\mu_{(X_{a,b},Y_{a,b})}$ for a constant *C*. Suppose $\mu_{(X_{a,b},Y_{a,b})}$ is singular with respect to Leb₂ and take a set $A \subset F_{a,b}(\mathbf{S}^1)$ such that $\mu_{(X_{a,b},Y_{a,b})}(A) = 1$ and Leb₂(A) = 0. Then

$$\operatorname{Leb}_2(F_{a,b}(\mathbf{S}^1)) = \operatorname{Leb}_2(F_{a,b}(\mathbf{S}^1) \setminus A) \le C\mu_{(X_{a,b},Y_{a,b})}(F_{a,b}(\mathbf{S}^1) \setminus A) = 0,$$

which contradicts the assumption. Hence, $\mu_{(X_{a,b},Y_{a,b})}$ is not singular with respect to Leb₂. Since $\mu_{X_{a,b}}$, $\mu_{Y_{a,b}}$ are orthogonal projections of $\mu_{(X_{a,b},Y_{a,b})}$ on the coordinate axes, they are not singular with respect to Leb₁. The last part follows from Corollary 4.4, because $1 + \alpha = \frac{3}{2} = 2 - \alpha$.

2. Preliminaries

We recall some basic definitions and facts concerning the Hausdorff and box dimension.

Definition 2.1. For $A \subset \mathbb{R}^n$ and $\delta > 0$ the (outer) δ -Hausdorff measure of A is defined as

$$\mathscr{H}^{\delta}(A) = \lim_{\varepsilon \to 0} \inf \sum_{U \in \mathscr{U}} (\operatorname{diam} U)^{\delta},$$

where infimum is taken over all countable coverings \mathscr{U} of A by open sets of diameters less than ε .

The Hausdorff dimension of A is defined as

$$HD(A) = \sup\{\delta > 0 : \mathscr{H}^{\delta}(A) = +\infty\} = \inf\{\delta > 0 : \mathscr{H}^{\delta}(A) = 0\}$$

Let $N_{\varepsilon}(A)$ be the minimal number of balls of diameter ε needed to cover A. Define the lower and upper box dimension as

$$\underline{\mathrm{BD}}(A) = \liminf_{\varepsilon \to 0} \frac{\log N_{\varepsilon}(A)}{-\log \varepsilon}, \qquad \overline{\mathrm{BD}}(A) = \limsup_{\varepsilon \to 0} \frac{\log N_{\varepsilon}(A)}{-\log \varepsilon}$$

The box dimension is also called the box-counting or Minkowski dimension. It is easy to check that

$$\mathrm{HD}(A) \leq \underline{\mathrm{BD}}(A).$$

The definitions of the Hausdorff and box dimension easily imply

Lemma 2.2. Let $A \subset \mathbf{R}^n$ and let $f: A \to \mathbf{R}^m$ be a map such that

$$||f(x) - f(y)|| \le c ||x - y||^{\beta}$$

for every $x, y \in A$ and constants c > 0, $0 < \beta \le 1$. Then for every $\delta > 0$,

$$\mathscr{H}^{\delta/\beta}(f(A)) \leq c^{\delta/\beta} \mathscr{H}^{\delta}(A), \quad \text{so} \quad \operatorname{HD}(f(A)) \leq \operatorname{HD}(A)/\beta.$$

Moreover,

$$\underline{BD}(\operatorname{graph} f) \leq \underline{BD}(A) + m(1 - \beta),$$

$$\overline{BD}(\operatorname{graph} f) \leq \overline{BD}(A) + m(1 - \beta).$$

We shall use the following theorem estimating the Hausdorff dimension of a planar set by the dimensions of its level sets (for the proof see e.g. [F]).

Theorem 2.3. Let $E \subset \mathbf{R}^2$ and $A \subset \mathbf{R}$. Suppose that there exists $\beta > 0$, such that if $x \in A$, then $\mathscr{H}^{\beta}(\{y \in \mathbf{R} : (x, y) \in E\}) > c$, for some constant c. Then for every $\delta > 0$,

 $\mathscr{H}^{\delta+\beta}(E) \ge bc\mathscr{H}^{\delta}(A),$

where b depends only on β and δ . In particular,

$$\mathrm{HD}(E) \ge \mathrm{HD}(A) + \inf_{x \in A} \mathrm{HD}\big(\{y \in \mathbf{R} : (x, y) \in E\}\big).$$

Notation. The symbols cl, int and ∂ denote respectively the closure, interior and boundary in the topology of the plane. The euclidean distance is denoted by dist. \overline{AB} is the segment with endpoints A, B and $|\overline{AB}|$ is its length. We write $\mathbf{D}_r(x)$ for the open disc centred at $x \in \mathbf{C}$ of radius r. For $t \in \mathbf{R}$ we denote by [t] the integer part of t, i.e. the largest integer not greater than t.

3. Proof of Theorem 1.1

Let 0 < a < 1, $b \in \mathbf{N}$, $b \ge 2$. By the definition of $F_{a,b}$, we have

$$F_{a,b}(e^{2\pi i t_1}) - F_{a,b}(e^{2\pi i t_2}) = 2i \sum_{n=0}^{\infty} a^n \sin(\pi b^n (t_1 - t_2)) e^{\pi i b^n (t_1 + t_2)}$$

for every $t_1, t_2 \in [0, 1]$. Let

$$z_{n,k} = e^{2\pi i k/b^n}$$
 for $n \ge 0, \ k = 1, \dots, b^n$

and fix $j \in \mathbf{Z}$. Then

$$F_{a,b}(z_{n,k+j}) - F_{a,b}(z_{n,k}) = 2i \sum_{l=0}^{n-1} a^l \sin(\pi j/b^{n-l}) e^{\pi i(2k+j)/b^{n-l}}$$
$$= 2ia^n \sum_{m=1}^n a^{-m} \sin(\pi j/b^m) e^{\pi i(2k+j)/b^m}$$
$$= 2ia^n \sum_{m=1}^n u_m^{(j)}(a,b) \zeta_{m,k}^{(j)}(b),$$

where

$$u_m^{(j)}(a,b) = a^{-m} \sin(\pi j/b^m), \qquad \zeta_{m,k}^{(j)}(b) = e^{\pi i(2k+j)/b^m}$$

Note that $u_m^{(j)}(a,b) \in \mathbf{R}, \ \zeta_{m,k}^{(j)}(b) \in \mathbf{S}^1$. Moreover,

$$z_{n,k} = z_{n+n_0,b^{n_0}k}$$

and

$$\zeta_{m,b^{n_0}k}^{(j)}(b) = e^{\pi i (2b^{n_0}k+j)/b^m} = e^{\pi i j/b^m} e^{2\pi i k b^{n_0-m}}$$

for every $n_0 \ge 0$. Thus,

$$\zeta_{m,b^{n_0}k}^{(j)}(b) = e^{\pi i j/b^m} \qquad \text{for } m \le n_0$$

and

$$F_{a,b}(z_{n+n_{0},b^{n_{0}}k+j}) - F_{a,b}(z_{n,k}) = 2ia^{n+n_{0}} \sum_{m=1}^{n+n_{0}} u_{m}^{(j)}(a,b)\zeta_{m,b^{n_{0}}k}^{(j)}(b)$$

$$= 2ia^{n+n_{0}} \sum_{m=1}^{n_{0}} u_{m}^{(j)}(a,b)e^{\pi i j/b^{m}} + 2ia^{n+n_{0}} \sum_{m=n_{0}+1}^{n+n_{0}} u_{m}^{(j)}(a,b)\zeta_{m,b^{n_{0}}k}^{(j)}(b)$$

$$= 2ia^{n+n_{0}} \left(\sum_{m=1}^{\infty} u_{m}^{(j)}(a,b)e^{\pi i j/b^{m}} - \sum_{m=n_{0}+1}^{\infty} u_{m}^{(j)}(a,b)e^{\pi i j/b^{m}} + \sum_{m=n_{0}+1}^{n+n_{0}} u_{m}^{(j)}(a,b)\zeta_{m,b^{n_{0}}k}^{(j)}\right)$$

$$= 2ia^{n+n_{0}} \left(U^{(j)}(a,b)+\Delta_{n,k,n_{0}}^{(j)}(a,b)\right),$$

where

$$U^{(j)}(a,b) = \sum_{m=1}^{\infty} u_m^{(j)}(a,b) e^{\pi i j/b^m}.$$

Note that

(2)
$$|\Delta_{n,k,n_0}^{(j)}(a,b)| \le 2\sum_{m=n_0+1}^{\infty} |u_m^{(j)}(a,b)| \le 2\pi j \sum_{m=n_0+1}^{\infty} (ab)^{-m} = \frac{2\pi j}{ab-1} (ab)^{-n_0}.$$

Let

$$U^{(j)}(b) = \sum_{m=1}^{\infty} \sin(\pi j/b^m) e^{\pi i j/b^m}.$$

Lemma 3.1. For every $b \in \mathbf{N}$, $b \ge 2$, there exists an integer j_0 such that (1) $U^{(j_0)}(b), U^{(-j_0)}(b) \ne 0$ and $\operatorname{Arg}(U^{(j_0)}(b)) \ne \operatorname{Arg}(U^{(-j_0)}(b))$,

(2) if b tends to ∞ , then $U^{(\pm j_0)}(b)$ tend respectively to $U^{(\pm j_0)} \neq 0$ such that $\operatorname{Arg}(U^{(j_0)}) \neq \operatorname{Arg}(U^{(-j_0)})$.

Proof. By definition,

$$\operatorname{Re}(U^{(j)}(b)) = \frac{1}{2} \sum_{m=1}^{\infty} \sin(2\pi j/b^m), \qquad \operatorname{Im}(U^{(j)}(b)) = \sum_{m=1}^{\infty} \sin^2(\pi j/b^m).$$

Note that for every $j \neq 0$ we have $\operatorname{Im}(U^{(j)}(b)) > 0$, so $U^{(j)}(b) \neq 0$ and $\operatorname{Arg}(U^{(j)}(b)) \in (0,\pi)$. Moreover,

$$\operatorname{Re}(U^{(-j)}(b)) = -\operatorname{Re}(U^{(j)}(b)), \qquad \operatorname{Im}(U^{(-j)}(b)) = \operatorname{Im}(U^{(j)}(b)),$$

so $\operatorname{Arg}(U^{(j)}(b)) \neq \operatorname{Arg}(U^{(-j)}(b))$ if and only if $\operatorname{Re}(U^{(j)}(b)) \neq 0$. Let

$$j_0 = \begin{cases} 1 & \text{for } b < 4, \\ \left[\frac{1}{4}b\right] & \text{for } b \ge 4. \end{cases}$$

Then $0 < 2\pi j_0/b^m \le \pi$ for all $b \ge 2$, $m \ge 1$ and the equality holds only if b = 2, m = 1. This implies $\operatorname{Re}(U^{(j_0)}(b)) > 0$, so $\operatorname{Arg}(U^{(j_0)}(b)) \ne \operatorname{Arg}(U^{(-j_0)}(b))$.

Note that

(3)
$$0 < j_0 \le \frac{1}{2}b.$$

Using this, we obtain

$$|U^{(\pm j_0)}(b) - \sin(\pm \pi j_0/b)e^{\pm \pi i j_0/b}| \le \sum_{m=2}^{\infty} \frac{\pi j_0}{b^m} = \frac{\pi j_0}{b(b-1)} \le \frac{\pi}{2(b-1)},$$

which tends to 0 as b tends to ∞ , so $U^{(\pm j_0)}(b)$ tends to

$$U^{(\pm j_0)} = \lim_{b \to \infty} \sin(\pm \pi \left[\frac{1}{4}b\right]/b) e^{\pm \pi i [b/4]/b} = \frac{1}{2}(\pm 1 + i)$$

Lemma 3.2. Let $j_0 = j_0(b)$ be the number defined in the proof of Lemma 3.1. If a tends to 1, then $U^{(\pm j_0)}(a, b)$ tend respectively to $U^{(\pm j_0)}(b)$ uniformly with respect to $b \ge 2$. Proof. Recall that

$$u_m^{(\pm j_0)}(a,b) = a^{-m} \sin(\pm \pi j_0/b^m) \underset{a \to 1}{\longrightarrow} \pm \sin(\pi j_0/b^m),$$

so it is sufficient to show that the series

$$\sum_{m=1}^{\infty} u_m^{(\pm j_0)}(a,b) e^{\pm \pi i j_0/b^m}$$

are convergent uniformly with respect to $b \ge 2$ and $a \in [a_1, 1)$ for some $a_1 < 1$. To check this, it is enough to notice that by (3), we have

$$|u_m^{(\pm j_0)}(a,b)e^{\pm \pi i j_0/b^m}| = a^{-m} \sin\left(\frac{\pi j_0}{b^m}\right) \le \frac{\pi}{2a} (ab)^{1-m} \le \pi \left(\frac{2}{3}\right)^m$$

for every $a \in \left[\frac{3}{4}, 1\right)$.

The proof of Theorem 1.1 is based on the following elementary planar geometric property.

Lemma 3.3. Let A, B, C be three non-collinear points in the plane. Then there exist a point P in the interior of the triangle ABC and constants $\varepsilon, c > 0$, such that for every q < 1 sufficiently close to 1 there exists r > c/(1-q) such that

$$\mathbf{D}_r(P) \subset \mathbf{D}_{qr}(\tilde{A}) \cup \mathbf{D}_{qr}(\tilde{B}) \cup \mathbf{D}_{qr}(\tilde{C})$$

for every $\tilde{A} \in \mathbf{D}_{\varepsilon}(A), \ \tilde{B} \in \mathbf{D}_{\varepsilon}(B), \ \tilde{C} \in \mathbf{D}_{\varepsilon}(C).$

Proof. Let P be the unique point in the interior of the triangle ABC, such that $\angle APB = \angle BPC = \angle CPA = \frac{2}{3}\pi$. For Z = A, B, C denote by S_Z the closed angle of measure $\frac{2}{3}\pi$ and vertex P, symmetric with respect to the line PZ and containing Z. Then

(4)
$$\mathbf{D}_r(P) = \left(\mathbf{D}_r(P) \cap S_A\right) \cup \left(\mathbf{D}_r(P) \cap S_B\right) \cup \left(\mathbf{D}_r(P) \cap S_C\right).$$

Take $r > |\overline{AP}|$. Let Q, Q' be the two points in $\partial \mathbf{D}_r(P)$, such that $\angle APQ = \angle APQ' = \frac{1}{3}\pi$ and let R be the point of intersection of the line AP with $\partial \mathbf{D}_r(P) \cap S_A$ (see Figure 2).

Then

(5)
$$\max\left\{\operatorname{dist}(A,Z): Z \in \partial\left(\mathbf{D}_r(P) \cap S_A\right)\right\} = |\overline{AQ}|.$$

To see this, observe that $\max\{\operatorname{dist}(A, Z) : Z \in \overline{PQ}\}\$ is achieved for $Z \in \{P, Q\}$. Moreover, it is easy to check that $\operatorname{dist}(A, Z)$ decreases as Z goes along

Figure 2. The set $\mathbf{D}_r(P) \cap S_A$.

 $\partial \mathbf{D}_r(P) \cap S_A$ from Q to R. Since $\measuredangle PQA < \frac{1}{3}\pi = \measuredangle APQ$, we have $|\overline{AQ}| > |\overline{AP}|$. This shows (5). By (5) and the triangle inequality, if

(6)
$$qr > |\overline{AQ}| + \varepsilon,$$

then

$$\mathbf{D}_r(P) \cap S_A \subset \mathbf{D}_{qr}(A)$$

for every $\tilde{A} \in \mathbf{D}_{\varepsilon}(A)$. Since

$$|\overline{AQ}| = \sqrt{r^2 - |\overline{AP}|r + |\overline{AP}|^2},$$

the condition (6) is equivalent to

(7)
$$(1-q^2)r^2 - (|\overline{AP}| - 2\varepsilon q)r + |\overline{AP}|^2 - \varepsilon^2 < 0.$$

Solving the quadratic inequality, it is easy to check that if $\varepsilon > 0$ is sufficiently small and q is sufficiently close to 1, then (7) holds for $r \in [c'_A/(1-q), c_A/(1-q)]$, where $c_A > 0$ depends only on $|\overline{AP}|$ and $c'_A > 0$ is arbitrarily small if ε and 1-q are sufficiently small. Replacing A by B and C and repeating the above arguments, we obtain by (4)

$$\mathbf{D}_r(P) \subset \mathbf{D}_{qr}(\tilde{A}) \cup \mathbf{D}_{qr}(\tilde{B}) \cup \mathbf{D}_{qr}(\tilde{C})$$

for every $\tilde{A} \in \mathbf{D}_{\varepsilon}(A), \ \tilde{B} \in \mathbf{D}_{\varepsilon}(B), \ \tilde{C} \in \mathbf{D}_{\varepsilon}(C)$ and

$$r \in \left[\max(c'_A, c'_B, c'_C)/(1-q), \min(c_A, c_B, c_C)/(1-q)\right]$$

(if ε is sufficiently small and q is sufficiently close to 1). Hence, the lemma holds for $c = \min(c_A, c_B, c_C)/2$ and r = 2c/(1-q).

Krzysztof Barański

Now we can prove the main lemma which is used in the proof of Theorem 1.1.

Lemma 3.4. There exist $a_0 < 1$, $n_0 > 0$ and c > 0, such that for every $a \in [a_0, 1)$ and every $b \in \mathbf{N}$, $b \ge 2$ there exist $z_0 \in \mathbf{C}$ and $\rho > c/(1-a)$, such that for every $n \ge 0$ and $k \in \{1, \ldots, b^n\}$,

$$\mathbf{D}_{\varrho a^{n}} \left(F_{a,b}(z_{n,k}) + z_{0} a^{n} \right) \subset \bigcup_{l=b^{n_{0}}(k-1)}^{b^{n_{0}}(k+1)} \mathbf{D}_{\varrho a^{n+n_{0}}} \left(F_{a,b}(z_{n+n_{0},l}) \right).$$

Proof. Let j_0 be the number defined in the proof of Lemma 3.1. Take $b \ge 2$ and define $A, B, C \in \mathbf{C}$ setting

$$A = 0,$$
 $B = U^{(j_0)}(b),$ $C = U^{(-j_0)}(b).$

By Lemma 3.1, the points A, B, C are not collinear. For a < 1, $n \ge 0$, $k \in \{1, \ldots, b^n\}$ and $n_0 > 0$ let

$$\begin{split} \vec{A} &= 0, \\ \widetilde{B} &= a^{n_0} \left(U^{(j_0)}(a, b) + \Delta^{(j_0)}_{n,k,n_0}(a, b) \right), \\ \widetilde{C} &= a^{n_0} \left(U^{(-j_0)}(a, b) + \Delta^{(-j_0)}_{n,k,n_0}(a, b) \right). \end{split}$$

Take a small $\varepsilon > 0$. By (2) and (3) we obtain

$$a^{n_0}|\Delta_{n,k,n_0}^{(\pm j_0)}(a,b)| < \pi \frac{1}{a-1/b}(ab)^{-n_0} \le 4\pi \left(\frac{2}{3}\right)^{n_0}$$

for every $a \in \left[\frac{3}{4}, 1\right)$, every $b \ge 2$, every n_0 and every k. Fix n_0 such that

$$4\pi \left(\frac{2}{3}\right)^{n_0} < \frac{1}{3}\varepsilon.$$

By Lemma 3.2, there exists $\frac{3}{4} < \tilde{a}_0 < 1$ such that for every $a \in [\tilde{a}_0, 1)$ and every $b \ge 2$,

(8)
$$|a^{n_0}U^{(\pm j_0)}(a,b) - U^{(\pm j_0)}(b)| < \frac{1}{3}\varepsilon.$$

This implies $|\tilde{B} - B|, |\tilde{C} - C| < \varepsilon$. Apply Lemma 3.3 for the points $A, B, C, \tilde{A}, \tilde{B}, \tilde{C}$. By this lemma, there exist a point $P \in \mathbb{C}$ and constants $c_b > 0, q_0 < 1$ (depending only on b), such that for every $q \in [q_0, 1)$ there exists $r > c_b/(1 - q)$ such that

(9)
$$\mathbf{D}_{r}(P) \subset \mathbf{D}_{qr}(\tilde{A}) \cup \mathbf{D}_{qr}(\tilde{B}) \cup \mathbf{D}_{qr}(\tilde{C})$$

Take $a_0(b) < 1$ such that $a_0(b) > \tilde{a}_0$ and $(a_0(b))^{n_0} > q_0$. Let

$$z_0 = 2iP.$$

Take $a \in [a_0(b), 1)$ and $q = a^{n_0}$. Then $q \ge (a_0(b))^{n_0} > q_0$, so by (9) and (1), we have $\mathbf{D}_r(z_0/(2i)) \subset \mathbf{D}_{ra^{n_0}}(0)$

$$\cup \mathbf{D}_{ra^{n_0}} \left(\frac{F_{a,b}(z_{n+n_0,b^{n_0}k+j_0}) - F_{a,b}(z_{n,k})}{2ia^n} \right) \\ \cup \mathbf{D}_{ra^{n_0}} \left(\frac{F_{a,b}(z_{n+n_0,b^{n_0}k-j_0}) - F_{a,b}(z_{n,k})}{2ia^n} \right),$$

where

(10)
$$r > \frac{c_b}{1 - a^{n_0}} > \frac{c_b}{n_0(1 - a)}.$$

Multiplying by $2ia^n$ and adding $F_{a,b}(z_{n,k})$ we obtain

(11)

$$\mathbf{D}_{2ra^{n}}(F_{a,b}(z_{n,k}) + z_{0}a^{n}) \subset \mathbf{D}_{2ra^{n+n_{0}}}(F_{a,b}(z_{n,k})) \\
\cup \mathbf{D}_{2ra^{n+n_{0}}}(F_{a,b}(z_{n+n_{0},b^{n_{0}}k+j_{0}})) \\
\cup \mathbf{D}_{2ra^{n+n_{0}}}(F_{a,b}(z_{n+n_{0},b^{n_{0}}k-j_{0}}))$$

In this way we have proved the lemma with a_0 , c and r depending on b. To get the independence of b, let

$$A = 0,$$
 $B = U^{(j_0)},$ $C = U^{(-j_0)}$

and define \tilde{A} , \tilde{B} , \tilde{C} , n_0 and \tilde{a}_0 as previously. Note that by Lemma 3.1, for given $\varepsilon > 0$ there exists b_0 such that for $b > b_0$ we have

$$|U^{(\pm j_0)}(b) - U^{(\pm j_0)}| < \frac{1}{3}\varepsilon.$$

Using this together with (8), we have

$$|a^{n_0}U^{(\pm j_0)}(a,b) - U^{(\pm j_0)}| < \frac{2}{3}\varepsilon$$

for $a \in [\tilde{a}_0, 1)$ and $b > b_0$. Repeating the previous arguments, we show that there exist $a_0(\infty) < 1$, $c_{\infty} > 0$, $z_0 \in \mathbf{C}$ and r > 0 such that

(12)
$$r > \frac{c_{\infty}}{n_0(1-a)}$$

and (11) holds for every $a \in [a_0(\infty), 1)$ and every $b > b_0$.

Define

$$a_0 = \max(a_0(2), \dots, a_0(b_0), a_0(\infty)), \qquad c = \frac{\min(c_2, \dots, c_{b_0}, c_\infty)}{2n_0}.$$

Take $a \in [a_0, 1), b \ge 2$ and let $\rho = 2r$ for r from (11). Then by (10) and (12) we have $\rho > c/(1-a)$ and

$$\begin{aligned} \mathbf{D}_{\varrho a^{n}}(F_{a,b}(z_{n,k})+z_{0}a^{n}) &\subset \mathbf{D}_{\varrho a^{n+n_{0}}}\left(F_{a,b}(z_{n,k})\right) \\ &\cup \mathbf{D}_{\varrho a^{n+n_{0}}}\left(F_{a,b}(z_{n+n_{0},b^{n_{0}}k+j_{0}})\right) \\ &\cup \mathbf{D}_{\varrho a^{n+n_{0}}}\left(F_{a,b}(z_{n+n_{0},b^{n_{0}}k-j_{0}})\right). \end{aligned}$$

By (3), this implies

$$\mathbf{D}_{\varrho a^{n}} \left(F_{a,b}(z_{n,k}) + z_{0} a^{n} \right) \subset \bigcup_{l=b^{n_{0}}(k-1)}^{b^{n_{0}}(k+1)} \mathbf{D}_{\varrho a^{n+n_{0}}} \left(F_{a,b}(z_{n+n_{0},l}) \right). \square$$

Remark. In fact, the symmetry between B and C gives $z_0 \in \mathbf{R}$, $z_0 < 0$. Proof of Theorem 1.1. Let

$$A_n(\varrho, p, q) = \bigcup_{l=p}^q \mathbf{D}_{\varrho a^n}(F_{a,b}(z_{n,l})).$$

Take $n \ge 0, k \in \{1, \dots, b^n\}$ and m > 0. Applying Lemma 3.4 a number of times we obtain

$$\begin{aligned} \mathbf{D}_{\varrho a^{n}} \left(F_{a,b}(z_{n,k}) + z_{0}a^{n} \right) &\subset A_{n+n_{0}}(\varrho, b^{n_{0}}k - b^{n_{0}}, b^{n_{0}}k + b^{n_{0}}), \\ \mathbf{D}_{\varrho a^{n}} \left(F_{a,b}(z_{n,k}) + z_{0}a^{n} + z_{0}a^{n+n_{0}} \right) \\ &\subset A_{n+2n_{0}}(\varrho, b^{2n_{0}}k - b^{2n_{0}} - b^{n_{0}}, b^{2n_{0}}k + b^{2n_{0}} + b^{n_{0}}), \\ & \cdots \\ \mathbf{D}_{\varrho a^{n}} \left(F_{a,b}(z_{n,k}) + z_{0}a^{n} \frac{1 - a^{mn_{0}}}{1 - a^{n_{0}}} \right) \\ &\subset A_{n+mn_{0}} \left(\varrho, b^{mn_{0}}k - b^{n_{0}} \frac{b^{mn_{0}} - 1}{b^{n_{0}} - 1}, b^{mn_{0}}k + b^{n_{0}} \frac{b^{mn_{0}} - 1}{b^{n_{0}} - 1} \right) \\ &\subset A_{n+mn_{0}} \left(\varrho, b^{mn_{0}}(k-2), b^{mn_{0}}(k+2) \right) \end{aligned}$$

for every $a \in [a_0, 1), b \ge 2$ and suitable $z_0 \in \mathbf{C}, \ \rho > c/(1-a)$. Hence,

$$\mathbf{D}_{\varrho a^n/2} \left(F_{a,b}(z_{n,k}) + \frac{z_0 a^n}{1 - a^{n_0}} \right) \subset \bigcap_{m=m_0}^{\infty} A_{n+mn_0} \left(\varrho, b^{mn_0}(k-2), b^{mn_0}(k+2) \right)$$

336

for sufficiently large m_0 . This means

$$\mathbf{D}_{\varrho a^{n}/2} \bigg(F_{a,b}(z_{n,k}) + \frac{z_{0}a^{n}}{1 - a^{n_{0}}} \bigg) \subset \bigcap_{m=m_{0}}^{\infty} \bigcup_{t \in [(k-2)/b^{n}, (k+2)/b^{n}]} \mathbf{D}_{\varrho a^{mn_{0}}} \big(F_{a,b}(e^{2\pi i t}) \big).$$

By the compactness of $F_{a,b}(\mathbf{S}^1)$, we have

(13)
$$\mathbf{D}_{\varrho a^n/2} \left(F_{a,b}(z_{n,k}) + \frac{z_0 a^n}{1 - a^{n_0}} \right) \subset F_{a,b} \left(\left\{ e^{2\pi i t} : t \in \left[(k-2)/b^n, (k+2)/b^n \right] \right\} \right),$$

which easily implies both parts of the theorem. \square

4. Corollaries

Corollary 4.1. For every $a \in [a_0, 1)$ and every $b \in \mathbf{N}$, $b \ge 2$,

$$\underline{BD}(graph(X_{a,b}, Y_{a,b})) = \overline{BD}(graph(X_{a,b}, Y_{a,b})) = 3 - 2\alpha.$$

Moreover, $\mathscr{H}^2(\operatorname{graph}(X_{a,b}, Y_{a,b})) > 0$, so $\operatorname{HD}(\operatorname{graph}(X_{a,b}, Y_{a,b})) \geq 2$.

Proof. Consider the first part of the corollary. Since the map $(X_{a,b}, Y_{a,b})$ is Hölder continuous with exponent α , we have by Lemma 2.2,

$$\overline{\mathrm{BD}}(\mathrm{graph}(X_{a,b}, Y_{a,b})) \le 3 - 2\alpha$$

so it is sufficient to show the opposite inequality. Take $\varepsilon > 0$. Let n be the maximal number for which $2\pi/b^n > \varepsilon$ and let

$$I_k = \left[\frac{2\pi 2k}{b^n}, \frac{2\pi (2k+1)}{b^n}\right]$$
 for $k = 0, \dots, \left[\frac{b^n}{2} - 1\right].$

Then $|I_k| > \varepsilon$ and $\operatorname{dist}(I_{k_1}, I_{k_2}) > \varepsilon$ for $k_1 \neq k_2$. By (13), the set $(X_{a,b}, Y_{a,b})(I_k)$ contains a disc of diameter ca^n for a constant c > 0 independent of k, n. Hence, to cover $\operatorname{graph}(X_{a,b}, Y_{a,b})|_{I_k}$ we need at least $c^2 a^{2n} \varepsilon^{-2}$ balls of diameter ε with non-empty intersections with $\operatorname{graph}(X_{a,b}, Y_{a,b})|_{I_k}$. Since for $k_1 \neq k_2$ we have $\operatorname{dist}(I_{k_1}, I_{k_2}) > \varepsilon$, such balls for k_1 and k_2 are disjoint. Hence,

$$N_{\varepsilon}(\operatorname{graph}(X_{a,b}, Y_{a,b})) \ge c_1 a^{2n} \varepsilon^{-3} = c_1 b^{-2\alpha n} \varepsilon^{-3} \ge c_2 \varepsilon^{2\alpha - 3}$$

for some constants $c_1, c_2 > 0$. This implies $\underline{BD}(graph(X_{a,b}, Y_{a,b})) \geq 3 - 2\alpha$.

To prove the second part, note that $F_{a,b}(\mathbf{S}^1)$ is the orthogonal projection of graph $(X_{a,b}, Y_{a,b})$. Since the projection is a Lipschitz map, it is enough to use Theorem 1.1 and Lemma 2.2 for $\beta = 1$.

The next corollary shows that for the functions $X_{a,b}$, $Y_{a,b}$ we can improve the general estimates from Lemma 2.2.

Corollary 4.2. For every $a \in [a_0, 1)$ and every $b \in \mathbf{N}$, $b \geq 2$ there exist $U_{X_{a,b}}, U_{Y_{a,b}} \subset \mathbf{R}$, such that $U_{X_{a,b}}$ (or $U_{Y_{a,b}}$) is open and dense in $X_{a,b}([0, 2\pi])$ (or $Y_{a,b}([0, 2\pi])$) and for every $\delta > 0$,

if
$$\mathscr{H}^{\delta}(A) > 0$$
, then $\mathscr{H}^{\alpha(\delta+1)}(X_{a,b}^{-1}(A)) > 0$ for every set $A \subset U_{X_{a,b}}$,
if $\mathscr{H}^{\delta}(A) > 0$, then $\mathscr{H}^{\alpha(\delta+1)}(Y_{a,b}^{-1}(A)) > 0$ for every set $A \subset U_{Y_{a,b}}$.

In particular,

$$\operatorname{HD}(X_{a,b}^{-1}(A)) \ge \alpha (\operatorname{HD}(A) + 1) \quad \text{for every set } A \subset U_{X_{a,b}},$$

$$\operatorname{HD}(Y_{a,b}^{-1}(A)) \ge \alpha (\operatorname{HD}(A) + 1) \quad \text{for every set } A \subset U_{Y_{a,b}}.$$

Proof. Let $U_{X_{a,b}}$ (or $U_{Y_{a,b}}$) be the orthogonal projection of $\operatorname{int} F_{a,b}(\mathbf{S}^1)$ on the real (or imaginary) axis. By Theorem 1.1, $U_{X_{a,b}}$ (or $U_{Y_{a,b}}$) is open and dense in $X_{a,b}([0,2\pi])$ (or $Y_{a,b}([0,2\pi])$). Take $A \subset U_{X_{a,b}}$ such that $\mathscr{H}^{\delta}(A) > 0$. By definition, for every $s \in A$ the set

$$({s} \times \mathbf{R}) \cap (X_{a,b}, Y_{a,b})([0, 2\pi])$$

contains a non-trivial interval. Hence, by Theorem 2.3, we have

$$\mathscr{H}^{\delta+1}\big((A \times \mathbf{R}\big) \cap (X_{a,b}, Y_{a,b})\big([0, 2\pi])\big) > 0$$

Since the map $(X_{a,b}, Y_{a,b})$ is Hölder with exponent α , we have by Lemma 2.2,

$$\mathscr{H}^{\alpha(\delta+1)}\big((X_{a,b})^{-1}(A)\big) = \mathscr{H}^{\alpha(\delta+1)}\big((X_{a,b},Y_{a,b})^{-1}(A\times\mathbf{R})\big) > 0.$$

The case $A \subset U_{Y_{a,b}}$ is symmetric.

Taking $A = \{s\}$ in Corollary 4.2, we obtain the following result on level sets $L_{X_{a,b}}(s), L_{Y_{a,b}}(s)$.

Corollary 4.3. For every $a \in [a_0, 1)$ and every $b \in \mathbf{N}$, $b \ge 2$,

$$\mathscr{H}^{\alpha}(L_{X_{a,b}}(s)) > 0 \quad \text{for every } s \in U_{X_{a,b}},$$
$$\mathscr{H}^{\alpha}(L_{Y_{a,b}}(s)) > 0 \quad \text{for every } s \in U_{Y_{a,b}}.$$

In particular,

$$\text{HD}(L_{X_{a,b}}(s)) \ge \alpha \quad \text{for every } s \in U_{X_{a,b}}, \\ \text{HD}(L_{Y_{a,b}}(s)) \ge \alpha \quad \text{for every } s \in U_{Y_{a,b}}.$$

Moreover,

$$\operatorname{int}_{\mathbf{R}}(Y_{a,b}(L_{X_{a,b}}(s))) \neq \emptyset \quad \text{for every } s \in U_{X_{a,b}},$$
$$\operatorname{int}_{\mathbf{R}}(X_{a,b}(L_{Y_{a,b}}(s))) \neq \emptyset \quad \text{for every } s \in U_{Y_{a,b}}.$$

By Corollary 4.3 and Theorem 2.3, we get

Corollary 4.4. For every $a \in [a_0, 1)$ and every $b \in \mathbf{N}$, $b \ge 2$,

 $\mathscr{H}^{1+\alpha}(\operatorname{graph} X_{a,b}), \mathscr{H}^{1+\alpha}(\operatorname{graph} Y_{a,b}) > 0.$

In particular, $\operatorname{HD}(\operatorname{graph} X_{a,b}), \operatorname{HD}(\operatorname{graph} Y_{a,b}) \ge 1 + \alpha$.

References

- [AP] ANDERSON, J.M., and L.D. PITT: Probabilistic behaviour of functions in the Zygmund spaces Λ^* and λ^* . Proc. London Math. Soc. (3) 59, 1989, 558–592.
- [BU] BESICOVITCH, A.S., and H.D. URSELL: Set of fractional dimensions (V): On dimensional numbers of some continuous curves. J. London Math. Soc. (2) 32, 1937, 142–153.
- [F] FALCONER, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley & Sons, 1990.
- [Ha] HARDY, G.H.: Weierstrass's non-differentiable function. Trans. Amer. Math. Soc. 17, 1916, 301–325.
- [Hu] HUNT, B.R.: Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126, 1998, 791–800.
- [KMY] KAPLAN, J.L., J. MALLET-PARET, and J.A. YORKE: The Lyapunov dimension of a nowhere differentiable attracting torus. - Ergodic Theory Dynam. Systems 4, 1984, 261–281.
- [K] KÔNO, N.: On self-affine functions. Japan J. Appl. Math. 3, 1986, 259–269.
- [L] LEDRAPPIER, F.: On the dimension of some graphs. Contemp. Math. 135, 1992, 285–293.
- [MW] MAULDIN, R.D., and S.C. WILLIAMS: On the Hausdorff dimension of some graphs. -Trans. Amer. Math. Soc. 298, 1986, 793–804.
- [PU] PRZYTYCKI, F., and M. URBAŃSKI: On the Hausdorff dimension of some fractal sets. -Studia Math. 93, 1989, 155–186.
- [R] REZAKHANLOU, F.: The packing measure of the graphs and level sets of certain continuous functions. - Math. Proc. Cambridge Philos. Soc. 104, 1988, 347–360.
- [S] SOLOMYAK, B.: On the random series $\sum \pm \lambda^n$ (an Erdős problem). Ann. Math. 142, 1995, 611–625.

Received 16 July 2001