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Abstract. It is well known that the functorial equivalence between pairs (X,σ) , where X
is a Riemann surface which admits an antiholomorphic involution (symmetry) σ: X → X , and
real algebraic curves. We shall refer to such Riemann surfaces as real Riemann surfaces, following
Klein’s terminology. We consider the sets M R

g and M 2R
g of real curves and real hyperelliptic

curves, respectively in the moduli space Mg of complex algebraic curves of genus g .
In this paper we prove that any real hyperelliptic Riemann surface can be quasiconformally

deformed, preserving the real and hyperelliptic character, to a real hyperelliptic Riemann surface
(X,σ) , such that X admits a symmetry τ , where Fix(τ) is connected and non-separating. As
a consequence, we obtain the connectedness of the sets M 2R

g (⊂ Mg) of all real hyperelliptic

Riemann surfaces of genus g and M R
g (⊂Mg) of all real Riemann surfaces of given genus g using

a procedure different from the one given by Seppälä for M 2R
g and Buser, Seppälä and Silhol

for M R
g .

A Riemann surface X is called a p -gonal Riemann surface, where p is a prime, if there
exists a p -fold covering map from X onto the Riemann sphere. We prove in this paper that the
subset of real p -gonal Riemann surfaces, p ≥ 3 , is not a connected subset of Mg in general. This
generalizes a result of Gross and Harris for real trigonal algebraic curves.

1. Introduction

Let Xg be a compact Riemann surface of genus g ≥ 2. A symmetry σ of
Xg is an anticonformal involution of Xg . The topological type of a symmetry is
determined by properties of its fixed-point set Fix(σ) . By Harnack’s theorem the
fixed-point set of σ consists of k ≤ g + 1 Jordan curves, called ovals. The space
Xg − Fix(σ) consists of one component if the quotient Klein surface Xg/〈σ〉 is
non-orientable and of two components if it is orientable. Let σ be a symmetry
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of Xg with k ovals, then the species of σ is +k or −k according to whether
Xg − Fix(σ) has two or one component, respectively.

Whereas a compact Riemann surface corresponds to a complex algebraic
curve, a compact Riemann surface Xg with a symmetry σ corresponds to a real
algebraic curve. Each conjugacy class of symmetries in Aut(Xg) corresponds to
an equivalence class, under real birational isomorphisms, of real algebraic curves,
a real form of the complex algebraic curve. The ovals of the symmetry correspond
to the graph components of the real form. So, if a Riemann surface Xg admits
two non-conjugate symmetries σ1 , σ2 with k1 and k2 ovals, respectively, then
the complex algebraic curve corresponding to Xg has two real forms with k1 and
k2 components, respectively.

A Riemann surface Xg is called a cyclic p-gonal Riemann surface, where p
is a prime, if Xg is a cyclic p -fold covering of the Riemann sphere. When p = 2
the surface Xg is called hyperelliptic.

We study in this paper the sets M pR
g of complex isomorphism classes of real

cyclic p -gonal curves of genus g by means of their uniformization groups. The
study of moduli spaces of real algebraic curves was initiated by Felix Klein [21].
Seppälä [23] proved that M 2R

g is connected and Buser, Seppälä and Silhol [8]

proved that M R
g is connected, using the fact that M 2R

g is a connected subset
of Mg . There is another proof of this fact in [12] with the techniques described
in [13]. We also give, for the sake of completeness, a proof of the connectedness
of M R

g different from the ones given in [8] and in [12], and following the ideas
in [10].

Let M g
εk be the subset of M R

g formed by all Riemann surfaces admitting a
symmetry with species εk , where ε = ± and k is the number of ovals. The spaces
M g

εk and M g
εk ∩M 2R

g are connected (see [11], [8] and Theorems 2.1 and 2.2).

In this paper we prove not only that M 2R
g is connected, but that M g

−1 ∩M 2R
g ,

the subset formed by all real hyperelliptic Riemann surfaces admitting a non-
separating symmetry with one oval, cuts every M g

εk∩M 2R
g for any possible species

εk for a given genus g . We shall say that M g
−1 ∩M 2R

g is a spine for M 2R
g . The

above property not only implies the connectedness of M 2R
g , but also gives a way

to connect any pair of points in M 2R
g . In the same way we show that M g

−1 is a

spine for the space M R
g (see [10]).

The above result has been inspired by the following fact on elliptic curves:
the set of real elliptic curves defined by rombic lattices, i.e., admitting a symmetry
with one nonseparating oval, is a spine for the locus of real elliptic curves (see [20]).

On the contrary, we shall prove that the set M pR
g , p ≥ 3, of real cyclic p -

gonal Riemann surfaces is not connected in general. This generalizes a result of
Gross and Harris for real, trigonal algebraic curves [16]. As a consequence the set
of real p -gonal Riemann surfaces is not connected using Lemma 2.1 in [1].

The results presented in this work imply the following fact on equations of
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algebraic curves. Given two algebraic curves admitting polynomial equations
yp = P (x) and yp = Q(x) with real coefficients, we shall consider two types
of allowed deformations for such equations. The first type of deformation is to
modify continuously the real coefficients of P (x) and Q(x) . The second type is to
change the real form of a fixed complex algebraic curve. Then if p = 2 it is always
possible to go from a curve to the other one, but this is not the case in general if
p > 2.

2. NEC groups and moduli spaces of Riemann surfaces

Let Xg be a compact Riemann surface of genus g ≥ 2. The surface Xg can
be represented as a quotient Xg = H /Γ of the upper half plane H under the
action of a surface Fuchsian group Γ, that is, a cocompact orientation-preserving
subgroup of the group G = Aut(H ) of conformal and anticonformal automor-
phisms of H without elliptic elements. A discrete, cocompact subgroup Γ of
Aut(H ) is called an NEC (non-euclidean crystallographic) group. The subgroup
of Γ consisting of the orientation-preserving elements is called the canonical Fuch-
sian subgroup of Γ; it is denoted by Γ+ . The algebraic structure of an NEC group
and the geometric structure of its quotient orbifold are given by the signature of Γ:

(2.1) s(Γ) =
(
h;±; [m1, . . . ,mr];

{
(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)

})
.

The orbit space H /Γ is an orbifold with underlying surface of genus h , having
r cone points and k boundary components, each with sj ≥ 0 corner points.
The signs “+” and “−” correspond to orientable and non-orientable orbifolds,
respectively. The integers mi are called the proper periods of Γ and they are the
orders of the cone points of H /Γ. The brackets (ni1, . . . , nisi) are the period
cycles of Γ and the integers nij are the link periods of Γ and the orders of
the corner points of H /Γ. The group Γ is called the fundamental group of the
orbifold H /Γ.

A group Γ with signature (2.1) has a canonical presentation with generators:

x1, . . . , xr, e1, . . . , ek, cij , 1 ≤ i ≤ k, 1 ≤ j ≤ si + 1,

and a1, b1, . . . , ah, bh if H /Γ is orientable or d1, . . . , dh otherwise,

and relators:

xmii , i = 1, . . . , r, c2ij , (cij−1cij)
nij , ci0e

−1
i cisiei, i = 1, . . . , k, j = 2, . . . , si + 1,

and x1 · · ·xre1 · · · eka1b1a
−1
1 b−1

1 · · · ahbha−1
h b−1

h or x1 · · ·xre1 · · · ekd2
1 · · · d2

h , accord-
ing to whether H /Γ is orientable or not.

This last relation is called the long relation.
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The hyperbolic area of the orbifold H /Γ coincides with the hyperbolic area
of an arbitrary fundamental region of Γ and equals:

(2.2) µ(Γ) = 2π

(
εh− 2 + k +

r∑

i=1

(
1− 1

mi

)
+

1

2

k∑

i=1

si∑

j=1

(
1− 1

nij

))
,

where ε = 2 if there is a “+” sign and ε = 1 otherwise. If Γ′ is a subgroup of
Γ of finite index then Γ′ is an NEC group and the following Riemann–Hurwitz
formula holds:

(2.3) [Γ : Γ′] = µ(Γ′)/µ(Γ).

An NEC group Γ without elliptic elements is called a surface group and it
has signature

(
h;±; [−], {(−), k. . ., (−)}

)
. In such a case H /Γ is a Klein surface,

i.e., a surface with a dianalytic structure of topological genus h , orientable or
not according to the sign “+” or “−”, and having k boundary components.
Conversely, a Klein surface whose complex double has genus greater than one
can be expressed as H /Γ for some NEC surface group Γ. Furthermore, given a
Riemann (respectively, Klein) surface represented as the orbit space X = H /Γ,
with Γ a surface group, a finite group G is a group of automorphisms of X if
and only if there exists an NEC group ∆ and an epimorphism θ: ∆ → G with
ker(θ) = Γ (see [6]). The NEC group ∆ is the lifting of G to the universal
covering π: H → H /Γ and is called the the universal covering transformation
group of (X,G) .

Given an NEC group Γ, we denote by R(Γ) the set of monomorphisms r: Γ→
Aut(H ) such that r(Γ) is discrete and cocompact. Two elements r1, r2 ∈ R(Γ)
are said to be equivalent if there exists g ∈ Aut(H ) such that for each γ ∈ Γ,
r1(γ) = gr2(γ)g−1 . The orbit space T(Γ) is called the Teichmüller space of Γ
and it is homeomorphic to a real ball. Notice that g ∈ Aut(H ), where Aut(H )
are conformal and anticonformal automorphisms, then the groups uniformising the
same orientable (but not oriented) Riemann surface appear in the same Teichmül-
ler space. Let Γ ≤ ∆ be NEC groups, the inclusion mapping i: Γ → ∆ induces
an embedding mi: T(∆)→ T(Γ) defined by mi[r] = [r ◦ i] (see [6]).

Let A(Γ) denote the automorphism group of Γ (A(Γ)+ the orientation-
preserving automorphism group if Γ is a Fuchsian group), and I(Γ) the subgroup
of inner automorphisms. The modular group M(Γ) = A(Γ)/I(Γ) (M(Γ)+ =
A(Γ)+/I(Γ) if Γ is a Fuchsian group), acts on T(Γ). The moduli space of Γ is
the quotient space

Mg = T(Γ)/M(Γ)

and Mg = T(Γ)/M(Γ)+ if Γ is a Fuchsian group. For Γ being a Fuchsian
group, Mg is the space of conformal classes of Riemann surfaces of genus g ,
or equivalently, the space of isomorphism classes of smooth complex projective
algebraic curves.
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Let now M R
g denote the subspace of Mg consisting of real Riemann surfaces

of genus g , that is, Riemann surfaces Xg admitting a symmetry (an anticonformal
involution) σ: Xg → Xg . If Γ is a uniformizing Fuchsian group of Xg , then σ
induces an element of M(Γ) acting on T(Γ). If we denote σ∗ the action of σ
on T(Γ), then [Xg] ∈ T(Γ)σ∗ , where T(Γ)σ∗ is the set of fixed points under
σ∗ , and the converse holds. Now, M R

g is the projection of TR =
⋃
σ∗ T(Γ)σ∗

on Mg , where σ runs over the different topological types of involutions of Riemann
surfaces of genus g .

Let M g
εk denote the space of real Riemann surfaces of genus g admitting a

symmetry with species εk , −g ≤ εk ≤ g+1. Then we have the following theorem:

Theorem 2.1. Let Xg be a Riemann surface of genus g . Given a symmetry
σ: Xg → Xg with species εk , then M g

εk is connected.

Proof. Let Xg = H /Γ and Xg/〈σ〉 = H /Γ′ , then Γ is an index two sub-
group of Γ′ and let i: Γ→ Γ′ be the inclusion map. Thus M g

εk is mi(T
(
Γ′)
)
/M(Γ)

and since T(Γ′) is connected then M g
εk is connected.

Let (Xg, φ) be a hyperelliptic Riemann surface of genus g . Given a symmetry
σ of Xg with species εk , consider the finite group G = 〈φ, σ〉 . Then with the
same proof as in Theorem 2.1 we have

Theorem 2.2. Let Xg be a hyperelliptic Riemann surface of genus g . Given
a symmetry σ: Xg → Xg with species εk , then M g

εk ∩M 2R
g is connected.

Theorems 2.1 and 2.2 are well-known facts going back to Klein and Earle [21]
and [11] (cf. [8]).

We have a natural decomposition of M R
g and M 2R

g into the connected sub-

spaces M g
εk and M g

εk ∩M 2R
g . We shall prove in the next two sections that the

subspaces M g
−1 and M g

−1 ∩M 2R
g of real and real hyperelliptic Riemann surfaces

having a non-separating symmetry with one oval intersect any other subspace
M g

εk and M g
εk ∩M 2R

g , respectively. To prove this we have to find a (hyperellip-
tic) Riemann surface admitting two symmetries σ1 , σ2 with species −1 and εk ,
respectively for every possible species εk . Notice that the possible species εk for
symmetries of hyperelliptic Riemann surfaces are: ε = −1, 1 ≤ k ≤ g , ε = 1,
k = g + 1, and ε = 1, k = 1 for g even, and ε = 1, k = 2 for g odd.

In the following we shall consider hyperelliptic Riemann surfaces (Xg, φ) with
uniformizing surface Fuchsian group Γ, and where φ is the hyperelliptic involution.

Let σ1 , σ2 be symmetries of a hyperelliptic Riemann surface Xg = H /Γ
with species ε1k1 and ε2k2 , respectively. The involutions σ1 , σ2 and φ generate
a finite group G . The group G is isomorphic either to Dn or to Dn × C2 , with
n the order of σ1σ2 . Notice that G = Dn if and only if φ = (σ1σ2)n/2 . Then
there exist an NEC group ∆ (the universal covering transformation group) and an
epimorphism θ: ∆→ G with ker(θ) = Γ. If θ−1(〈σ1〉) = Λ1 , θ−1(〈σ2〉) = Λ2 , and
θ−1(〈φ〉) = Λh then s(Λ1) = (h1, ε1, [−], {(−)k1}) , s(Λ2) = (h2, ε2, [−], {(−)k2})
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and s(Λh) = (0,+, [2, 2g+2. . . , 2], {−}) , where |∆ : Λ1| = |∆ : Λ2| = |∆ : Λh| = n
(or 2n) and |Λ1 : Γ| = |Λ2 : Γ| = |Λh : Γ| = 2.

The aim is to give signatures ∆ and epimorphisms θ: ∆ → G such that
s(Λ1) = (h1,−, [−], {(−)}), and s(Λ2) = (h2, ε, [−], {(−)k}) where εk ranges over
the possible species for a hyperelliptic Riemann surface.

In order to know the signature of Λi from the epimorphism θ we use the
following procedure.

Let G′ be the set of generators of a canonical presentation of ∆, the Schreier
〈σi〉 -coset graph Si is the graph with vertices the 〈σi〉 -cosets in G and labelled
directed edges joining 〈σi〉αi with 〈σi〉αj with label g ∈ G′ if 〈σi〉αiθ(g) = 〈σi〉αj .
Let c ∈ G′ be a reflection such that θ maps c to a conjugate of σ1 or σ2 in G .
The action of c on the Λi -cosets is the same as the action of θ(c) on the 〈σi〉 -
cosets. Each coset Λiα fixed by c gives a reflection cα = αcα−1 in Λi , called
a reflection induced by c . In this way we obtain representatives of all conjugacy
classes of reflections in Λi . Now each period cycle in (sΛi) gives one conjugacy
class of reflections in Λi . Suppose that d is another reflection in ∆ and that cd
has finite order. Two induced reflections (cα and dβ , cα and cβ or dα and dβ ) are
conjugate in Λi if 〈σi〉α and 〈σi〉β are in the same orbit under the action of θ(cd)
on the 〈σi〉 -cosets ([17]). In terms of the Schreier graph: two reflection loops cα
and dβ define conjugate reflections in Λi if the vertices of these reflection loops are
joined by a path with the sides alternatively labelled by c and d . Finally, assume
c is the reflection generator and e is the hyperbolic generator corresponding to
an empty period cycle in s(∆) (i.e., a period cycle without link periods). If σ1σ2

has even order, then c can induce several reflections in Λi . In this case all the
reflections cα and cβ are conjugate in Λi if and only if G = Dn and θ(e) 6= 1
(see [15] and [17]).

The sign of s(Λi) , i = 1, 2, is determined by the following fact: the sign of
s(Λi) is + if and only if in the Schreier graph Si the product of the labels of each
cycle (not containing reflection loops) is an orientation preserving element of ∆
(see [18]).

3. The connection of the locus of real hyperelliptic Riemann surfaces

Notice that the possible species εk for symmetries of hyperelliptic Riemann
surfaces are: ε = −1, 1 ≤ k ≤ g , ε = 1, k = g + 1, and ε = 1, k = 1 for g even,
and ε = 1, k = 2 for g odd. With the notation above:

Theorem 3.1. We have M g
−1

⋂
M g
−k
⋂

M 2R
g 6= ∅ for 1 ≤ k ≤ g for every

genus g ≥ 2 .

Proof. We divide the proof in two cases according to the parity of g − k .

(1) g − k odd. Let ∆ be an NEC group with signature

(3.1) s(∆) =
(

0; +; [2(g−k+1)/2];
{(

4, 4,

k−1︷ ︸︸ ︷
2, . . . , 2

)})
.
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and canonical presentation as given in Section 2. Let θ: ∆ → D4 be the epi-
morphism defined by θ(xj) = φ = (σ1σ2)2 , for all j , θ(c11) = θ(c1k+2) = σ1 ,
θ(c1i) = σ2 for i even, and θ(c1i) = σ2φ for i odd, 2 ≤ i ≤ k − 1, θ(e1) = φi ,
where i ∈ {0, 1} in order to fulfill the long relation.

The Riemann formula applied to ker θ ≤ ∆ yields:

(3.2) 8

(
−1 +

g − k + 1

4
+
k − 1

4
+

3

4

)
= 2(g − 4 + 3) = 2(g − 1),

Then ker θ is a Fuchsian surface group of genus g . Let Xg = H / ker θ ,
Λ1 = θ−1(〈σ1〉) and Λ2 = θ−1(〈σ2〉) . The reflection c11 induces two reflections in
Λ1 that are conjugate because θ(c11c12) = σ1σ2 ; then there is only one conjugacy
class of reflections and one empty period-cycle in s(Λ1) . In the Schreier graph
of 〈σ1〉 -cosets there is an orientation-reversing cycle with labelled edges c12 , c13

and c11 . Hence there is a − sign and one empty period cycle in s(Λ1) , then the
species of σ1 is −1.

Each generating reflection c1i , k + 1 ≥ i ≥ 2, induces one conjugacy class
of reflections in Λ2 . Hence there are k + 1 − 1 = k empty period-cycles in the
signature of θ−1(〈σ2〉) = Λ2 . In the Schreier graph of 〈σ2〉 -cosets there is a cycle
with labelled edges x1 and c12 and there is a − sign in s(Λ2) . The symmetry σ2

has species −k .
Notice that Xg/〈φ〉 is an orbifold with 4

(
1
2 (g − k + 1)

)
+2(k) = 2g + 2 conic

points of order 2 and genus 1
2 (g − 4 + 3− g − 1 + 2) = 0.

(2) g − k even. Let ∆ be a group with signature

(3.3) s(∆) =
(

0; +; [2(g−k)/2];
{( k+3︷ ︸︸ ︷

2, . . . , 2
)})

.

Let θ: ∆→ D2×C2 be the epimorphism defined by θ(xj) = φ , for all j , θ(c11) =
θ(c1k+4) = σ1 , θ(c1i) = σ2 for i even, and θ(c1i) = σ2φ for i odd, 2 ≤ i ≤ k+ 2,
θ(c1k+3) = σ1φ , θ(e1) = φi , where i ∈ {0, 1} in order to fulfil the long relation.

The Riemann formula applied to ker θ ≤ ∆ gives

(3.4) 8

(
−1 +

k + 3

4
+
g − k

4

)
= 2(g − 4 + 3) = 2(g − 1).

Then ker θ is a Fuchsian surface group of genus g . We define Xg = H / ker θ ,
Λ1 = θ−1(〈σ1〉) and Λ2 = θ−1(〈σ2〉) . The same argument as in the case (1)
shows that there is only one empty period-cycle in s(Λ1). In the Schreier graph of
〈σ1〉 -cosets there is an orientation-reversing 3-cycle with edges labelled x1 , c1k+3

and c11 . Then the signature of Λ1 is
(
w,−, [−], {(−)}

)
and the species of σ1

is −1.
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The generating reflection c12 induces one conjugacy class of reflections in Λ2 .
Each generating reflection c1,2i , 2 ≥ i ≥ 1

2 (k − 1), induces two conjugacy classes
of reflections in Λ2 . Hence there are 1

2

(
2(k − 1)

)
+ 1 = k empty period-cycles in

the signature of θ−1(〈σ2〉) = Λ2 . In the Schreier graph of 〈σ2〉 -cosets there is an
orientation-reversing 3-cycle with edges labelled x1 , c12 and c13 . The symmetry
σ2 has species −k .

Again, Xg/〈φ〉 is an orbifold with 4
(

1
2 (g − k)

)
+ 2(k + 1) = 2(g + 1) conic

points of order 2 and genus 1
2 (g − 4 + 3 − g − 1 + 2) = 0, that is, Xg is a

hyperelliptic surface.
The surface Xg is a point in M g

−1

⋂
M g
−k ∩M 2R

g , so then M g
−1

⋂
M g
−k ∩

M 2R
g 6= ∅ .

Theorem 3.2 ([3]). We have M g
−1

⋂
M g

g+1

⋂
M 2R

g 6= ∅ for every genus
g ≥ 2 .

Proof. The proof is as for Theorem 3.1, Case 1, but now taking as ∆ an NEC
group with signature

(3.5) s(∆) =
(

0; +; [−];
{(

4, 4,

g︷ ︸︸ ︷
2, . . . , 2

)})
,

and an epimorphism θ: ∆→ D4 defined by θ(c1,1) = σ1 , θ(c1,2j) = σ2 , θ(c1,2j+1)
= σ2φ , 1 ≤ j ≤

⌊
1
2 (g + 1)

⌋
, θ(c1,0) = σ2φ

i , where i = 0 for even g and i = 1 for
odd g and θ(e) = 1.

Theorem 3.3. We have M g
−1

⋂
M g

0

⋂
M g

+k

⋂
M 2R

g 6= ∅ , for k = 1 for even
genera g , and k = 2 for odd genera g ≥ 2 .

Proof. First of all, notice that a symmetry of a hyperelliptic Riemann surface
of genus g that separates, satisfies the fact that the number of its ovals is either
g + 1 or 1 if the genus g is even, and either g + 1 or 2 if the genus g is odd.

Consider an NEC group with signature s(∆) =
(
0; +; [−]; {(2, 2g+2, 2g+2)}

)
,

and an epimorphism θ: ∆→ D2(g+1) × C2 defined by θ(c11) = σ1 , θ(c12) = σ1φ ,
θ(c13) = σ2 .

The Riemann formula applied to ker θ ≤ ∆ gives:

(3.6) 8(g+ 1)

(
−1 +

1

4
+

2g + 1

2(g + 1)

)
= 8(g+ 1)

(−3(g + 1) + 4g + 2

4(g + 1)

)
= 2(g− 1).

We define Xg = H / ker θ , Λ1 = θ−1(〈σ1〉) , Λ2 = θ−1(〈σ2〉) and Λ3 =
θ−1(〈σ2φ〉) . The same argument as in Theorem 3.1 shows that there is only one
empty period-cycle in s(Λ1) . In the Schreier graph of 〈σ1〉 -cosets there is an
orientation-reversing 5-cycle with edges labelled c12 , c13 , c11 , c12 and c13 . Then
the signature of Λ1 is (w,−, [−], {(−)}) and the species of σ1 is −1.
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The generating reflection c12 induces four reflections in Λ2 . These reflec-
tions are conjugated by θ

(
(c12c13)g+1

)
= (σ1σ2)g+1φg+1 and θ

(
(c13c11)g+1

)
=

(σ1σ2)g+1 . Then Λ2 contains two conjugacy classes of reflections induced by c12

if g is odd, and one if g is even. The Schreier graph of 〈σ2〉 is bipartite: the set
of vertices {(σ2)(σ1σ2)iφε | 1 ≤ i ≤ 2g + 2, ε ∈ {0, 1}} can be separated in the
sets A = {(i, 0), (i, 1), 1 ≤ i ≤ g + 1} and B = {(i, 0), (i, 1), g + 2 ≤ i ≤ 2g + 2} ,
where the 〈σ2〉 -cosets are represented by the corresponding exponent of σ1σ2 .
The symmetry σ2 has species +2 if the genus g is odd, and σ2 has species +1 if
the genus g is even.

The Schreier graph of 〈σ2φ〉 has no reflection loops, then σ2φ has species 0.
Again, H /θ−1(〈σ1, σ2〉) is an orbifold with (2g+2)(1) = 2(g + 1) conic points

of order 2 and genus 0.
The surface Xg defined by (∆, θ) admits the required three symmetries σ1 ,

σ2 , and σ2φ .

We can now establish some direct consequences of the results 3.1, 3.2 and 3.3.

Two real hyperelliptic Riemann surfaces (Xi, σi ) i = 1, 2, are quasiconfor-
mally equivalent in the hyperelliptic locus if there is a quasiconformal deforma-
tion Ft from X1 to X2 such that Xt = Ft(X1) is a hyperelliptic surface and
Ft ◦σ1 ◦F−1

t is a symmetry of Xt . Now we have the result quoted in the abstract:

Theorem 3.4. Every real hyperelliptic Riemann surface is quasiconformally
equivalent in the hyperelliptic locus to a real hyperelliptic Riemann surface (X,σ) ,
such that X admits an antiholomorphic involution τ , where Fix(τ) has one non-
separating connected component.

Proof. Each set M g
εk

⋂
M 2R

g corresponds to the real hyperelliptic Riemann

surfaces with the same topological type. By Lemma 1.2 in [22] the set M g
εk

⋂
M 2R

g

is a quasiconformal class of real hyperelliptic Riemann surfaces (this is a con-
sequence of deep results in Teichmüller theory); then the theorem follows from
Theorems 3.1, 3.2 and 3.3.

A consequence of the above theorem is the following:

Corollary 3.5. The space M 2R
g of real hyperelliptic algebraic curves is a

connected subspace of the moduli space Mg of complex algebraic curves. Further-
more the subset formed by all real hyperelliptic Riemann surfaces admitting a non-
separating symmetry with one oval M g

−1

⋂
M 2R

g cuts every subset M g
εk

⋂
M 2R

g

for any possible species εk for a given g , i.e., M g
−1 is a spine for M 2R

g .

4. On the existence of spines in M R
g

We have proved in the previus section that M g
−1

⋂
M g

εk 6= ∅ for εk being
negative, 0, g + 1, and +1 if g is even or +2 if g is odd. To prove that M g

−1

is a spine of M R
g we must find surfaces Xg admitting two symmetries σ1 , σ2
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such that σ1 has species −1 and σ2 has species +k , with k = g + 1 − 2t and
1 ≤ t ≤

⌊
1
2 (g − 2)

⌋
.

Let σ1 , σ2 be symmetries of a Riemann surface Xg with species +1 and
+k , respectively. The involutions σ1 , σ2 generate a finite group G . G = Dn =
〈σ1, σ2〉 , with n the order of σ1σ2 .

Theorem 4.1 ([10]). We have M g
−1

⋂
M g

+k 6= ∅ , for k = g+ 1− 2t , 1 ≤ t ≤
1
2 (g − 2) for even genera g , and 1 ≤ t ≤ 1

2 (g − 3) for odd genera g .

Proof. The method of the proof is similar to the one used in Theorems 3.1,
3.2 and 3.3. We consider suitable NEC groups and epimorphisms θ from them to
dihedral groups Dn = 〈σ1, σ2〉 . The surface X = H / ker θ admits two symmetries
given by X → X/〈σi〉 , i = 1, 2, with species −1 and +k .

We divide the proof in three cases according to the parity of g and k . We
shall only give the signature of the groups ∆ and the epimorphisms θ: ∆ → Dn

in each case.

(1) g even, k ≡ g + 1(mod 2) and k ≤ g − 1 ([19]). Let ∆ be a group with
signature

(4.1) s(∆) =
(

1
2 (g + 1− k);−; [−]; {(2, 2)(−)(k−1)/2}

)
,

and θ: ∆ → D2 the epimorphism defined by θ(dj) = σ1 , for all j , θ(c11) =
θ(c13) = σ2 , θ(c12) = σ1 , θ(e1) = 1, θ(ci1) = σ2 , θ(ei) = 1, for all i ≥ 2.

(2) g odd, k ≡ g + 1(mod 4). Let ∆ be a group with signature

(4.2) s(∆) =
(

1
4 (g + 1− k);−; [−];

{(
4,

k−1︷ ︸︸ ︷
2, . . . , 2 , 4

)})
.

Let θ: ∆ → D4 be the epimorphism defined by θ(dj) = σ1 , for all j , θ(c1,1) =
θ(c1,k+2) = σ1 , θ(c1,2i) = σ2 , θ(c1,2i+1) = σ2(σ1σ2)2 , 1 ≤ i ≤ 1

2k , θ(e1) = 1.

(3) g odd, k ≡ g − 1(mod 4), 3 < k . Let ∆ be a group with signature either

(4.3) s(∆) =
(

1
4 (g − 1− k);−; [−];

{(
4,

k−3︷ ︸︸ ︷
2, . . . , 2 , 4

)
, (−)

})
, if k < g − 1

or

(4.4) s(∆) =
(

0; +; [−];
{(

4,

k−3︷ ︸︸ ︷
2, . . . , 2 , 4

)
, (−)

})
, if k = g − 1.

Let θ: ∆→ D4 be the epimorphism defined by θ(dj) = σ1 , for all j , θ(c1,1) =
θ(c1,k) = σ1 , θ(c1,2i) = σ2 , θ(c1,2i+1) = σ2(σ1σ2)2 , 1 ≤ i ≤ 1

2k − 1, θ(e1) = 1,
θ(c2,1) = σ2 and θ(e2) = 1.
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We can now establish

Theorem 4.2. Every real Riemann surface is quasiconformally equivalent in
the real locus to a real Riemann surface (X,σ) , such that X admits an antiholo-
morphic involution τ , where Fix(τ) has one non-separating connected component.

Proof. Each set M g
εk corresponds to the real Riemann surfaces with the

same topological type. By Lemma 1.2 in [22] there is a quasiconformal class of
real Riemann surfaces. Thus the theorem follows from Theorems 3.1, 3.2, 3.3
and 4.1.

A consequence of the above theorem is the following:

Corollary 4.3. The space M R
g of real algebraic curves is a connected sub-

space of the moduli space Mg of complex algebraic curves. Furthermore the subset
formed by all real Riemann surfaces admitting a non-separating symmetry with
one oval, M g

−1 , cuts every subset M g
εk for any possible species εk for a given g ,

i.e., M g
−1 is a spine for M R

g .

Given the decomposition M R
g =

⋃
M g

k , we try to find another spine different
from M g

−1 , i.e., we are looking for ε′k′ 6= −1 such that M g
εk

⋂
M g

ε′k′ 6= ∅ for all
possible species εk .

Theorem 4.4 ([10]). Let g > 2 be an even integer. Then the only spine in
the decomposition of the subset M R

g =
⋃

M g
k of real Riemann surfaces of Mg is

the subspace M g
−1 .

Proof. Assume that g is an integer and ε′k′ 6= −1 is such that M g
εk

⋂
M g

ε′k′ 6=
∅ for all possible species εk for g . First of all, by Theorem 3.3 in [3], if M g

g+1

⋂
M g

ε′k′

6= ∅ , then the species ε′k′ ≥ −1. By Theorem 3.4 in [3], if M g
−g
⋂

M g
ε′k′ 6= ∅ , then

the species ε′k′ ≤ 0. On the other hand, by Theorem 3.2 in [19] M g
0

⋂
M g

εk = ∅
for even genera g and even k 6= 0. Then if g is even there is no such a ε′k′ .

With the same proof we can show the following

Remark 4.5. Let g > 2 be an even integer. Then the only spine in the
decomposition of the subset M 2R

g of real hyperelliptic Riemann surfaces of Mg

is the subspace M g
−1

⋂
M 2R

g .

Notice that in the proof of the above theorems the hypothesis on the parity
of g is only used to avoid the possibility k′ = 0, then the only possible spine for
g odd is M g

0 . The results of [19] assert that M g
0 is in fact a spine.

Theorem 4.6 ([10]). Let g be an odd integer. Then a real algebraic curve
Cg of genus g is quasiconformally equivalent to a real curve C ′g such that the
complexification of C ′g admits a real form which is purely imaginary.
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Proof. We have to prove that there exist real Riemann surfaces admitting
two symmetries with species 0 and εk , where εk runs over all possibilities. The
signatures and epimorphisms listed below give us the required real Riemann sur-
faces ([19]).

(1.1) ε = − , k odd. Let ∆ be a group with signature

(4.5) s(∆) =
(

0; +;
[
4,

(g−k)/2︷ ︸︸ ︷
2, . . . , 2

]
; {(2k)}

)
.

We construct an epimorphism θ: ∆ → D4 = 〈σ1, σ2〉 by sending the elliptic
generator of order 4 to σ1σ2 , the elliptic generators of order 2 to (σ1σ2)2 , the
generating reflection generators alternately to σ2 and σ2(σ1σ2)2 , and e to σ1σ2

or (σ1σ2)3 (depending on the parity of 1
2 (g − k)).

(1.2) ε = − , k even. Let ∆ be a group with signature

(4.6) s(∆) =
(

0; +;
[
2(g+3−k)/2

]
;
{( k︷ ︸︸ ︷

2, . . . , 2
)})

.

We define an epimorphism θ from ∆ to D2 × C2 = 〈σ1, σ2, φ〉 by mapping all
but one elliptic generators to φ , one elliptic generator to σ1σ2φ , the generating
reflections and glide reflection to σ2 alternatively σ2φ and e to σ1σ2φ

h , where
h = 0 if 1

2 (g + 3− k) is even and h = 1 if 1
2 (g + 3− k) is odd.

(2) ε = +. In this case k is even, since k ≡ g+ 1(mod 2). Let ∆ be a group
with signature

(4.7) s(∆) =
(
0; +; [2g+3−k];

{(
−)k/2

})
.

We define an epimorphism θ from ∆ to D2 = 〈σ1, σ2〉 by mapping the elliptic
generators to σ1σ2 , the generating reflections to σ2 , and the connecting generators
ei to 1.

Notice that the Schreier graph of 〈σ1〉 in D2 contain no reflection loops, so
the species of σ1 is 0.

The above proof is different from the one given in [10] in the cases 1.1 and 1.2.
The surfaces in the cases 1.1 and 1.2 of Theorem 4.6 are hyperelliptic, being the
hyperelliptic involution φ = (σ1σ2)2 in the case 1.1 and φ in 1.2. Then we have
the following result:

Remark 4.7. Let g be an odd integer. Then a real hyperelliptic algebraic
curve Cg of genus g is quasiconformally equivalent in the hyperelliptic locus to
a real hyperelliptic curve C ′g such that the complexification of C ′g admits a real
form which is purely imaginary.
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5. The locus of real cyclic p-gonal Riemann surfaces

Let p be a prime integer. A cyclic p -gonal Riemann surface is a closed
Riemann surface which can be realized as a cyclic p -fold covering space of the
Riemann sphere (see [9] and [16]). We will denote by M p

g the subset of cyclic p -
gonal Riemann surfaces in Mg . The complexification of a smooth cyclic p -gonal
real algebraic curve gives rise to a cyclic p -gonal Riemann surface Xg with a
symmetry, we shall call such a surface Xg a real cyclic p-gonal Riemann surface.

Let M pR
g be the locus of real cyclic p -gonal Riemann surfaces in the moduli

space of Riemann surfaces of genus g . In Section 3 we proved that M 2R
g is

connected, and now we want to show that the situation is essentially different for
M pR

g , p > 2. The set of cyclic p -gonal Riemann surfaces is actually disconnected
in general. Let Pn(Fp) denote the n -dimensional projective space over the finite
field with p elements, and define the following subset Dr

p of P r−1(Fp) :

Dr
p =

{
m = (m1, . . . ,mr)

∣∣∣
r∑

1

mi = 0, Πr
1mi 6= 0

}
.

The symmetric group
∑
r acts on Dr

p in the natural way and we write D
(r)
p

for Dr
p/
∑
r . Let m = (m1, . . . ,mr) ∈ m ∈ D(r)

p . Consider the abstract Fuchsian

group Γ with signature s(Γ) =
(
0,
[
p , r. . . , p

])
and epimorphism ϕm: Γ→ Fp (Fp

as an additive group) defined by ϕm(xi) = mi . The group kerϕm is a surface
Fuchsian group that uniformizes a cyclic p -gonal Riemann surface. In fact, the
map π: H / kerϕm → H /Γ is a cyclic covering map of the Riemann sphere.
There is a natural decomposition M p

g =
⋃

M p
g (m) , where M p

g (m) is the set of

Riemann surfaces uniformized by pairs (Γ, ϕt) , with t ∈ m in D
(r)
p .

Let p > 2. In general the action of
∑
r on Dr

p is not transitive. So, for

r = 2p , the elements m1 =
(
1 2p, . . . , 1

)
and m2 = (1, p− 1, p. . . , 1, p− 1

)
belong to

distinct classes under the action of
∑
r .

Theorem 5.1 (Theorem 2 in [14]). The union M p
g is the disjoint union of

the sets M p
g (m) , where m ranges on the whole set D

(r)
p .

The integers p , g and r in the statement are related by the Riemann–Hurwitz
formula 2g = (p− 1)(r − 2).

We shall see that any connected component of M p
g contains real, cyclic p -

gonal Riemann surfaces. As a consequence, we find that M pR
g is not connected

in general.

Theorem 5.2. Let M p
g =

∐
M p

g (m) . Each connected component M p
g (m)

contains a real, cyclic p -gonal Riemann surface.
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Proof. Let now ∆ be an NEC group with signature

s(∆) =
(
0; +; [−];

{(
p r. . . , p

)})

and canonical presentation ∆ = 〈e, c0, c1, . . . , cr | c20 = c2i = (ci−1ci)
p = ec0e

−1cr =
1, 1 ≤ i ≤ r〉 . Consider the epimorphism θm: ∆→ Dp = 〈σ1, σ2 | σ2

i = (σ1σ2)p =
1, i = 1, 2〉 defined recursively by θm(c0) = σ2 , θm(ci) = θm(ci−1)(σ1σ2)mi .
Hence H / ker θm is a real Riemann surface since

∑
mi = 0. For instance,

σ2 represents a symmetry of H / ker θm . Finally, H / ker θm belongs to M p
g

since θ−1
m (〈σ1σ2〉) is a Fuchsian group with signature

(
0,
[
p r. . . , p

])
and ker θm =

ker θm/θ
−1
m (〈σ1σ2〉) .

The surface H / ker θm constructed above has a dihedral group Dp of auto-
morphisms with all the symmetries conformally conjugate since p is an odd prime.
Using [17], and [18], we find that the species of any of the symmetries in Dp is

+1, for all m ∈ D(r)
p . Hence each connected component of M p

g contains a real,
cyclic p -gonal Riemann surface with a symmetry with species +1.

As a particular case we have:

Theorem 5.3. The locus M pR
(p−1)2 of a real, cyclic p -gonal Riemann surface

in M(p−1)2 is disconnected for prime integers p > 2 .

Gross and Harris proved Theorem 5.3 in the case p = 3 (see [16]).
To prove that M pR

g is disconnected we used the fact that M p
g is disconnected.

The final paragraph of this work is to remark that, in general, given a connected
component M p

g (m) of M p
g , the set M p

g (m) ∩M pR
g of real p -gonal Riemann

surfaces contained in M p
g (m) is disconnected in general. The reason is that the

representations (Γ, ϕm) of cyclic p -gonal Riemann surfaces admit an action of∑
r , while the representations θm: ∆ → Dp , s(∆) =

(
0; +; [−];

{(
p r. . . , p

)})
, of

real, cyclic p -gonal Riemann surfaces admit only actions of cyclic groups.

Example 5.4. M 5
16

(
(1, 1, 1, 1, 1, 4, 4, 4, 4, 4)

)
∩M 5R

16 is not connected.

Let now ∆ be an NEC group with signature s(∆) =
(
0; +; [−];

{
(510)

})
and

presentation ∆ = 〈e, c0, c1, . . . , cr | c20 = c2i = (ci−1ci)
5 = ec0e

−1cr = 1, 1 ≤ i ≤
10〉 . We construct epimorphisms

θ1, θ2: ∆→ D5 = 〈σ1, σ2 | σ2
i = (σ1σ2)5 = 1, i = 1, 2〉 as follows:

θ1 :

θ1(c0) = σ2

θ1(c4) = σ2

θ1(c8) = σ2(σ1σ2)2

θ1(c1) = σ2(σ1σ2)

θ1(c5) = σ2(σ1σ2)

θ1(c9) = σ2(σ1σ2)

θ1(c2) = σ2

θ1(c6) = σ2

θ1(c10) = σ2.

θ1(c3) = σ2(σ1σ2)

θ1(c7) = σ2(σ1σ2)

θ2 :

θ2(c0) = σ2

θ2(c4) = σ2

θ2(c8) = σ2(σ1σ2)2

θ2(c1) = σ2(σ1σ2)

θ2(c5) = σ2(σ1σ2)4

θ2(c9) = σ2(σ1σ2)

θ2(c2) = σ2

θ2(c6) = σ2

θ2(c10) = σ2.

θ2(c3) = σ2(σ1σ2)

θ2(c7) = σ2(σ1σ2)
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We define the surfaces X1 = H / ker θ1 and X2 = H / ker θ2 . The transpo-
sition (5, 6) ∈ ∑10 maps the representation ϕ1: Γ1 = θ−1

1 (〈σ1σ2〉) → F5 to the
representation ϕ2: Γ2 = θ−1

2 (〈σ1σ2〉)→ Fp . Then the surfaces X1 and X2 belong
to the same connected component of M 5

16 .

Finally we see that X1 and X2 lie in different components of M 5R
16 . Assume

that X1 and X2 are in the same component of M 5R
16 . Let τ1 be a symmetry of

X1 contained in D5 . Since the action of D5 on X1 is not topologically equivalent
to the action of D5 on X2 , then there exists a Riemann surface X admitting an
action of D5 which is topologically equivalent to the action of D5 on X1 and such
that X has a symmetry τ /∈ D5 , not conformally equivalent to τ1 in Aut(X) .
So the order of ττ1 is even and τ induces a symmetry of X/〈τ1〉 . Now, let
α be an automorphism of order 5 in D5 . Since α and ταjτ are conjugate in
Aut(X) for 1 ≤ j ≤ 4, then the markings 1, 4, 1, 4, 1, 4, 1, 1, 4, 4 corresponding to
the components of m ∈ (1, 1, 1, 1, 1, 4, 4, 4, 4, 4) are situated symmetrically with
respect to τ in Fix(τ1) giving the rotation indices of α . This does not happen for
the representation θ1: ∆→ D5 .
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[14] González Díez, G.: On prime Galois coverings of the Riemann sphere. - Ann. Mat. Pura
Appl. 168, 1995, 1–15.

[15] Gromazki, G.: On a Harnack–Natanzon theorem for the family of real forms of Riemann
surfaces. - J. Pure Appl. Algebra 121, 1997, 253–269.

[16] Gross, B.H., and J. Harris: Real algebraic curves. - Ann. Sci. École Norm. Sup. 14,
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