ON THE CONNECTEDNESS OF THE LOCUS OF REAL RIEMANN SURFACES

Antonio F. Costa and Milagros Izquierdo

Universidad Nacional de Educacion a Distancia Depto. Matemáticas Fundamentales, Facultad Ciencias C/ Senda del Rey 9, E-28040 Madrid, Spain; acosta@mat.uned.es

Linköpings Universitet, Matematiska Institutionen S-581 83 Linköping, Sweden; miizq@mai.liu.se, mizquier@mat.uned.es

Abstract. It is well known that the functorial equivalence between pairs (X, σ) , where X is a Riemann surface which admits an antiholomorphic involution (symmetry) $\sigma: X \to X$, and real algebraic curves. We shall refer to such Riemann surfaces as real Riemann surfaces, following Klein's terminology. We consider the sets $\mathscr{M}_g^{\mathscr{R}}$ and $\mathscr{M}_g^{2\mathscr{R}}$ of real curves and real hyperelliptic curves, respectively in the moduli space \mathcal{M}_g of complex algebraic curves of genus g.

In this paper we prove that any real hyperelliptic Riemann surface can be quasiconformally deformed, preserving the real and hyperelliptic character, to a real hyperelliptic Riemann surface (X, σ) , such that X admits a symmetry τ , where Fix (τ) is connected and non-separating. As a consequence, we obtain the connectedness of the sets $\mathcal{M}_g^{2\mathcal{R}}(\subset \mathcal{M}_g)$ of all real hyperelliptic Riemann surfaces of genus g and $\mathcal{M}_g^{\mathcal{R}}(\subset \mathcal{M}_g)$ of all real Riemann surfaces of given genus g using a procedure different from the one given by Seppälä for $\mathcal{M}_g^{2\mathcal{R}}$ and Buser, Seppälä and Silhol for $\mathscr{M}_{g}^{\mathscr{R}}$.

A Riemann surface X is called a p-gonal Riemann surface, where p is a prime, if there exists a p -fold covering map from X onto the Riemann sphere. We prove in this paper that the subset of real p-gonal Riemann surfaces, $p \geq 3$, is not a connected subset of \mathcal{M}_q in general. This generalizes a result of Gross and Harris for real trigonal algebraic curves.

1. Introduction

Let X_g be a compact Riemann surface of genus $g \geq 2$. A symmetry σ of X_q is an anticonformal involution of X_q . The topological type of a symmetry is determined by properties of its fixed-point set $Fix(\sigma)$. By Harnack's theorem the fixed-point set of σ consists of $k \leq g+1$ Jordan curves, called *ovals*. The space X_q – Fix(σ) consists of one component if the quotient Klein surface $X_q/\langle \sigma \rangle$ is non-orientable and of two components if it is orientable. Let σ be a symmetry

²⁰⁰⁰ Mathematics Subject Classification: Primary 14H15; Secondary 30F10.

The first author is partially supported by DGICYT PB 99-0017. The second author is partially supported by the Swedish Natural Science Research Council (NFR). The second author thanks UNED for its hospitality.

of X_q with k ovals, then the species of σ is $+k$ or $-k$ according to whether X_g – Fix(σ) has two or one component, respectively.

Whereas a compact Riemann surface corresponds to a complex algebraic curve, a compact Riemann surface X_q with a symmetry σ corresponds to a real algebraic curve. Each conjugacy class of symmetries in $Aut(X_q)$ corresponds to an equivalence class, under real birational isomorphisms, of real algebraic curves, a real form of the complex algebraic curve. The ovals of the symmetry correspond to the graph components of the real form. So, if a Riemann surface X_q admits two non-conjugate symmetries σ_1 , σ_2 with k_1 and k_2 ovals, respectively, then the complex algebraic curve corresponding to X_g has two real forms with k_1 and k_2 components, respectively.

A Riemann surface X_q is called a *cyclic p-gonal Riemann surface*, where p is a prime, if X_g is a cyclic p-fold covering of the Riemann sphere. When $p = 2$ the surface X_q is called hyperelliptic.

We study in this paper the sets \mathcal{M}_g^{pR} of complex isomorphism classes of real cyclic p-gonal curves of genus q by means of their uniformization groups. The study of moduli spaces of real algebraic curves was initiated by Felix Klein [21]. Seppälä [23] proved that $\mathcal{M}_g^{2\mathcal{R}}$ is connected and Buser, Seppälä and Silhol [8] proved that $\mathscr{M}_{g}^{\mathscr{R}}$ is connected, using the fact that $\mathscr{M}_{g}^{2\mathscr{R}}$ is a connected subset of \mathcal{M}_g . There is another proof of this fact in [12] with the techniques described in [13]. We also give, for the sake of completeness, a proof of the connectedness of $\mathscr{M}_{g}^{\mathscr{R}}$ different from the ones given in [8] and in [12], and following the ideas in [10].

Let $\mathcal{M}^g_{\varepsilon k}$ be the subset of $\mathcal{M}^{\mathcal{R}}_g$ formed by all Riemann surfaces admitting a symmetry with species εk , where $\varepsilon = \pm$ and k is the number of ovals. The spaces $\mathcal{M}_{\varepsilon k}^g$ and $\mathcal{M}_{\varepsilon k}^g \cap \mathcal{M}_g^{2\mathcal{R}}$ are connected (see [11], [8] and Theorems 2.1 and 2.2). In this paper we prove not only that $\mathscr{M}_g^{2\mathscr{R}}$ is connected, but that $\mathscr{M}_{-1}^g \cap \mathscr{M}_g^{2\mathscr{R}}$, the subset formed by all real hyperelliptic Riemann surfaces admitting a nonseparating symmetry with one oval, cuts every $\mathscr{M}^g_{\varepsilon k} \cap \mathscr{M}^{2\mathscr{R}}_g$ for any possible species εk for a given genus g. We shall say that $\mathscr{M}_{-1}^g \cap \mathscr{M}_g^{2\mathscr{R}}$ is a spine for $\mathscr{M}_g^{2\mathscr{R}}$. The above property not only implies the connectedness of $\mathscr{M}_g^{2\mathscr{R}}$, but also gives a way to connect any pair of points in $\mathcal{M}_g^{2\mathcal{R}}$. In the same way we show that \mathcal{M}_{-1}^g is a spine for the space $\mathscr{M}_{g}^{\mathscr{R}}$ (see [10]).

The above result has been inspired by the following fact on elliptic curves: the set of real elliptic curves defined by rombic lattices, i.e., admitting a symmetry with one nonseparating oval, is a spine for the locus of real elliptic curves (see [20]).

On the contrary, we shall prove that the set $\mathscr{M}_g^{p\mathscr{R}}$, $p \geq 3$, of real cyclic pgonal Riemann surfaces is not connected in general. This generalizes a result of Gross and Harris for real, trigonal algebraic curves [16]. As a consequence the set of real p-gonal Riemann surfaces is not connected using Lemma 2.1 in [1].

The results presented in this work imply the following fact on equations of

algebraic curves. Given two algebraic curves admitting polynomial equations $y^p = P(x)$ and $y^p = Q(x)$ with real coefficients, we shall consider two types of allowed deformations for such equations. The first type of deformation is to modify continuously the real coefficients of $P(x)$ and $Q(x)$. The second type is to change the real form of a fixed complex algebraic curve. Then if $p = 2$ it is always possible to go from a curve to the other one, but this is not the case in general if $p > 2$.

2. NEC groups and moduli spaces of Riemann surfaces

Let X_g be a compact Riemann surface of genus $g \geq 2$. The surface X_g can be represented as a quotient $X_q = \mathcal{H}/\Gamma$ of the upper half plane \mathcal{H} under the action of a surface Fuchsian group Γ , that is, a cocompact orientation-preserving subgroup of the group $\mathscr{G} = \text{Aut}(\mathscr{H})$ of conformal and anticonformal automorphisms of $\mathscr H$ without elliptic elements. A discrete, cocompact subgroup Γ of Aut (\mathcal{H}) is called an *NEC* (non-euclidean crystallographic) group. The subgroup of Γ consisting of the orientation-preserving elements is called the canonical Fuchsian subgroup of Γ ; it is denoted by Γ^+ . The algebraic structure of an NEC group and the geometric structure of its quotient orbifold are given by the signature of Γ:

$$
(2.1) \t s(\Gamma) = (h; \pm; [m_1, \ldots, m_r]; \{(n_{11}, \ldots, n_{1s_1}), \ldots, (n_{k1}, \ldots, n_{ks_k})\}).
$$

The orbit space \mathscr{H}/Γ is an orbifold with underlying surface of genus h, having r cone points and k boundary components, each with $s_j \geq 0$ corner points. The signs "+" and "−" correspond to orientable and non-orientable orbifolds, respectively. The integers m_i are called the proper periods of Γ and they are the orders of the cone points of \mathscr{H}/Γ . The brackets $(n_{i1},...,n_{is_i})$ are the period cycles of Γ and the integers n_{ij} are the link periods of Γ and the orders of the corner points of \mathscr{H}/Γ . The group Γ is called the *fundamental group* of the orbifold \mathscr{H}/Γ .

A group Γ with signature (2.1) has a *canonical presentation* with generators:

$$
x_1, \ldots, x_r, e_1, \ldots, e_k, c_{ij}, \qquad 1 \le i \le k, \ 1 \le j \le s_i + 1,
$$

and $a_1, b_1, \ldots, a_h, b_h$ if \mathcal{H}/Γ is orientable or d_1, \ldots, d_h otherwise, and relators:

$$
x_i^{m_i}, i = 1, \ldots, r, \quad c_{ij}^2, (c_{ij-1}c_{ij})^{n_{ij}}, c_{i0}e_i^{-1}c_{is_i}e_i, \quad i = 1, \ldots, k, \ j = 2, \ldots, s_i + 1,
$$

and $x_1 \cdots x_r e_1 \cdots e_k a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_h b_h a_h^{-1} b_h^{-1}$ or $x_1 \cdots x_r e_1 \cdots e_k d_1^2 \cdots d_h^2$, according to whether \mathscr{H}/Γ is orientable or not.

This last relation is called the long relation.

The hyperbolic area of the orbifold \mathscr{H}/Γ coincides with the hyperbolic area of an arbitrary fundamental region of Γ and equals:

(2.2)
$$
\mu(\Gamma) = 2\pi \left(\varepsilon h - 2 + k + \sum_{i=1}^r \left(1 - \frac{1}{m_i} \right) + \frac{1}{2} \sum_{i=1}^k \sum_{j=1}^{s_i} \left(1 - \frac{1}{n_{ij}} \right) \right),
$$

where $\varepsilon = 2$ if there is a "+" sign and $\varepsilon = 1$ otherwise. If Γ' is a subgroup of Γ of finite index then Γ' is an NEC group and the following Riemann–Hurwitz formula holds:

(2.3)
$$
[\Gamma : \Gamma'] = \mu(\Gamma')/\mu(\Gamma).
$$

An NEC group Γ without elliptic elements is called a surface group and it has signature $(h; \pm; [-], \{(-), \dots, (-)\})$. In such a case \mathscr{H}/Γ is a Klein surface, i.e., a surface with a dianalytic structure of topological genus h , orientable or not according to the sign "+" or "−", and having k boundary components. Conversely, a Klein surface whose complex double has genus greater than one can be expressed as \mathscr{H}/Γ for some NEC surface group Γ . Furthermore, given a Riemann (respectively, Klein) surface represented as the orbit space $X = \mathcal{H}/\Gamma$, with Γ a surface group, a finite group G is a group of automorphisms of X if and only if there exists an NEC group Δ and an epimorphism $\theta: \Delta \to G$ with $\ker(\theta) = \Gamma$ (see [6]). The NEC group Δ is the lifting of G to the universal covering $\pi: \mathscr{H} \to \mathscr{H}/\Gamma$ and is called the the universal covering transformation *group* of (X, G) .

Given an NEC group Γ , we denote by $\mathbf{R}(\Gamma)$ the set of monomorphisms $r: \Gamma \to$ Aut (\mathscr{H}) such that $r(\Gamma)$ is discrete and cocompact. Two elements $r_1, r_2 \in \mathbf{R}(\Gamma)$ are said to be equivalent if there exists $g \in Aut(\mathcal{H})$ such that for each $\gamma \in \Gamma$, $r_1(\gamma) = gr_2(\gamma)g^{-1}$. The orbit space $\mathbf{T}(\Gamma)$ is called the *Teichmüller space of* Γ and it is homeomorphic to a real ball. Notice that $g \in Aut(\mathcal{H})$, where $Aut(\mathcal{H})$ are conformal and anticonformal automorphisms, then the groups uniformising the same orientable (but not oriented) Riemann surface appear in the same Teichmüller space. Let $\Gamma \leq \Delta$ be NEC groups, the inclusion mapping $i: \Gamma \to \Delta$ induces an embedding $m_i: \mathbf{T}(\Delta) \to \mathbf{T}(\Gamma)$ defined by $m_i[r] = [r \circ i]$ (see [6]).

Let $A(\Gamma)$ denote the automorphism group of Γ $(A(\Gamma)^+$ the orientationpreserving automorphism group if Γ is a Fuchsian group), and $I(\Gamma)$ the subgroup of inner automorphisms. The modular group $M(\Gamma) = A(\Gamma)/I(\Gamma)$ $(M(\Gamma)^+ =$ $A(\Gamma)^+/I(\Gamma)$ if Γ is a Fuchsian group), acts on $\mathbf{T}(\Gamma)$. The moduli space of Γ is the quotient space

$$
\mathscr{M}_g = \mathbf{T}(\Gamma)/M(\Gamma)
$$

and $\mathcal{M}_g = \mathbf{T}(\Gamma)/M(\Gamma)^+$ if Γ is a Fuchsian group. For Γ being a Fuchsian group, \mathcal{M}_q is the space of conformal classes of Riemann surfaces of genus g, or equivalently, the space of isomorphism classes of smooth complex projective algebraic curves.

Let now $\mathscr{M}_{g}^{\mathscr{R}}$ denote the subspace of \mathscr{M}_{g} consisting of real Riemann surfaces of genus g, that is, Riemann surfaces X_g admitting a symmetry (an anticonformal involution) $\sigma: X_q \to X_q$. If Γ is a uniformizing Fuchsian group of X_q , then σ induces an element of $M(\Gamma)$ acting on $\mathbf{T}(\Gamma)$. If we denote σ^* the action of σ on $\mathbf{T}(\Gamma)$, then $[X_q] \in \mathbf{T}(\Gamma)_{\sigma^*}$, where $\mathbf{T}(\Gamma)_{\sigma^*}$ is the set of fixed points under σ^* , and the converse holds. Now, $\mathscr{M}_{g}^{\mathscr{R}}$ is the projection of $\mathbf{T}_{\mathbf{R}} = \bigcup_{\sigma^*} \mathbf{T}(\Gamma)_{\sigma^*}$ on \mathcal{M}_q , where σ runs over the different topological types of involutions of Riemann surfaces of genus g .

Let $\mathcal{M}_{\varepsilon k}^g$ denote the space of real Riemann surfaces of genus g admitting a symmetry with species εk , $-g \leq \varepsilon k \leq g+1$. Then we have the following theorem:

Theorem 2.1. Let X_q be a Riemann surface of genus g. Given a symmetry $\sigma: X_g \to X_g$ with species ϵk , then $\mathcal{M}^g_{\epsilon k}$ is connected.

Proof. Let $X_g = \mathscr{H}/\Gamma$ and $X_g/\langle \sigma \rangle = \mathscr{H}/\Gamma'$, then Γ is an index two subgroup of Γ' and let $i: \Gamma \to \Gamma'$ be the inclusion map. Thus $\mathscr{M}^g_{\varepsilon k}$ is $m_i(\mathbf{T}(\Gamma'))/M(\Gamma)$ and since $\mathbf{T}(\Gamma')$ is connected then $\mathcal{M}^g_{\varepsilon k}$ is connected.

Let (X_q, ϕ) be a hyperelliptic Riemann surface of genus g. Given a symmetry σ of X_q with species ϵk , consider the finite group $G = \langle \phi, \sigma \rangle$. Then with the same proof as in Theorem 2.1 we have

Theorem 2.2. Let X_g be a hyperelliptic Riemann surface of genus g. Given a symmetry $\sigma: X_g \to X_g$ with species εk , then $\mathcal{M}_{\varepsilon k}^g \cap \mathcal{M}_g^{2\mathcal{R}}$ is connected.

Theorems 2.1 and 2.2 are well-known facts going back to Klein and Earle [21] and [11] (cf. [8]).

We have a natural decomposition of $\mathcal{M}_g^{\mathcal{R}}$ and $\mathcal{M}_g^{2\mathcal{R}}$ into the connected subspaces $\mathcal{M}_{\varepsilon k}^g$ and $\mathcal{M}_{\varepsilon k}^g \cap \mathcal{M}_{g}^{2\Re}$. We shall prove in the next two sections that the subspaces \mathcal{M}_{-1}^g and $\mathcal{M}_{-1}^g \cap \mathcal{M}_g^{2\mathcal{R}}$ of real and real hyperelliptic Riemann surfaces having a non-separating symmetry with one oval intersect any other subspace $\mathcal{M}^g_{\varepsilon k}$ and $\mathcal{M}^g_{\varepsilon k} \cap \mathcal{M}^{2\mathcal{R}}_g$, respectively. To prove this we have to find a (hyperelliptic) Riemann surface admitting two symmetries σ_1 , σ_2 with species -1 and εk , respectively for every possible species εk . Notice that the possible species εk for symmetries of hyperelliptic Riemann surfaces are: $\varepsilon = -1, 1 \leq k \leq g, \varepsilon = 1,$ $k = g + 1$, and $\varepsilon = 1$, $k = 1$ for g even, and $\varepsilon = 1$, $k = 2$ for g odd.

In the following we shall consider hyperelliptic Riemann surfaces (X_a, ϕ) with uniformizing surface Fuchsian group Γ , and where ϕ is the hyperelliptic involution.

Let σ_1 , σ_2 be symmetries of a hyperelliptic Riemann surface $X_q = \mathcal{H}/\Gamma$ with species $\varepsilon_1 k_1$ and $\varepsilon_2 k_2$, respectively. The involutions σ_1 , σ_2 and ϕ generate a finite group G. The group G is isomorphic either to D_n or to $D_n \times C_2$, with *n* the order of $\sigma_1 \sigma_2$. Notice that $G = D_n$ if and only if $\phi = (\sigma_1 \sigma_2)^{n/2}$. Then there exist an NEC group Δ (the universal covering transformation group) and an epimorphism $\theta: \Delta \to G$ with ker $(\theta) = \Gamma$. If $\theta^{-1}(\langle \sigma_1 \rangle) = \Lambda_1$, $\theta^{-1}(\langle \sigma_2 \rangle) = \Lambda_2$, and $\theta^{-1}(\langle \phi \rangle) = \Lambda_h$ then $s(\Lambda_1) = (h_1, \varepsilon_1, [-], \{(-)^{k_1}\}\)$, $s(\Lambda_2) = (h_2, \varepsilon_2, [-], \{(-)^{k_2}\}\)$

and $s(\Lambda_h) = (0, +, [2, \frac{2g+2}{3}, 2], \{-\})$, where $|\Delta : \Lambda_1| = |\Delta : \Lambda_2| = |\Delta : \Lambda_h| = n$ (or $2n$) and $|\Lambda_1 : \Gamma| = |\Lambda_2 : \Gamma| = |\Lambda_h : \Gamma| = 2$.

The aim is to give signatures Δ and epimorphisms $\theta: \Delta \rightarrow G$ such that $s(\Lambda_1) = (h_1, -, [-], \{(-)\})$, and $s(\Lambda_2) = (h_2, \varepsilon, [-], \{(-)^k\})$ where εk ranges over the possible species for a hyperelliptic Riemann surface.

In order to know the signature of Λ_i from the epimorphism θ we use the following procedure.

Let G' be the set of generators of a canonical presentation of Δ , the Schreier $\langle \sigma_i \rangle$ -coset graph S_i is the graph with vertices the $\langle \sigma_i \rangle$ -cosets in G and labelled directed edges joining $\langle \sigma_i \rangle \alpha_i$ with $\langle \sigma_i \rangle \alpha_j$ with label $g \in G'$ if $\langle \sigma_i \rangle \alpha_i \theta(g) = \langle \sigma_i \rangle \alpha_j$. Let $c \in G'$ be a reflection such that θ maps c to a conjugate of σ_1 or σ_2 in G. The action of c on the Λ_i -cosets is the same as the action of $\theta(c)$ on the $\langle \sigma_i \rangle$ cosets. Each coset $\Lambda_i \alpha$ fixed by c gives a reflection $c_{\alpha} = \alpha c \alpha^{-1}$ in Λ_i , called a reflection induced by c. In this way we obtain representatives of all conjugacy classes of reflections in Λ_i . Now each period cycle in $(s\Lambda_i)$ gives one conjugacy class of reflections in Λ_i . Suppose that d is another reflection in Δ and that cd has finite order. Two induced reflections (c_{α} and d_{β} , c_{α} and c_{β} or d_{α} and d_{β}) are conjugate in Λ_i if $\langle \sigma_i \rangle$ and $\langle \sigma_i \rangle$ are in the same orbit under the action of $\theta(cd)$ on the $\langle \sigma_i \rangle$ -cosets ([17]). In terms of the Schreier graph: two reflection loops c_{α} and d_{β} define conjugate reflections in Λ_i if the vertices of these reflection loops are joined by a path with the sides alternatively labelled by c and d . Finally, assume c is the reflection generator and e is the hyperbolic generator corresponding to an empty period cycle in $s(\Delta)$ (i.e., a period cycle without link periods). If $\sigma_1\sigma_2$ has even order, then c can induce several reflections in Λ_i . In this case all the reflections c_{α} and c_{β} are conjugate in Λ_i if and only if $G = D_n$ and $\theta(e) \neq 1$ (see [15] and [17]).

The sign of $s(\Lambda_i)$, $i = 1, 2$, is determined by the following fact: the sign of $s(\Lambda_i)$ is + if and only if in the Schreier graph S_i the product of the labels of each cycle (not containing reflection loops) is an orientation preserving element of Δ (see [18]).

3. The connection of the locus of real hyperelliptic Riemann surfaces

Notice that the possible species εk for symmetries of hyperelliptic Riemann surfaces are: $\varepsilon = -1$, $1 \le k \le g$, $\varepsilon = 1$, $k = g + 1$, and $\varepsilon = 1$, $k = 1$ for g even, and $\varepsilon = 1$, $k = 2$ for q odd. With the notation above:

Theorem 3.1. We have $\mathcal{M}_{-1}^g \bigcap \mathcal{M}_{-k}^g \bigcap \mathcal{M}_g^{2\mathcal{R}} \neq \emptyset$ for $1 \leq k \leq g$ for every genus $g \geq 2$.

Proof. We divide the proof in two cases according to the parity of $g - k$.

(1) $q - k$ odd. Let Δ be an NEC group with signature

(3.1)
$$
s(\Delta) = \left(0; +; [2^{(g-k+1)/2}]; \left\{ \left(4, 4, \overbrace{2, \ldots, 2}^{k-1} \right) \right\} \right).
$$

and canonical presentation as given in Section 2. Let θ : $\Delta \rightarrow D_4$ be the epimorphism defined by $\theta(x_j) = \phi = (\sigma_1 \sigma_2)^2$, for all j, $\theta(c_{11}) = \theta(c_{1k+2}) = \sigma_1$, $\theta(c_{1i}) = \sigma_2$ for *i* even, and $\theta(c_{1i}) = \sigma_2\phi$ for *i* odd, $2 \leq i \leq k-1$, $\theta(e_1) = \phi^i$, where $i \in \{0, 1\}$ in order to fulfill the long relation.

The Riemann formula applied to ker $\theta \leq \Delta$ yields:

(3.2)
$$
8\left(-1+\frac{g-k+1}{4}+\frac{k-1}{4}+\frac{3}{4}\right)=2(g-4+3)=2(g-1),
$$

Then ker θ is a Fuchsian surface group of genus g. Let $X_g = \mathcal{H}/\ker \theta$, $\Lambda_1 = \theta^{-1}(\langle \sigma_1 \rangle)$ and $\Lambda_2 = \theta^{-1}(\langle \sigma_2 \rangle)$. The reflection c_{11} induces two reflections in Λ_1 that are conjugate because $\theta(c_{11}c_{12}) = \sigma_1\sigma_2$; then there is only one conjugacy class of reflections and one empty period-cycle in $s(\Lambda_1)$. In the Schreier graph of $\langle \sigma_1 \rangle$ -cosets there is an orientation-reversing cycle with labelled edges c_{12} , c_{13} and c_{11} . Hence there is a – sign and one empty period cycle in $s(\Lambda_1)$, then the species of σ_1 is -1 .

Each generating reflection c_{1i} , $k+1 \geq i \geq 2$, induces one conjugacy class of reflections in Λ_2 . Hence there are $k+1-1=k$ empty period-cycles in the signature of $\theta^{-1}(\langle \sigma_2 \rangle) = \Lambda_2$. In the Schreier graph of $\langle \sigma_2 \rangle$ -cosets there is a cycle with labelled edges x_1 and c_{12} and there is a – sign in $s(\Lambda_2)$. The symmetry σ_2 has species $-k$.

Notice that $X_g/\langle \phi \rangle$ is an orbifold with $4\left(\frac{1}{2}\right)$ $(\frac{1}{2}(g - k + 1)) + 2(k) = 2g + 2$ conic points of order 2 and genus $\frac{1}{2}(g-4+3-g-1+2)=0$.

(2) $g - k$ even. Let Δ be a group with signature

(3.3)
$$
s(\Delta) = \left(0; +; [2^{(g-k)/2}]; \left\{ \left(\overbrace{2, \ldots, 2}^{k+3} \right) \right\} \right).
$$

Let $\theta: \Delta \to D_2 \times C_2$ be the epimorphism defined by $\theta(x_i) = \phi$, for all j, $\theta(c_{11}) =$ $\theta(c_{1k+4}) = \sigma_1$, $\theta(c_{1i}) = \sigma_2$ for i even, and $\theta(c_{1i}) = \sigma_2 \phi$ for i odd, $2 \leq i \leq k+2$, $\theta(c_{1k+3}) = \sigma_1 \phi, \ \theta(e_1) = \phi^i$, where $i \in \{0, 1\}$ in order to fulfil the long relation.

The Riemann formula applied to ker $\theta \leq \Delta$ gives

(3.4)
$$
8\left(-1+\frac{k+3}{4}+\frac{g-k}{4}\right)=2(g-4+3)=2(g-1).
$$

Then ker θ is a Fuchsian surface group of genus g. We define $X_g = \mathcal{H}/\ker \theta$, $\Lambda_1 = \theta^{-1}(\langle \sigma_1 \rangle)$ and $\Lambda_2 = \theta^{-1}(\langle \sigma_2 \rangle)$. The same argument as in the case (1) shows that there is only one empty period-cycle in $s(\Lambda_1)$. In the Schreier graph of $\langle \sigma_1 \rangle$ -cosets there is an orientation-reversing 3-cycle with edges labelled x_1, c_{1k+3} and c_{11} . Then the signature of Λ_1 is $(w, -, [-], \{(-)\})$ and the species of σ_1 $is -1.$

The generating reflection c_{12} induces one conjugacy class of reflections in Λ_2 . Each generating reflection $c_{1,2i}$, $2 \ge i \ge \frac{1}{2}$ $\frac{1}{2}(k-1)$, induces two conjugacy classes of reflections in Λ_2 . Hence there are $\frac{1}{2}(2(k-1)) + 1 = k$ empty period-cycles in the signature of $\theta^{-1}(\langle \sigma_2 \rangle) = \Lambda_2$. In the Schreier graph of $\langle \sigma_2 \rangle$ -cosets there is an orientation-reversing 3-cycle with edges labelled x_1, c_{12} and c_{13} . The symmetry σ_2 has species $-k$.

Again, $X_g/\langle \phi \rangle$ is an orbifold with $4\left(\frac{1}{2}\right)$ $(\frac{1}{2}(g-k)) + 2(k+1) = 2(g+1)$ conic points of order 2 and genus $\frac{1}{2}(g - 4 + 3 - g - 1 + 2) = 0$, that is, X_g is a hyperelliptic surface.

The surface X_g is a point in $\mathcal{M}_{-1}^g \bigcap \mathcal{M}_{-k}^g \cap \mathcal{M}_g^{2\mathcal{R}}$, so then $\mathcal{M}_{-1}^g \bigcap \mathcal{M}_{-k}^g \cap$ $\mathscr{M}_g^{2\mathscr{R}} \neq \emptyset$.

Theorem 3.2 ([3]). We have $\mathcal{M}_{-1}^g \bigcap \mathcal{M}_{g+1}^g \bigcap \mathcal{M}_g^{2\mathcal{R}} \neq \emptyset$ for every genus $g \geq 2$.

Proof. The proof is as for Theorem 3.1, Case 1, but now taking as Δ an NEC group with signature

(3.5)
$$
s(\Delta) = \left(0; +; [-]; \left\{ \left(4, 4, \overbrace{2, \ldots, 2}^{g} \right) \right\} \right),
$$

and an epimorphism $\theta: \Delta \to D_4$ defined by $\theta(c_{1,1}) = \sigma_1$, $\theta(c_{1,2j}) = \sigma_2$, $\theta(c_{1,2j+1})$ $=\sigma_2\phi, 1 \leq j \leq \lfloor \frac{1}{2} \rfloor$ $\frac{1}{2}(g+1)$, $\theta(c_{1,0}) = \sigma_2\phi^i$, where $i=0$ for even g and $i=1$ for odd g and $\theta(e) = 1$.

Theorem 3.3. We have $\mathcal{M}_{-1}^g \bigcap \mathcal{M}_{0}^g \bigcap \mathcal{M}_{+k}^g \bigcap \mathcal{M}_{g}^{2\mathcal{R}} \neq \emptyset$, for $k = 1$ for even genera q, and $k = 2$ for odd genera $q > 2$.

Proof. First of all, notice that a symmetry of a hyperelliptic Riemann surface of genus g that separates, satisfies the fact that the number of its ovals is either $g+1$ or 1 if the genus g is even, and either $g+1$ or 2 if the genus g is odd.

Consider an NEC group with signature $s(\Delta) = (0; +; [-]; \{ (2, 2g+2, 2g+2) \})$, and an epimorphism $\theta: \Delta \to D_{2(q+1)} \times C_2$ defined by $\theta(c_{11}) = \sigma_1$, $\theta(c_{12}) = \sigma_1 \phi$, $\theta(c_{13})=\sigma_2$.

The Riemann formula applied to ker $\theta \leq \Delta$ gives:

$$
(3.6) \ 8(g+1)\left(-1+\frac{1}{4}+\frac{2g+1}{2(g+1)}\right)=8(g+1)\left(\frac{-3(g+1)+4g+2}{4(g+1)}\right)=2(g-1).
$$

We define $X_g = \mathcal{H}/\ker \theta$, $\Lambda_1 = \theta^{-1}(\langle \sigma_1 \rangle)$, $\Lambda_2 = \theta^{-1}(\langle \sigma_2 \rangle)$ and $\Lambda_3 =$ $\theta^{-1}(\langle \sigma_2 \phi \rangle)$. The same argument as in Theorem 3.1 shows that there is only one empty period-cycle in $s(\Lambda_1)$. In the Schreier graph of $\langle \sigma_1 \rangle$ -cosets there is an orientation-reversing 5-cycle with edges labelled c_{12} , c_{13} , c_{11} , c_{12} and c_{13} . Then the signature of Λ_1 is $(w, -, [-], \{(-)\})$ and the species of σ_1 is -1 .

The generating reflection c_{12} induces four reflections in Λ_2 . These reflections are conjugated by $\theta((c_{12}c_{13})^{g+1}) = (\sigma_1\sigma_2)^{g+1}\phi^{g+1}$ and $\theta((c_{13}c_{11})^{g+1}) =$ $(\sigma_1 \sigma_2)^{g+1}$. Then Λ_2 contains two conjugacy classes of reflections induced by c_{12} if g is odd, and one if g is even. The Schreier graph of $\langle \sigma_2 \rangle$ is bipartite: the set of vertices $\{(\sigma_2)(\sigma_1\sigma_2)^i\phi^\varepsilon \mid 1 \leq i \leq 2g+2, \ \varepsilon \in \{0,1\}\}$ can be separated in the sets $A = \{(\overline{i}, 0), (\overline{i}, 1), 1 \le i \le q+1\}$ and $B = \{(\overline{i}, 0), (\overline{i}, 1), q+2 \le i \le 2q+2\}$, where the $\langle \sigma_2 \rangle$ -cosets are represented by the corresponding exponent of $\sigma_1 \sigma_2$. The symmetry σ_2 has species $+2$ if the genus g is odd, and σ_2 has species $+1$ if the genus q is even.

The Schreier graph of $\langle \sigma_2 \phi \rangle$ has no reflection loops, then $\sigma_2 \phi$ has species 0. Again, $\mathcal{H}/\theta^{-1}(\langle \sigma_1, \sigma_2 \rangle)$ is an orbifold with $(2g+2)(1) = 2(g+1)$ conic points of order 2 and genus 0.

The surface X_g defined by (Δ, θ) admits the required three symmetries σ_1 , σ_2 , and $\sigma_2\phi$.

We can now establish some direct consequences of the results 3.1, 3.2 and 3.3.

Two real hyperelliptic Riemann surfaces (X_i, σ_i) $i = 1, 2$, are quasiconformally equivalent in the hyperelliptic locus if there is a quasiconformal deformation F_t from X_1 to X_2 such that $X_t = F_t(X_1)$ is a hyperelliptic surface and $F_t \circ \sigma_1 \circ F_t^{-1}$ is a symmetry of X_t . Now we have the result quoted in the abstract:

Theorem 3.4. Every real hyperelliptic Riemann surface is quasiconformally equivalent in the hyperelliptic locus to a real hyperelliptic Riemann surface (X, σ) , such that X admits an antiholomorphic involution τ , where $Fix(\tau)$ has one nonseparating connected component.

Proof. Each set $\mathcal{M}_{\varepsilon k}^g \bigcap \mathcal{M}_g^{2\mathcal{R}}$ corresponds to the real hyperelliptic Riemann surfaces with the same topological type. By Lemma 1.2 in [22] the set $\mathcal{M}_{\varepsilon k}^g \bigcap \mathcal{M}_{g}^{2\mathcal{R}}$ is a quasiconformal class of real hyperelliptic Riemann surfaces (this is a consequence of deep results in Teichmüller theory); then the theorem follows from Theorems 3.1, 3.2 and 3.3.

A consequence of the above theorem is the following:

Corollary 3.5. The space $\mathcal{M}_g^{2\mathcal{R}}$ of real hyperelliptic algebraic curves is a connected subspace of the moduli space \mathcal{M}_g of complex algebraic curves. Furthermore the subset formed by all real hyperelliptic Riemann surfaces admitting a nonseparating symmetry with one oval $\mathcal{M}_{-1}^g \cap \mathcal{M}_g^{2\mathcal{R}}$ cuts every subset $\mathcal{M}_{\varepsilon k}^g \cap \mathcal{M}_g^{2\mathcal{R}}$ for any possible species εk for a given g, i.e., \mathcal{M}_{-1}^g is a spine for $\mathcal{M}_g^{2\mathcal{R}}$.

4. On the existence of spines in $\mathscr{M}_g^{\mathscr{R}}$

We have proved in the previus section that $\mathcal{M}_{-1}^g \bigcap \mathcal{M}_{\varepsilon k}^g \neq \emptyset$ for εk being negative, 0, $g + 1$, and $+1$ if g is even or $+2$ if g is odd. To prove that \mathcal{M}_{-1}^g is a spine of $\mathscr{M}_{g}^{\mathscr{R}}$ we must find surfaces X_g admitting two symmetries σ_1 , σ_2

such that σ_1 has species -1 and σ_2 has species $+k$, with $k = g + 1 - 2t$ and $1 \leq t \leq \lfloor \frac{1}{2} \rfloor$ $\frac{1}{2}(g-2)$.

Let σ_1 , σ_2 be symmetries of a Riemann surface X_g with species $+1$ and +k, respectively. The involutions σ_1 , σ_2 generate a finite group G. $G = D_n$ = $\langle \sigma_1, \sigma_2 \rangle$, with n the order of $\sigma_1 \sigma_2$.

Theorem 4.1 ([10]). We have $\mathcal{M}_{-1}^g \bigcap \mathcal{M}_{+k}^g \neq \emptyset$, for $k = g + 1 - 2t$, $1 \le t \le \frac{1}{2}(g-2)$ for even general g, and $1 \le t \le \frac{1}{2}(g-3)$ for odd general g. $\frac{1}{2}(g-2)$ for even genera g, and $1 \le t \le \frac{1}{2}$ $\frac{1}{2}(g-3)$ for odd genera g.

Proof. The method of the proof is similar to the one used in Theorems 3.1, 3.2 and 3.3. We consider suitable NEC groups and epimorphisms θ from them to dihedral groups $D_n = \langle \sigma_1, \sigma_2 \rangle$. The surface $X = \mathcal{H} / \text{ker } \theta$ admits two symmetries given by $X \to X/\langle \sigma_i \rangle$, $i = 1, 2$, with species -1 and $+k$.

We divide the proof in three cases according to the parity of g and k . We shall only give the signature of the groups Δ and the epimorphisms $\theta: \Delta \to D_n$ in each case.

(1) g even, $k \equiv g + 1 \pmod{2}$ and $k \leq g - 1$ ([19]). Let Δ be a group with signature

(4.1)
$$
s(\Delta) = \left(\frac{1}{2}(g+1-k); -; [-]; \{(2,2)(-)^{(k-1)/2}\}\right),
$$

and $\theta: \Delta \to D_2$ the epimorphism defined by $\theta(d_i) = \sigma_1$, for all j, $\theta(c_{11}) =$ $\theta(c_{13}) = \sigma_2, \ \theta(c_{12}) = \sigma_1, \ \theta(e_1) = 1, \ \theta(c_{i1}) = \sigma_2, \ \theta(e_i) = 1, \text{ for all } i \geq 2.$

(2) g odd, $k \equiv q + 1 \pmod{4}$. Let Δ be a group with signature

(4.2)
$$
s(\Delta) = \left(\frac{1}{4}(g+1-k); -; [-]; \left\{ \left(4, 2, ..., 2, 4\right) \right\} \right).
$$

Let $\theta: \Delta \to D_4$ be the epimorphism defined by $\theta(d_j) = \sigma_1$, for all j, $\theta(c_{1,1}) =$ $\theta(c_{1,k+2}) = \sigma_1, \ \theta(c_{1,2i}) = \sigma_2, \ \theta(c_{1,2i+1}) = \sigma_2(\sigma_1\sigma_2)^2, \ 1 \leq i \leq \frac{1}{2}$ $\frac{1}{2}k, \ \theta(e_1)=1.$

(3) g odd, $k \equiv g - 1 \pmod{4}$, $3 < k$. Let Δ be a group with signature either

(4.3)
$$
s(\Delta) = \left(\frac{1}{4}(g-1-k); -; [-]; \left\{ \left(4, \overbrace{2,\ldots,2}^{k-3}, 4\right), (-)\right\} \right), \quad \text{if } k < g-1
$$

or

(4.4)
$$
s(\Delta) = (0; +; [-]; \{ (4, 2, ..., 2, 4), (-) \}), \text{ if } k = g - 1.
$$

Let $\theta: \Delta \to D_4$ be the epimorphism defined by $\theta(d_i) = \sigma_1$, for all j, $\theta(c_{1,1}) =$ $\theta(c_{1,k}) = \sigma_1 \text{, } \theta(c_{1,2i}) = \sigma_2 \text{, } \theta(c_{1,2i+1}) = \sigma_2(\sigma_1\sigma_2)^2 \text{, } 1 \leq i \leq \frac{1}{2}$ $\frac{1}{2}k-1, \ \theta(e_1)=1,$ $\theta(c_{2,1}) = \sigma_2$ and $\theta(e_2) = 1$.

We can now establish

Theorem 4.2. Every real Riemann surface is quasiconformally equivalent in the real locus to a real Riemann surface (X, σ) , such that X admits an antiholomorphic involution τ , where $Fix(\tau)$ has one non-separating connected component.

Proof. Each set $\mathcal{M}_{\varepsilon k}^g$ corresponds to the real Riemann surfaces with the same topological type. By Lemma 1.2 in [22] there is a quasiconformal class of real Riemann surfaces. Thus the theorem follows from Theorems 3.1, 3.2, 3.3 and 4.1.

A consequence of the above theorem is the following:

Corollary 4.3. The space $\mathcal{M}_{g}^{\mathcal{R}}$ of real algebraic curves is a connected subspace of the moduli space \mathcal{M}_g of complex algebraic curves. Furthermore the subset formed by all real Riemann surfaces admitting a non-separating symmetry with one oval, \mathcal{M}_{-1}^g , cuts every subset $\mathcal{M}_{\varepsilon k}^g$ for any possible species εk for a given g, i.e., \mathscr{M}^g_{-1} is a spine for $\mathscr{M}^{\mathscr{R}}_g$.

Given the decomposition $\mathscr{M}_{g}^{\mathscr{R}} = \bigcup \mathscr{M}_{k}^{g}$, we try to find another spine different from \mathscr{M}_{-1}^g , i.e., we are looking for $\varepsilon' k' \neq -1$ such that $\mathscr{M}_{\varepsilon k}^g \cap \mathscr{M}_{\varepsilon' k'}^g \neq \emptyset$ for all possible species εk .

Theorem 4.4 ([10]). Let $g > 2$ be an even integer. Then the only spine in the decomposition of the subset $\mathcal{M}_{g}^{\mathcal{R}} = \bigcup \mathcal{M}_{k}^{g}$ of real Riemann surfaces of \mathcal{M}_{g} is the subspace \mathcal{M}_{-1}^g .

Proof. Assume that g is an integer and $\varepsilon' k' \neq -1$ is such that $\mathscr{M}^g_{\varepsilon k} \bigcap_{\varepsilon' k'} \mathscr{M}^g_{\varepsilon' k'} \neq$ \emptyset for all possible species εk for g. First of all, by Theorem 3.3 in [3], if $\mathcal{M}_{g+1}^g \cap \mathcal{M}_{\varepsilon' k'}^g$ $\neq \emptyset$, then the species $\varepsilon' k' \geq -1$. By Theorem 3.4 in [3], if $\mathcal{M}_{-g}^g \bigcap_{\varepsilon' k'} \mathcal{M}_{\varepsilon' k'}^g \neq \emptyset$, then the species $\varepsilon' k' \leq 0$. On the other hand, by Theorem 3.2 in [19] $\mathscr{M}_{0}^{g} \cap \mathscr{M}_{\varepsilon k}^{g} = \emptyset$ for even genera g and even $k \neq 0$. Then if g is even there is no such a $\varepsilon' k'$.

With the same proof we can show the following

Remark 4.5. Let $q > 2$ be an even integer. Then the only spine in the decomposition of the subset $\mathcal{M}_g^{2\mathcal{R}}$ of real hyperelliptic Riemann surfaces of \mathcal{M}_g is the subspace $\mathscr{M}^g_{-1} \bigcap \mathscr{M}^{2\mathscr{R}}_g$.

Notice that in the proof of the above theorems the hypothesis on the parity of g is only used to avoid the possibility $k' = 0$, then the only possible spine for g odd is \mathcal{M}_0^g . The results of [19] assert that \mathcal{M}_0^g is in fact a spine.

Theorem 4.6 ([10]). Let g be an odd integer. Then a real algebraic curve C_g of genus g is quasiconformally equivalent to a real curve C'_g such that the complexification of C_g' admits a real form which is purely imaginary.

Proof. We have to prove that there exist real Riemann surfaces admitting two symmetries with species 0 and εk , where εk runs over all possibilities. The signatures and epimorphisms listed below give us the required real Riemann surfaces $([19])$.

 $(1.1) \varepsilon = -$, k odd. Let Δ be a group with signature

(4.5)
$$
s(\Delta) = \left(0; +; \left[4, \frac{(g-k)/2}{2, \ldots, 2}\right]; \{(2^k)\}\right).
$$

We construct an epimorphism $\theta: \Delta \to D_4 = \langle \sigma_1, \sigma_2 \rangle$ by sending the elliptic generator of order 4 to $\sigma_1 \sigma_2$, the elliptic generators of order 2 to $(\sigma_1 \sigma_2)^2$, the generating reflection generators alternately to σ_2 and $\sigma_2(\sigma_1\sigma_2)^2$, and e to $\sigma_1\sigma_2$ or $(\sigma_1 \sigma_2)^3$ (depending on the parity of $\frac{1}{2}(g-k)$).

(1.2) $\varepsilon = -$, k even. Let Δ be a group with signature

(4.6)
$$
s(\Delta) = \left(0; +; \left[2^{(g+3-k)/2}\right]; \left\{ \left(\overbrace{2,\ldots,2}^{k}\right) \right\} \right).
$$

We define an epimorphism θ from Δ to $D_2 \times C_2 = \langle \sigma_1, \sigma_2, \phi \rangle$ by mapping all but one elliptic generators to ϕ , one elliptic generator to $\sigma_1 \sigma_2 \phi$, the generating reflections and glide reflection to σ_2 alternatively $\sigma_2\phi$ and e to $\sigma_1\sigma_2\phi^h$, where $h = 0$ if $\frac{1}{2}(g + 3 - k)$ is even and $h = 1$ if $\frac{1}{2}(g + 3 - k)$ is odd.

(2) $\varepsilon = +$. In this case k is even, since $k \equiv g + 1 \pmod{2}$. Let Δ be a group with signature

(4.7)
$$
s(\Delta) = (0; +; [2^{g+3-k}]; \{(-)^{k/2}\}).
$$

We define an epimorphism θ from Δ to $D_2 = \langle \sigma_1, \sigma_2 \rangle$ by mapping the elliptic generators to $\sigma_1 \sigma_2$, the generating reflections to σ_2 , and the connecting generators e_i to 1.

Notice that the Schreier graph of $\langle \sigma_1 \rangle$ in D_2 contain no reflection loops, so the species of σ_1 is 0.

The above proof is different from the one given in [10] in the cases 1.1 and 1.2. The surfaces in the cases 1.1 and 1.2 of Theorem 4.6 are hyperelliptic, being the hyperelliptic involution $\phi = (\sigma_1 \sigma_2)^2$ in the case 1.1 and ϕ in 1.2. Then we have the following result:

Remark 4.7. Let g be an odd integer. Then a real hyperelliptic algebraic curve C_g of genus g is quasiconformally equivalent in the hyperelliptic locus to a real hyperelliptic curve C'_g such that the complexification of C'_g admits a real form which is purely imaginary.

5. The locus of real cyclic p -gonal Riemann surfaces

Let p be a prime integer. A cyclic p -gonal Riemann surface is a closed Riemann surface which can be realized as a cyclic p-fold covering space of the Riemann sphere (see [9] and [16]). We will denote by \mathcal{M}_g^p the subset of cyclic pgonal Riemann surfaces in \mathcal{M}_g . The complexification of a smooth cyclic p-gonal real algebraic curve gives rise to a cyclic p-gonal Riemann surface X_g with a symmetry, we shall call such a surface X_q a real cyclic p-gonal Riemann surface.

Let \mathcal{M}_g^{pR} be the locus of real cyclic p-gonal Riemann surfaces in the moduli space of Riemann surfaces of genus g. In Section 3 we proved that $\mathcal{M}_g^{2\mathcal{R}}$ is connected, and now we want to show that the situation is essentially different for \mathscr{M}_g^{pR} , $p > 2$. The set of cyclic p-gonal Riemann surfaces is actually disconnected in general. Let $P^{n}(F_p)$ denote the *n*-dimensional projective space over the finite field with p elements, and define the following subset D_p^r of $P^{r-1}(F_p)$:

$$
D_p^r = \left\{ m = (m_1, \ldots, m_r) \mid \sum_{1}^r m_i = 0, \ \Pi_1^r m_i \neq 0 \right\}.
$$

The symmetric group \sum_r acts on D_p^r in the natural way and we write $D_p^{(r)}$ for D_p^r / \sum_r . Let $m = (m_1, \ldots, m_r) \in \overline{m} \in D_p^{(r)}$. Consider the abstract Fuchsian group Γ with signature $s(\Gamma) = (0, [p, \ldots, p])$ and epimorphism $\varphi_m: \Gamma \to F_p$ (F_p) as an additive group) defined by $\varphi_m(x_i) = m_i$. The group ker φ_m is a surface Fuchsian group that uniformizes a cyclic p-gonal Riemann surface. In fact, the map $\pi: \mathscr{H}/\ker \varphi_m \to \mathscr{H}/\Gamma$ is a cyclic covering map of the Riemann sphere. There is a natural decomposition $\mathcal{M}_g^p = \bigcup \mathcal{M}_g^p(\overline{m})$, where $\mathcal{M}_g^p(\overline{m})$ is the set of Riemann surfaces uniformized by pairs (Γ, φ_t) , with $t \in \overline{m}$ in $D_p^{(r)}$.

Let $p > 2$. In general the action of \sum_{r} on D_p^r is not transitive. So, for $r = 2p$, the elements $m_1 = (1, \frac{2p}{p}, \frac{1}{p})$ and $m_2 = (1, p - 1, \frac{p}{p}, \frac{1}{p}, \frac{1}{p})$ belong to distinct classes under the action of \sum_{r} .

Theorem 5.1 (Theorem 2 in [14]). The union \mathcal{M}_g^p is the disjoint union of the sets $\mathcal{M}_g^p(\overline{m})$, where \overline{m} ranges on the whole set $D_p^{(r)}$.

The integers p, g and r in the statement are related by the Riemann–Hurwitz formula $2g = (p-1)(r-2)$.

We shall see that any connected component of \mathcal{M}_g^p contains real, cyclic pgonal Riemann surfaces. As a consequence, we find that $\mathscr{M}_g^{p\mathscr{R}}$ is not connected in general.

Theorem 5.2. Let $\mathcal{M}_g^p = \coprod \mathcal{M}_g^p(\overline{m})$. Each connected component $\mathcal{M}_g^p(\overline{m})$ contains a real, cyclic p-gonal Riemann surface.

Proof. Let now Δ be an NEC group with signature

$$
s(\Delta) = (0; +; [-]; \{ (p \, . \, . \, , p) \})
$$

and canonical presentation $\Delta = \langle e, c_0, c_1, \ldots, c_r | c_0^2 = c_i^2 = (c_{i-1}c_i)^p = ec_0e^{-1}c_r =$ 1, $1 \leq i \leq r$. Consider the epimorphism $\theta_m: \Delta \to D_p = \langle \sigma_1, \sigma_2 | \sigma_i^2 = (\sigma_1 \sigma_2)^p =$ 1, $i = 1, 2$ defined recursively by $\theta_m(c_0) = \sigma_2$, $\theta_m(c_i) = \theta_m(c_{i-1})(\sigma_1\sigma_2)^{m_i}$. Hence $\mathscr{H}/\ker \theta_m$ is a real Riemann surface since $\sum m_i = 0$. For instance, σ_2 represents a symmetry of $\mathscr{H}/\ker \theta_m$. Finally, $\mathscr{H}/\ker \theta_m$ belongs to \mathscr{M}_{g}^p since $\theta_m^{-1}(\langle \sigma_1 \sigma_2 \rangle)$ is a Fuchsian group with signature $(0, [p\ldots,p])$ and ker $\theta_m =$ $\ker \theta_m / \theta_m^{-1}(\langle \sigma_1 \sigma_2 \rangle).$

The surface $\mathcal{H}/\ker \theta_m$ constructed above has a dihedral group D_p of automorphisms with all the symmetries conformally conjugate since p is an odd prime. Using [17], and [18], we find that the species of any of the symmetries in D_p is +1, for all $\overline{m} \in D_p^{(r)}$. Hence each connected component of \mathcal{M}_g^p contains a real, cyclic p-gonal Riemann surface with a symmetry with species $+1$.

As a particular case we have:

Theorem 5.3. The locus $\mathcal{M}_{(p-1)^2}^{p\mathcal{R}}$ of a real, cyclic p-gonal Riemann surface in $\mathcal{M}_{(p-1)^2}$ is disconnected for prime integers $p > 2$.

Gross and Harris proved Theorem 5.3 in the case $p = 3$ (see [16]).

To prove that \mathscr{M}_g^{pR} is disconnected we used the fact that \mathscr{M}_g^p is disconnected. The final paragraph of this work is to remark that, in general, given a connected component $\mathcal{M}_g^p(\overline{m})$ of \mathcal{M}_g^p , the set $\mathcal{M}_g^p(\overline{m}) \cap \mathcal{M}_g^{p\mathcal{R}}$ of real p-gonal Riemann surfaces contained in $\mathscr{M}_g^p(\overline{m})$ is disconnected in general. The reason is that the representations (Γ, φ_m) of cyclic p-gonal Riemann surfaces admit an action of \sum_r , while the representations $\theta_m: \Delta \to D_p$, $s(\Delta) = (0; +; [-]; \{(p, \ldots, p)\})$, of real, cyclic p-gonal Riemann surfaces admit only actions of cyclic groups.

Example 5.4. $\mathcal{M}_{16}^5(\overline{(1,1,1,1,1,4,4,4,4,4)}) \cap \mathcal{M}_{16}^{5\Re}$ is not connected.

Let now Δ be an NEC group with signature $s(\Delta) = (0; +; [-]; \{(5^{10})\})$ and presentation $\Delta = \langle e, c_0, c_1, \ldots, c_r \mid c_0^2 = c_i^2 = (c_{i-1}c_i)^5 = e c_0 e^{-1} c_r = 1, 1 \le i \le 1$ 10 . We construct epimorphisms

 θ_1, θ_2 : $\Delta \to D_5 = \langle \sigma_1, \sigma_2 | \sigma_i^2 = (\sigma_1 \sigma_2)^5 = 1, i = 1, 2 \rangle$ as follows: θ_1 :

$$
\theta_1(c_0) = \sigma_2 \qquad \theta_1(c_1) = \sigma_2(\sigma_1\sigma_2) \qquad \theta_1(c_2) = \sigma_2 \qquad \theta_1(c_3) = \sigma_2(\sigma_1\sigma_2) \n\theta_1(c_4) = \sigma_2 \qquad \theta_1(c_5) = \sigma_2(\sigma_1\sigma_2) \qquad \theta_1(c_6) = \sigma_2 \qquad \theta_1(c_7) = \sigma_2(\sigma_1\sigma_2) \n\theta_1(c_8) = \sigma_2(\sigma_1\sigma_2)^2 \qquad \theta_1(c_9) = \sigma_2(\sigma_1\sigma_2) \qquad \theta_1(c_{10}) = \sigma_2. \n\theta_2: \n\theta_2(c_0) = \sigma_2 \qquad \theta_2(c_1) = \sigma_2(\sigma_1\sigma_2) \qquad \theta_2(c_2) = \sigma_2 \qquad \theta_2(c_3) = \sigma_2(\sigma_1\sigma_2) \n\theta_2(c_4) = \sigma_2 \qquad \theta_2(c_5) = \sigma_2(\sigma_1\sigma_2)^4 \qquad \theta_2(c_6) = \sigma_2 \qquad \theta_2(c_7) = \sigma_2(\sigma_1\sigma_2) \n\theta_2(c_8) = \sigma_2(\sigma_1\sigma_2)^2 \qquad \theta_2(c_9) = \sigma_2(\sigma_1\sigma_2) \qquad \theta_2(c_{10}) = \sigma_2.
$$

We define the surfaces $X_1 = \mathcal{H}/\ker \theta_1$ and $X_2 = \mathcal{H}/\ker \theta_2$. The transposition $(5,6) \in \sum_{10}$ maps the representation $\varphi_1: \Gamma_1 = \theta_1^{-1}(\langle \sigma_1 \sigma_2 \rangle) \to F_5$ to the representation $\varphi_2: \Gamma_2 = \theta_2^{-1}(\langle \sigma_1 \sigma_2 \rangle) \to F_p$. Then the surfaces X_1 and X_2 belong to the same connected component of \mathcal{M}_{16}^5 .

Finally we see that X_1 and X_2 lie in different components of $\mathscr{M}_{16}^{5\mathscr{R}}$. Assume that X_1 and X_2 are in the same component of $\mathcal{M}_{16}^{5\mathcal{R}}$. Let τ_1 be a symmetry of X_1 contained in D_5 . Since the action of D_5 on X_1 is not topologically equivalent to the action of D_5 on X_2 , then there exists a Riemann surface X admitting an action of D_5 which is topologically equivalent to the action of D_5 on X_1 and such that X has a symmetry $\tau \notin D_5$, not conformally equivalent to τ_1 in Aut(X). So the order of $\tau\tau_1$ is even and τ induces a symmetry of $X/\langle \tau_1 \rangle$. Now, let α be an automorphism of order 5 in D_5 . Since α and $\tau \alpha^j \tau$ are conjugate in Aut (X) for $1 \leq j \leq 4$, then the markings 1, 4, 1, 4, 1, 1, 4, 4, 4, corresponding to the components of $m \in (1, 1, 1, 1, 1, 4, 4, 4, 4, 4)$ are situated symmetrically with respect to τ in Fix(τ_1) giving the rotation indices of α . This does not happen for the representation $\theta_1: \Delta \to D_5$.

References

- [1] Accola, R.D.M.: On cyclic trigonal Riemann surfaces I. Trans. Amer. Math. Soc. 283, 1984, 423–449.
- [2] Alling, N.L., and N. Greenleaf: Foundations of the Theory of Klein Surfaces. Lecture Notes in Math. 219, Springer-Verlag, Berlin, 1971.
- [3] Bujalance, E., and A.F. Costa: A combinatorial approach to the symmetries of M and $M-1$ Riemann surfaces. - London Math. Soc. Lecture Notes 173, 1992, 16–25.
- [4] BUJALANCE, E., and A.F. COSTA: On symmetries of p-hyperellitic Riemann surfaces. -Math. Ann. 308, 1997, 31–45.
- [5] Bujalance, E., A.F. Costa, and D. Singerman: Applications of Hoare's theorem to symmetries of Riemann surfaces. - Ann. Acad. Sci. Fenn. Math. 18, 1993, 307–322.
- [6] Bujalance, E., J.J. Etayo, J.M. Gamboa, and G. Gromadzki: Automorphism Groups of Compact Bordered Klein Surfaces. - Lecture Notes in Math. 1439, Springer-Verlag, Berlin, 1990.
- [7] BUSER, P., and M. SEPPÄLÄ: Real structures of Teichmüller spaces, Dehn twist, and moduli spaces of curves. - Math. Z. 232, 1999, 547–558.
- [8] BUSER, P., M. SEPPÄLÄ, and R. SILHOL: Triangulations and moduli spaces of Riemann surfaces with group actions. - Manuscripta Math. 88, 1995, 209–224.
- [9] Cornalba, M.: Syst`emes pluricanoniques sur l'espace des modules des courbes et diviseurs de courbes k -gonales (d'après Harris et Mumford). - Astérisque 121–122, 1985, 7–24.
- [10] Costa, A.F., and M. Izquierdo: On the locus of real algebraic curves. Atti Sem. Mat. Fis. Univ. Modena 49, 2001, 91–107.
- [11] Earle, C.J.: On moduli of closed Riemann surfaces with symmetries. In: Advances in the Theory of Riemann Surfaces. Ann. of Math. Stud. 66, Princeton, 1971, 119–130.
- [12] FREDIANI, P.: Real algebraic functions, real algebraic curves and their moduli spaces. -Ph.D. Thesis, University of Pisa, 1998.
- [13] Frediani, P.: Monodromies of generic real algebraic functions. Topology Appl. 99, 1999, 67–97.
- [14] GONZÁLEZ DÍEZ, G.: On prime Galois coverings of the Riemann sphere. Ann. Mat. Pura Appl. 168, 1995, 1–15.
- [15] Gromazki, G.: On a Harnack–Natanzon theorem for the family of real forms of Riemann surfaces. - J. Pure Appl. Algebra 121, 1997, 253–269.
- [16] GROSS, B.H., and J. HARRIS: Real algebraic curves. Ann. Sci. École Norm. Sup. 14, 1981, 157–182.
- [17] Hoare, A.H.M.: Subgroups of NEC groups and finite permutation groups. Quart. J. Math. Oxford 41, 1990, 45–59.
- [18] HOARE, A.H.M., and D. SINGERMAN: The orientability of subgroups of plane groups. -In: Groups, St Andrews, 1981, 221–227.
- [19] Izquierdo, M., and D. Singerman: Pairs of symmetries of Riemann surfaces. Ann. Acad. Sci. Fenn. Math. 23, 1998, 3–24.
- [20] Jones, G., and D. Singerman: Complex Functions. Cambridge University Press, Cambridge, 1988.
- [21] KLEIN, F.: Über Realitätverhältnisse bei der einem beliebigen Geschlechte zugehörigen Normalkurve der φ . - Math. Ann. 42, 1892, 1-29.
- [22] SEPPÄLÄ, M.: Teichmüller spaces of Klein surfaces. Ann. Acad. Sci. Fenn. A I Math. Dissertationes 15, 1978, 1–37.
- [23] SEPPÄLÄ, M.: Real algebraic curves in the moduli space of complex curves. Comp. Math. 74, 1990, 259–283.
- [24] SEPPÄLÄ, M., and T. SORVALI: Affine coordinates for Teichmüller spaces. Math. Ann. 284, 1989, 165–176.

Received 16 July 2001