
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 27, 2002, 325–339

ON THE COMPLEXIFICATION OF THE

WEIERSTRASS NON-DIFFERENTIABLE FUNCTION

Krzysztof Barański
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Abstract. It is shown that for the Weierstrass nowhere differentiable functions Xa,b(t) =∑∞
n=0 a

n cos(bnt) and Ya,b(t) =
∑∞
n=0 a

n sin(bnt) the set (Xa,b, Ya,b)([0, 2π]) has a non-empty
interior in R2 , provided b ∈ N , b ≥ 2 and a < 1 is sufficiently close to 1 . It follows that the
box dimension of graph(Xa,b, Ya,b) is equal to 3− 2α where α = − log a/ log b and its Hausdorff
dimension is at least 2 . Moreover, the level sets L(s) for Xa,b and Ya,b have Hausdorff dimension
at least α for open sets of s ∈ R , so the Hausdorff dimension of graphXa,b and graphYa,b is at
least 1 + α .

1. Introduction

This paper concerns the famous functions

Xa,b(t) =

∞∑

n=0

an cos(bnt), Ya,b(t) =

∞∑

n=0

an sin(bnt)

for t ∈ [0, 2π] and 0 < a < 1, b > 1, ab ≥ 1. The first one was introduced by
Weierstrass in 1872 as an example of a continuous, nowhere differentiable function.
In fact, the non-differentiability for all given above parameters a , b was proved
by Hardy in [Ha]. Later, the graphs of these and related functions were studied
as fractal curves. A basic question which arises in this context is computing the
Hausdorff dimension (HD) of these curves. However, this problem is still unsolved
for the classical functions Xa,b and Ya,b .

For ab = 1, the graphs of Xa,b and Ya,b have Hausdorff dimension 1 and σ -
finite 1-dimensional Hausdorff measure, as was proved by Mauldin and Williams
in [MW]. For ab > 1, it is easy to check that the functions Xa,b and Ya,b are
Hölder continuous with exponent α for

α = − log a

log b
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(i.e. a = b−α ). Consequently, the box dimension (BD) of their graphs is at most
2 − α (see Lemma 2.2). In fact, it is equal to 2 − α , as was proved in [KMY].
Hence, HD(graphXa,b) , HD(graphYa,b) cannot exceed 2 − α . Moreover, the
packing dimension of these graphs is 2− α (see [R]).

It is believed that the Hausdorff dimension of these graphs should also be
equal to 2− α . Note that

Xa,b(t) = aXa,b(bt) + cos t, Ya,b(t) = aYa,b(bt) + sin t,

which means that the graphs are roughly self-similar for the scaling with horizontal
factor b and vertical factor a .

The difficulties lie in the lower estimates of the Hausdorff dimension. There
are not too many results in this direction. Mauldin and Williams in [MW] gave
the lower bound of the form 2 − α − C/ log b for a constant C > 0 independent
of b , which approaches the upper bound as b → ∞ . Przytycki and Urbański
proved in [PU] that the Hausdorff dimension of graphXa,b , graphYa,b is greater
than 1 for b ∈ N , b ≥ 2. In [Hu], Hunt showed that the Hausdorff dimension of
the graph of the function

∞∑

n=0

an cos(bnt+ θn)

with θn chosen independently with respect to the uniform probability measure on
[0, 2π] , is almost surely equal to 2− α .

It turns out that it is easier to consider the problem for the Weierstrass func-
tion with cosine replaced by some other continuous periodic function g: R → R .
For instance, take g(t) = dist(t,Z) (the sawtooth function), which was studied by
Besicovitch and Ursell in [BU]. For a = b , we obtain the van der Waerden–Tagaki
function, which has Hausdorff dimension 1 and σ -finite 1-dimensional Hausdorff
measure. This was proved by Anderson and Pitt in [AP]. Moreover, by the work of
Ledrappier [L], the case b = 2, a > 1

2 can be brought to the case of the Bernoulli
convolutions

∑±an , where the signs are chosen independently with probability
1
2 on [0, 1] . Then the work of Solomyak [S] implies that the Hausdorff dimension
of the graph is 2− α for almost all a ∈

(
1
2 , 1
)

.
Another interesting problem is studying various measures related to these

graphs. For a function f : [t0, t1] → Rm denote by µf the image under f of
the uniform probability measure on [t0, t1] . Little is known about the measures
µXa,b and µYa,b . It is conjectured that the Hausdorff dimension of graphXa,b

(or graphYa,b ) is 2−α if and only if the measure µXa,b (or µYa,b ) is absolutely con-
tinuous with respect to the Lebesgue measure on R . This holds for the Bernoulli
convolutions, as was proved in [PU]. Kôno showed in [K] that if b ∈ N and ab is
sufficiently large and the suitable measure µXa,b or µYa,b has a bounded density
function with respect to the Lebesgue measure, then the Hausdorff dimension of
the graph is 2− α .
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In this paper we consider the complexification of the functions Xa,b and Ya,b ,
i.e.

Fa,b(z) =

∞∑

n=0

anzb
n

, z ∈ C, |z| ≤ 1,

for a ∈ (0, 1) and b ∈ N , b ≥ 2. Then Fa,b is holomorphic in the open unit disc,
continuous in the closed unit disc and

Re
(
Fa,b(e

it)
)

= Xa,b(t), Im
(
Fa,b(e

it)
)

= Ya,b(t).

We prove that if a is sufficiently close to 1, then the image of the unit circle S1

under Fa,b (i.e. the image of the segment [0, 2π] under the map (Xa,b, Ya,b)) is a
curve which has non-empty interior in the topology of the plane. More precisely,
we show

Theorem 1.1. There exist a0 < 1 and c > 0 , such that for every a ∈ [a0, 1)
and every b ∈ N , b ≥ 2 , the set Fa,b(S

1) contains a disc of radius c/(1 − a) .
Moreover, Fa,b(S

1) is the closure of its interior in the topology of the plane.

Figure 1. The curve Fa,2(S1) for a = 0.7 (left) and a = 0.8 (right).

The idea of complexifying the Weierstrass function is not new. In [Ha] Hardy
used its harmonic extension to prove non-differentiability. Our approach, however,
is not analytical but relies on some elementary geometric facts (Lemma 3.3).

Apart from presenting an interesting example of a “plane-filling” curve, Theo-
rem 1.1 has some consequences concerning the graphs of the functions Xa,b , Ya,b .
First, we can compute the exact value of the box dimension of graph(Xa,b, Ya,b)
(as a subset of R3 ), which is equal to 3 − 2α . The Hausdorff dimension of this
graph is at least 2. These results are shown in Corollary 4.1.

For s ∈ R define the level sets of Xa,b , Ya,b as

LXa,b(s) = {t ∈ R : Xa,b(t) = s}, LYa,b(s) = {t ∈ R : Ya,b(t) = s}.

In Corollary 4.3 we show that the Hausdorff dimension of LXa,b(s) and LYa,b(s)
is at least α for some open sets of s ∈ R . This implies (Corollary 4.4) that

HD(graphXa,b),HD(graphYa,b) ≥ 1 + α.
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Theorem 1.1 and the corollaries are true for a close to 1, i.e. for α close
to 0. The functions Xa,b , Ya,b are Hölder continuous with exponent α , so the
map (Xa,b, Ya,b) is also Hölder continuous with the same exponent. This implies
(see Lemma 2.2) that

HD
(
Fa,b(S

1)
)

= HD
(
(Xa,b, Ya,b)([0, 2π])

)
≤ BD

(
(Xa,b, Ya,b)([0, 2π])

)
≤ 3− 2α,

so for α > 1
2 we have HD(Fa,b(S

1)) < 2. In particular, Fa,b(S
1) has 2-dimensional

Lebesgue measure 0, µ(Xa,b,Ya,b) is singular with respect to this measure and
Theorem 1.1 cannot be true. It would be of interest to check whether Theorem 1.1
holds for every α ≤ 1

2 . (See Figure 1, where the left picture shows the curve for
α = 0.5145 . . . and the right one for α = 0.3219 . . . .) The most interesting case is
α = 1

2 . Indeed, we have the following:

Fact. Suppose α = 1
2 and Fa,b(S

1) has positive 2 -dimensional Lebesgue
measure. Then µ(Xa,b,Ya,b) is not singular with respect to this measure and the
measures µXa,b , µYa,b are not singular with respect to 1 -dimensional Lebesgue
measure. Moreover, HD(graphXa,b) = HD(graphYa,b) = 2− α = 3

2 .

Proof. Let Lebm be the m -dimensional Lebesgue measure. By Lemma 2.2, we
have Leb2 |Fa,b(S1) ≤ Cµ(Xa,b,Ya,b) for a constant C . Suppose µ(Xa,b,Ya,b) is singu-
lar with respect to Leb2 and take a set A ⊂ Fa,b(S1) such that µ(Xa,b,Ya,b)(A) = 1
and Leb2(A) = 0. Then

Leb2

(
Fa,b(S

1)
)

= Leb2

(
Fa,b(S

1) \A
)
≤ Cµ(Xa,b,Ya,b)

(
Fa,b(S

1) \A
)

= 0,

which contradicts the assumption. Hence, µ(Xa,b,Ya,b) is not singular with respect
to Leb2 . Since µXa,b , µYa,b are orthogonal projections of µ(Xa,b,Ya,b) on the
coordinate axes, they are not singular with respect to Leb1 . The last part follows
from Corollary 4.4, because 1 + α = 3

2 = 2− α .

2. Preliminaries

We recall some basic definitions and facts concerning the Hausdorff and box
dimension.

Definition 2.1. For A ⊂ Rn and δ > 0 the (outer) δ -Hausdorff measure of
A is defined as

H δ(A) = lim
ε→0

inf
∑

U∈U

(diamU)δ,

where infimum is taken over all countable coverings U of A by open sets of
diameters less than ε .

The Hausdorff dimension of A is defined as

HD(A) = sup{δ > 0 : H δ(A) = +∞} = inf{δ > 0 : H δ(A) = 0}.
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Let Nε(A) be the minimal number of balls of diameter ε needed to cover A .
Define the lower and upper box dimension as

BD(A) = lim inf
ε→0

logNε(A)

− log ε
, BD(A) = lim sup

ε→0

logNε(A)

− log ε
.

The box dimension is also called the box-counting or Minkowski dimension.

It is easy to check that

HD(A) ≤ BD(A).

The definitions of the Hausdorff and box dimension easily imply

Lemma 2.2. Let A ⊂ Rn and let f : A→ Rm be a map such that

‖f(x)− f(y)‖ ≤ c‖x− y‖β

for every x, y ∈ A and constants c > 0 , 0 < β ≤ 1 . Then for every δ > 0 ,

H δ/β
(
f(A)

)
≤ cδ/βH δ(A), so HD

(
f(A)

)
≤ HD(A)/β.

Moreover,
BD(graph f) ≤ BD(A) +m(1− β),

BD(graph f) ≤ BD(A) +m(1− β).

We shall use the following theorem estimating the Hausdorff dimension of a
planar set by the dimensions of its level sets (for the proof see e.g. [F]).

Theorem 2.3. Let E ⊂ R2 and A ⊂ R . Suppose that there exists β > 0 ,
such that if x ∈ A , then H β

(
{y ∈ R : (x, y) ∈ E}

)
> c , for some constant c .

Then for every δ > 0 ,
H δ+β(E) ≥ bcH δ(A),

where b depends only on β and δ . In particular,

HD(E) ≥ HD(A) + inf
x∈A

HD
(
{y ∈ R : (x, y) ∈ E}

)
.

Notation. The symbols cl , int and ∂ denote respectively the closure, interior
and boundary in the topology of the plane. The euclidean distance is denoted
by dist. AB is the segment with endpoints A,B and |AB| is its length. We
write Dr(x) for the open disc centred at x ∈ C of radius r . For t ∈ R we denote
by [t] the integer part of t , i.e. the largest integer not greater than t .
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3. Proof of Theorem 1.1

Let 0 < a < 1, b ∈ N , b ≥ 2. By the definition of Fa,b , we have

Fa,b(e
2πit1)− Fa,b(e2πit2) = 2i

∞∑

n=0

an sin
(
πbn(t1 − t2)

)
eπib

n(t1+t2)

for every t1, t2 ∈ [0, 1] . Let

zn,k = e2πik/bn for n ≥ 0, k = 1, . . . , bn

and fix j ∈ Z . Then

Fa,b(zn,k+j)− Fa,b(zn,k) = 2i

n−1∑

l=0

al sin(πj/bn−l)eπi(2k+j)/bn−l

= 2ian
n∑

m=1

a−m sin(πj/bm)eπi(2k+j)/bm

= 2ian
n∑

m=1

u(j)
m (a, b)ζ

(j)
m,k(b),

where
u(j)
m (a, b) = a−m sin(πj/bm), ζ

(j)
m,k(b) = eπi(2k+j)/bm .

Note that u
(j)
m (a, b) ∈ R , ζ

(j)
m,k(b) ∈ S1 . Moreover,

zn,k = zn+n0,bn0k

and
ζ

(j)
m,bn0k(b) = eπi(2b

n0k+j)/bm = eπij/b
m

e2πikbn0−m

for every n0 ≥ 0. Thus,

ζ
(j)
m,bn0k(b) = eπij/b

m

for m ≤ n0

and

(1)

Fa,b(zn+n0,bn0k+j)− Fa,b(zn,k) = 2ian+n0

n+n0∑

m=1

u(j)
m (a, b)ζ

(j)
m,bn0k(b)

= 2ian+n0

n0∑

m=1

u(j)
m (a, b)eπij/b

m

+ 2ian+n0

n+n0∑

m=n0+1

u(j)
m (a, b)ζ

(j)
m,bn0k(b)

= 2ian+n0

( ∞∑

m=1

u(j)
m (a, b)eπij/b

m −
∞∑

m=n0+1

u(j)
m (a, b)eπij/b

m

+

n+n0∑

m=n0+1

u(j)
m (a, b)ζ

(j)
m,bn0k

)

= 2ian+n0
(
U (j)(a, b) + ∆

(j)
n,k,n0

(a, b)
)
,
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where

U (j)(a, b) =

∞∑

m=1

u(j)
m (a, b)eπij/b

m

.

Note that

(2) |∆(j)
n,k,n0

(a, b)| ≤ 2

∞∑

m=n0+1

|u(j)
m (a, b)| ≤ 2πj

∞∑

m=n0+1

(ab)−m =
2πj

ab− 1
(ab)−n0 .

Let

U (j)(b) =

∞∑

m=1

sin(πj/bm)eπij/b
m

.

Lemma 3.1. For every b ∈ N , b ≥ 2 , there exists an integer j0 such that

(1) U (j0)(b) , U (−j0)(b) 6= 0 and Arg
(
U (j0)(b)

)
6= Arg

(
U (−j0)(b)

)
,

(2) if b tends to ∞ , then U (±j0)(b) tend respectively to U (±j0) 6= 0 such that
Arg

(
U (j0)

)
6= Arg

(
U (−j0)

)
.

Proof. By definition,

Re
(
U (j)(b)

)
=

1

2

∞∑

m=1

sin(2πj/bm), Im
(
U (j)(b)

)
=
∞∑

m=1

sin2(πj/bm).

Note that for every j 6= 0 we have Im
(
U (j)(b)

)
> 0, so U (j)(b) 6= 0 and

Arg
(
U (j)(b)

)
∈ (0, π) . Moreover,

Re
(
U (−j)(b)

)
= −Re

(
U (j)(b)

)
, Im

(
U (−j)(b)

)
= Im

(
U (j)(b)

)
,

so Arg
(
U (j)(b)

)
6= Arg

(
U (−j)(b)

)
if and only if Re

(
U (j)(b)

)
6= 0.

Let

j0 =

{
1 for b < 4,[

1
4b
]

for b ≥ 4.

Then 0 < 2πj0/b
m ≤ π for all b ≥ 2, m ≥ 1 and the equality holds only if b = 2,

m = 1. This implies Re
(
U (j0)(b)

)
> 0, so Arg

(
U (j0)(b)

)
6= Arg

(
U (−j0)(b)

)
.

Note that

(3) 0 < j0 ≤ 1
2b.

Using this, we obtain

|U (±j0)(b)− sin(±πj0/b)e±πij0/b| ≤
∞∑

m=2

πj0
bm

=
πj0

b(b− 1)
≤ π

2(b− 1)
,

which tends to 0 as b tends to ∞ , so U (±j0)(b) tends to

U (±j0) = lim
b→∞

sin
(
±π
[

1
4b
]
/b
)
e±πi[b/4]/b = 1

2 (±1 + i).

Lemma 3.2. Let j0 = j0(b) be the number defined in the proof of Lemma 3.1.
If a tends to 1 , then U (±j0)(a, b) tend respectively to U (±j0)(b) uniformly with
respect to b ≥ 2 .
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Proof. Recall that

u(±j0)
m (a, b) = a−m sin(±πj0/bm)−→

a→1
± sin(πj0/b

m),

so it is sufficient to show that the series

∞∑

m=1

u(±j0)
m (a, b)e±πij0/b

m

are convergent uniformly with respect to b ≥ 2 and a ∈ [a1, 1) for some a1 < 1.
To check this, it is enough to notice that by (3), we have

|u(±j0)
m (a, b)e±πij0/b

m | = a−m sin

(
πj0
bm

)
≤ π

2a
(ab)1−m ≤ π

(
2

3

)m

for every a ∈
[

3
4 , 1
)

.

The proof of Theorem 1.1 is based on the following elementary planar geo-
metric property.

Lemma 3.3. Let A , B , C be three non-collinear points in the plane. Then
there exist a point P in the interior of the triangle ABC and constants ε, c > 0 ,
such that for every q < 1 sufficiently close to 1 there exists r > c/(1 − q) such
that

Dr(P ) ⊂ Dqr(Ã) ∪Dqr(B̃) ∪Dqr(C̃)

for every Ã ∈ Dε(A) , B̃ ∈ Dε(B) , C̃ ∈ Dε(C) .

Proof. Let P be the unique point in the interior of the triangle ABC , such
that ]APB = ]BPC = ]CPA = 2

3π . For Z = A,B,C denote by SZ the closed
angle of measure 2

3π and vertex P , symmetric with respect to the line PZ and
containing Z . Then

(4) Dr(P ) =
(
Dr(P ) ∩ SA

)
∪
(
Dr(P ) ∩ SB

)
∪
(
Dr(P ) ∩ SC

)
.

Take r > |AP | . Let Q , Q′ be the two points in ∂Dr(P ) , such that ]APQ =
]APQ′ = 1

3π and let R be the point of intersection of the line AP with ∂Dr(P )∩
SA (see Figure 2).

Then

(5) max
{

dist(A,Z) : Z ∈ ∂
(
Dr(P ) ∩ SA

)}
= |AQ|.

To see this, observe that max
{

dist(A,Z) : Z ∈ PQ
}

is achieved for Z ∈
{P,Q} . Moreover, it is easy to check that dist(A,Z) decreases as Z goes along
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Q

Q’

A

π/3π/3

r

RP

Figure 2. The set Dr(P ) ∩ SA .

∂Dr(P )∩SA from Q to R . Since ]PQA < 1
3π = ]APQ , we have |AQ| > |AP | .

This shows (5). By (5) and the triangle inequality, if

(6) qr > |AQ|+ ε,

then
Dr(P ) ∩ SA ⊂ Dqr(Ã)

for every Ã ∈ Dε(A) . Since

|AQ| =
√
r2 − |AP |r + |AP |2 ,

the condition (6) is equivalent to

(7) (1− q2)r2 − (|AP | − 2εq)r + |AP |2 − ε2 < 0.

Solving the quadratic inequality, it is easy to check that if ε > 0 is sufficiently small
and q is sufficiently close to 1, then (7) holds for r ∈

[
c′A/(1 − q), cA/(1 − q)

]
,

where cA > 0 depends only on |AP | and c′A > 0 is arbitrarily small if ε and
1 − q are sufficiently small. Replacing A by B and C and repeating the above
arguments, we obtain by (4)

Dr(P ) ⊂ Dqr(Ã) ∪Dqr(B̃) ∪Dqr(C̃)

for every Ã ∈ Dε(A) , B̃ ∈ Dε(B) , C̃ ∈ Dε(C) and

r ∈
[
max(c′A, c

′
B , c
′
C)/(1− q),min(cA, cB , cC)/(1− q)

]

(if ε is sufficiently small and q is sufficiently close to 1). Hence, the lemma holds
for c = min(cA, cB , cC)/2 and r = 2c/(1− q) .
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Now we can prove the main lemma which is used in the proof of Theorem 1.1.

Lemma 3.4. There exist a0 < 1 , n0 > 0 and c > 0 , such that for every
a ∈ [a0, 1) and every b ∈ N , b ≥ 2 there exist z0 ∈ C and % > c/(1 − a) , such
that for every n ≥ 0 and k ∈ {1, . . . , bn} ,

D%an
(
Fa,b(zn,k) + z0a

n
)
⊂

bn0 (k+1)⋃
l=bn0 (k−1)

D%an+n0

(
Fa,b(zn+n0,l)

)
.

Proof. Let j0 be the number defined in the proof of Lemma 3.1. Take b ≥ 2
and define A,B,C ∈ C setting

A = 0, B = U (j0)(b), C = U (−j0)(b).

By Lemma 3.1, the points A , B , C are not collinear. For a < 1, n ≥ 0,
k ∈ {1, . . . , bn} and n0 > 0 let

Ã = 0,

B̃ = an0
(
U (j0)(a, b) + ∆

(j0)
n,k,n0

(a, b)
)
,

C̃ = an0
(
U (−j0)(a, b) + ∆

(−j0)
n,k,n0

(a, b)
)
.

Take a small ε > 0. By (2) and (3) we obtain

an0 |∆(±j0)
n,k,n0

(a, b)| < π
1

a− 1/b
(ab)−n0 ≤ 4π

(
2
3

)n0

for every a ∈
[

3
4 , 1
)

, every b ≥ 2, every n0 and every k . Fix n0 such that

4π
(

2
3

)n0
< 1

3ε.

By Lemma 3.2, there exists 3
4 < ã0 < 1 such that for every a ∈ [ã0, 1) and every

b ≥ 2,

(8) |an0U (±j0)(a, b)− U (±j0)(b)| < 1
3ε.

This implies |B̃−B|, |C̃ −C| < ε . Apply Lemma 3.3 for the points A , B , C , Ã ,

B̃ , C̃ . By this lemma, there exist a point P ∈ C and constants cb > 0, q0 < 1
(depending only on b), such that for every q ∈ [q0, 1) there exists r > cb/(1− q)
such that

(9) Dr(P ) ⊂ Dqr(Ã) ∪Dqr(B̃) ∪Dqr(C̃)
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Take a0(b) < 1 such that a0(b) > ã0 and
(
a0(b)

)n0
> q0 . Let

z0 = 2iP.

Take a ∈
[
a0(b), 1

)
and q = an0 . Then q ≥

(
a0(b)

)n0
> q0 , so by (9) and (1), we

have
Dr(z0/(2i)) ⊂ Dran0 (0)

∪Dran0

(
Fa,b(zn+n0,bn0k+j0)− Fa,b(zn,k)

2ian

)

∪Dran0

(
Fa,b(zn+n0,bn0k−j0)− Fa,b(zn,k)

2ian

)
,

where

(10) r >
cb

1− an0
>

cb
n0(1− a)

.

Multiplying by 2ian and adding Fa,b(zn,k) we obtain

(11)

D2ran(Fa,b(zn,k) + z0a
n) ⊂ D2ran+n0

(
Fa,b(zn,k)

)

∪D2ran+n0

(
Fa,b(zn+n0,bn0k+j0)

)

∪D2ran+n0

(
Fa,b(zn+n0,bn0k−j0)

)
.

In this way we have proved the lemma with a0 , c and r depending on b . To get
the independence of b , let

A = 0, B = U (j0), C = U (−j0)

and define Ã , B̃ , C̃ , n0 and ã0 as previously. Note that by Lemma 3.1, for given
ε > 0 there exists b0 such that for b > b0 we have

|U (±j0)(b)− U (±j0)| < 1
3ε.

Using this together with (8), we have

|an0U (±j0)(a, b)− U (±j0)| < 2
3ε

for a ∈ [ã0, 1) and b > b0 . Repeating the previous arguments, we show that there
exist a0(∞) < 1, c∞ > 0, z0 ∈ C and r > 0 such that

(12) r >
c∞

n0(1− a)

and (11) holds for every a ∈ [a0(∞), 1) and every b > b0 .



336 Krzysztof Barański

Define

a0 = max
(
a0(2), . . . , a0(b0), a0(∞)

)
, c =

min(c2, . . . , cb0 , c∞)

2n0
.

Take a ∈ [a0, 1), b ≥ 2 and let % = 2r for r from (11). Then by (10) and (12) we
have % > c/(1− a) and

D%an(Fa,b(zn,k) + z0a
n) ⊂ D%an+n0

(
Fa,b(zn,k)

)

∪D%an+n0

(
Fa,b(zn+n0,bn0k+j0)

)

∪D%an+n0

(
Fa,b(zn+n0,bn0k−j0)

)
.

By (3), this implies

D%an
(
Fa,b(zn,k) + z0a

n
)
⊂

bn0 (k+1)⋃
l=bn0 (k−1)

D%an+n0

(
Fa,b(zn+n0,l)

)
.

Remark. In fact, the symmetry between B and C gives z0 ∈ R , z0 < 0.

Proof of Theorem 1.1. Let

An(%, p, q) =
q⋃
l=p

D%an(Fa,b(zn,l)).

Take n ≥ 0, k ∈ {1, . . . , bn} and m > 0. Applying Lemma 3.4 a number of times
we obtain

D%an
(
Fa,b(zn,k) + z0a

n
)
⊂ An+n0(%, bn0k − bn0 , bn0k + bn0),

D%an
(
Fa,b(zn,k) + z0a

n + z0a
n+n0

)

⊂ An+2n0(%, b2n0k − b2n0 − bn0 , b2n0k + b2n0 + bn0),

· · ·

D%an

(
Fa,b(zn,k) + z0a

n 1− amn0

1− an0

)

⊂ An+mn0

(
%, bmn0k − bn0

bmn0 − 1

bn0 − 1
, bmn0k + bn0

bmn0 − 1

bn0 − 1

)

⊂ An+mn0

(
%, bmn0(k − 2), bmn0(k + 2)

)

for every a ∈ [a0, 1), b ≥ 2 and suitable z0 ∈ C , % > c/(1− a) . Hence,

D%an/2

(
Fa,b(zn,k) +

z0a
n

1− an0

)
⊂

∞⋂
m=m0

An+mn0

(
%, bmn0(k − 2), bmn0(k + 2)

)
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for sufficiently large m0 . This means

D%an/2

(
Fa,b(zn,k) +

z0a
n

1− an0

)
⊂

∞⋂
m=m0

⋃
t∈[(k−2)/bn,(k+2)/bn]

D%amn0

(
Fa,b(e

2πit)
)
.

By the compactness of Fa,b(S
1) , we have

(13) D%an/2

(
Fa,b(zn,k)+

z0a
n

1− an0

)
⊂ Fa,b

({
e2πit : t ∈

[
(k−2)/bn, (k+2)/bn

]})
,

which easily implies both parts of the theorem.

4. Corollaries

Corollary 4.1. For every a ∈ [a0, 1) and every b ∈ N , b ≥ 2 ,

BD
(
graph(Xa,b, Ya,b)

)
= BD

(
graph(Xa,b, Ya,b)

)
= 3− 2α.

Moreover, H 2
(
graph(Xa,b, Ya,b)

)
> 0 , so HD

(
graph(Xa,b, Ya,b)

)
≥ 2 .

Proof. Consider the first part of the corollary. Since the map (Xa,b, Ya,b) is
Hölder continuous with exponent α , we have by Lemma 2.2,

BD
(
graph(Xa,b, Ya,b)

)
≤ 3− 2α,

so it is sufficient to show the opposite inequality. Take ε > 0. Let n be the
maximal number for which 2π/bn > ε and let

Ik =

[
2π2k

bn
,

2π(2k + 1)

bn

]
for k = 0, . . . ,

[
bn

2
− 1

]
.

Then |Ik| > ε and dist(Ik1 , Ik2) > ε for k1 6= k2 . By (13), the set (Xa,b, Ya,b)(Ik)
contains a disc of diameter can for a constant c > 0 independent of k , n . Hence,
to cover graph(Xa,b, Ya,b)|Ik we need at least c2a2nε−2 balls of diameter ε with
non-empty intersections with graph(Xa,b, Ya,b)|Ik . Since for k1 6= k2 we have
dist(Ik1 , Ik2) > ε , such balls for k1 and k2 are disjoint. Hence,

Nε
(
graph(Xa,b, Ya,b)

)
≥ c1a2nε−3 = c1b

−2αnε−3 ≥ c2ε2α−3

for some constants c1, c2 > 0. This implies BD
(
graph(Xa,b, Ya,b)

)
≥ 3− 2α .

To prove the second part, note that Fa,b(S
1) is the orthogonal projection of

graph(Xa,b, Ya,b) . Since the projection is a Lipschitz map, it is enough to use
Theorem 1.1 and Lemma 2.2 for β = 1.
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The next corollary shows that for the functions Xa,b , Ya,b we can improve
the general estimates from Lemma 2.2.

Corollary 4.2. For every a ∈ [a0, 1) and every b ∈ N , b ≥ 2 there exist
UXa,b , UYa,b ⊂ R , such that UXa,b (or UYa,b ) is open and dense in Xa,b([0, 2π])
(or Ya,b([0, 2π])) and for every δ > 0 ,

if H δ(A) > 0, then H α(δ+1)
(
X−1
a,b (A)

)
> 0 for every set A ⊂ UXa,b ,

if H δ(A) > 0, then H α(δ+1)
(
Y −1
a,b (A)

)
> 0 for every set A ⊂ UYa,b .

In particular,

HD
(
X−1
a,b (A)

)
≥ α

(
HD(A) + 1

)
for every set A ⊂ UXa,b ,

HD
(
Y −1
a,b (A)

)
≥ α(HD(A) + 1) for every set A ⊂ UYa,b .

Proof. Let UXa,b (or UYa,b ) be the orthogonal projection of intFa,b(S
1) on

the real (or imaginary) axis. By Theorem 1.1, UXa,b (or UYa,b ) is open and dense

in Xa,b([0, 2π]) (or Ya,b([0, 2π])). Take A ⊂ UXa,b such that H δ(A) > 0. By
definition, for every s ∈ A the set

(
{s} ×R

)
∩ (Xa,b, Ya,b)

(
[0, 2π]

)

contains a non-trivial interval. Hence, by Theorem 2.3, we have

H δ+1
(
(A×R

)
∩ (Xa,b, Ya,b)

(
[0, 2π])

)
> 0.

Since the map (Xa,b, Ya,b) is Hölder with exponent α , we have by Lemma 2.2,

H α(δ+1)
(
(Xa,b)

−1(A)
)

= H α(δ+1)
(
(Xa,b, Ya,b)

−1(A×R)
)
> 0.

The case A ⊂ UYa,b is symmetric.

Taking A = {s} in Corollary 4.2, we obtain the following result on level sets
LXa,b(s) , LYa,b(s) .

Corollary 4.3. For every a ∈ [a0, 1) and every b ∈ N , b ≥ 2 ,

H α
(
LXa,b(s)

)
> 0 for every s ∈ UXa,b ,

H α
(
LYa,b(s)

)
> 0 for every s ∈ UYa,b .

In particular,
HD
(
LXa,b(s)

)
≥ α for every s ∈ UXa,b ,

HD
(
LYa,b(s)

)
≥ α for every s ∈ UYa,b .

Moreover,
intR

(
Ya,b

(
LXa,b(s)

))
6= ∅ for every s ∈ UXa,b ,

intR

(
Xa,b

(
LYa,b(s)

))
6= ∅ for every s ∈ UYa,b .

By Corollary 4.3 and Theorem 2.3, we get
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Corollary 4.4. For every a ∈ [a0, 1) and every b ∈ N , b ≥ 2 ,

H 1+α(graphXa,b),H
1+α(graphYa,b) > 0.

In particular, HD(graphXa,b),HD(graphYa,b) ≥ 1 + α .
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