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Abstract. In this paper we prove a sharp version of the Makarov law of the iterated log-
arithm. In particular, we show that the constant in the right side of this law depends on an
asymptotic behaviour of the integral means of the derivative of an analytic function. Also, we
establish that this constant is equal to the asymptotic variance for some domains with fractal type
boundaries.

Let f be an analytic and univalent function in the unit disk D = {|z| < 1} .
Makarov [5] proved that there exists a universal constant C > 0 such that

(1) lim sup
r→1−

| log f ′(rζ)|√
log
(
1/(1− r)

)
log log log

(
1/(1− r)

) ≤ C‖ log f ′‖B

for almost all ζ on |ζ| = 1, where

‖ log f ′‖B = | log f ′(0)|+ sup
|z|<1

(1− |z|2)

∣∣∣∣
f ′′

f ′
(z)

∣∣∣∣

is the Bloch norm. Pommerenke [8, p. 186] showed that this inequality is true
for C = 1 and there is a univalent function for which the inequality is false for
C ≤ 0.685. Therefore, this result is not far from being the best possible. Przytycki,
Urbański and Zdunik [9] established that for some classes of domains with fractal

type boundaries the equality holds with
√
σ2 in the right side of (1) where

σ2 =
1

2π
lim sup
r→1

∫
| log f ′|2 dθ

log
(
1/(1− r)

)

is the asymptotic variance. In the paper [9] the authors used another definition of
the asymptotic variance. But, in fact, their definition is equal to our definition in
the “fractal” case.
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The goal of this paper is to obtain a sharp version of the Makarov law of the
iterated logarithm for locally univalent functions, i.e. for functions f for which
f ′(z) 6= 0, z ∈ D .

Let f be a locally univalent function in the unit disk D and p be a complex
number. Then for all δ > 0 we define

βδ(p) = sup
r∈[0,1)

log
[
δ
∫
|z|=r |f ′(z)p|dθ

]

log
(
1/(1− r)

) .

In other words βδ(p) is the minimal number for which

∫
|f ′p|dθ ≤ 1

δ

(
1

1− r

)βδ(p)
, 0 ≤ r < 1.

If p is a real number then

βδ(p)→ β(p) as δ → 0,

where

β(p) = lim sup
r→1

log
∫
|z|=r |f ′(z)|p dθ

log
(
1/(1− r)

)

is the classical integral means spectrum [8, p. 176].
It follows from the integral means spectrum concept ( [2], [7], [8]) that there

is a connection between geometric properties of domains and the integral means
spectrum. On the other hand, Makarov [5] established that the law of the iterated
logarithm is closely related to the boundary properties of conformal maps. This
leads to the following natural question: Is there a simple relation between the law
of the iterated logarithm and the integral means spectrum? A possible answer for
this question is the following result which we will prove later.

Suppose f is a locally univalent function in the unit disk and δ > 0 . Then

lim sup
r→1−

| log f ′(rζ)|√
log
(
1/(1− r)

)
log log log

(
1/(1− r)

) ≤ 2 lim sup
p→0

√
βδ(p)

|p|

for almost all ζ on |ζ| = 1 .
It is more convenient for us to formulate this result in the form of the following

Theorem 1. Suppose f is a locally univalent function in the unit disk. Then
the following inequality holds

(2) lim sup
r→1−

| log f ′(rζ)|√
log
(
1/(1− r)

)
log log log

(
1/(1− r)

) ≤
√
σ2(0+)
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for almost all ζ on |ζ| = 1 , where

σ2(δ) = 4 lim sup
p→0

βδ(p)

|p|2 .

We remark that Pommerenke’s result with the constant C = 1 easily follows
from our theorem because it is known [3] that if log f ′ is a Bloch function then
σ2(0+) ≤ ‖ log f ′‖2B . Moreover, we will see that in many cases

σ2(0+) = σ2.

Further, it is convenient to use the following abbreviation:

∫ 2π

0

h(reiθ) dθ ≡
∫
hdθ

The next lemma can be deduced from Makarov’s proof of the law of the
iterated logarithm [5].

Lemma 1. Let Ck be a sequence of positive numbers and C
1/k
k → 1 as

k →∞ . If ∫
| log f ′|2n dθ ≤ Cnn!A2n logn

1

1− r
for all natural n and for all r ∈

[
1− exp(− exp en), 1

)
, then

lim sup
r→1−

| log f ′(rζ)|√
log
(
1/(1− r)

)
log log log

(
1/(1− r)

) ≤ A

for almost all ζ on |ζ| = 1 .

Proof. We use Pommerenke’s version of Makarov’s law [8, p. 186]. Our proof
is almost the same as Pommerenke’s proof. Let us only remark that instead of∫∞
e

in his proof we have to consider
∫∞

exp(en)
.

Proof of Theorem 1. Fix δ > 0 and ε > 0. Then there exists p0 = p0(δ, ε) > 0
such that ∫

|f ′p|dθ ≤ 1

δ

(
1

1− r

)(σ2(δ)+ε)|p|2/4

for |p| < p0 . This implies
∫
I0(t| log f ′|) =

∫
1

2πt

∫

|p|=t
|f ′p| |dp|dθ =

1

2πt

∫

|p|=t

∫
|f ′p|d θ|dp|

≤ 1

δ

(
1

1− r

)(σ2(δ)+ε)t2/4

, t ∈ (0, p0),
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where

I0(x) =

∞∑

k=0

(
x2

4

)k
/k!2 =

1

2π

∫ 2π

0

ex cos θ dθ

is the modified Bessel function of order zero [1]. At the same time,

∫
| log f ′|2n dθ ≤ 4n

t2n
n!2
∫
I0(t| log f ′|) dθ ≤ 4n

t2n
n!2

1

δ

(
1

1− r

)(σ2(δ)+ε)t2/4

.

Setting

t2 =
4n

(σ2(δ) + ε) log
(
1/(1− r)

) , n ≤ log log log
1

1− r ,

and using the identity

e =

(
1

1− r

)1/ log(1/(1−r))

we obtain
∫
| log f ′|2n dθ ≤ 1

δ
n!2en

1

nn
(
σ2(δ) + ε

)n
(

log
1

1− r

)n
.

Applying Lemma 1, we get

lim sup
r→1−

| log f ′(rζ)|√
log
(
1/(1− r)

)
log log log

(
1/(1− r)

) ≤
√
σ2(δ) + ε

for almost all ζ on |ζ| = 1 and for all δ > 0, ε > 0. Hence, this result is true for
δ = 0+ and ε = 0. This completes the proof.

If f is a univalent function and f(D) is a domain with rectifiable boundary
then inequality (2) is trivially sharp. Non-trivial examples, which show that this
inequality is sharp, can be obtained by using lacunary series.

Let log f ′ =
∑∞
k=1 akz

nk be a lacunary series with bounded coefficients and
nk+1/nk ≥ q > 1. Since log f ′ is a Bloch function then σ2(0+) < +∞ as was
mentioned above. In the other direction, Makarov [6] showed that if nk = 2k and
ak = 1 for all k then σ2(0+) > 0. Rohde [8] improved his result in the following
sense. Suppose q is an integer, nk = qk and ak = a > 0, then σ2(0+) ≥ a2/ log q .

In [4] it was shown that if q ≥ 2 then

σ2(0+) = lim sup
r→1

B2

log
(
1/(1− r)

) ,

where B2 =
∑∞
k=1 |ak|2r2nk .

We want to extend this result for the case q > 1. To do this we need the
following
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Definition ([10]). We say that a lacunary series satisfies condition (%,R) if
it consists of blocks of terms of length R , separated by empty blocks of length % .

Weiss [10] proved the following

Lemma 2. Let f(z) =
∑∞
k=1 akz

nk be a lacunary series satisfying condition
(%,R) , where

(q%/3 − 1)−1 ≤ 1
4 (q − 1) and q−R/3(R+ 1)2 ≤ 1

2 .

Let M = sup |ak| , B2 =
∑∞
n=1 |ak|2r2nk , r ∈ [0, 1) . Then

πe(1−ctR2)t2B2/4 ≤
∫
etRe f(reiθ) dθ ≤ 3πe(1+ctR2)t2B2/4.

Denote by %0 the minimal positive number for which

(q%0/3 − 1)−1 ≤ 1
4 (q − 1) and q−%0/3(%0 + 1)2 ≤ 1

2 .

Now, we can prove the following

Theorem 2. Let log f ′ =
∑∞
k=1 akz

nk be a lacunary series with bounded
coefficiens for which nk+1/nk ≥ q > 1 . Then

σ2(0+) = lim sup
r→1

B2

log
(
1/(1− r)

) ,

where B2 =
∑∞
k=1 |ak|2r2nk .

Proof. It is clear that we can represent log f ′ as f1 + f2 , where f1 satisfies
the (%0, R)-condition and f2 satisfies the (R, %0)-condition. Let us estimate B2

1

and B2
2 . In fact, it is enough to estimate only B2 because B2 = B2

1 + B2
2 . We

have

B2 ≤M2
∞∑

j=1

j(R+%0)∑

k=jR+(j−1)%0

r2qk ≤M2%0

∞∑

j=1

r2qRj ≤ C log
1

1− r /R.

Evidently, without loss of generality, we can assume that p = t is a real positive
number. Setting R = t−2/5 , we have

∫
|f ′|t dθ =

∫
etRe f1+tRe f2 dθ ≤

(∫
eαtRe f1 dθ

)1/α(∫
eβtRe f2 dθ

)1/β

,

where β = t−1/5 and α = (1 − t1/5)−1 . Applying Lemma 2 with f1 and f2 and
the estimate for B2 we obtain

∫
|f ′|t dθ ≤ CeB2t2/4

(
1

1− r

)Ct2+1/5

.

Analogously, ∫
|f ′|t dθ ≥ CeB2t2/4(1− r)Ct2+1/5

.

This concludes the proof.
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Applying the law of the iterated logarithm for lacunary series [10] it is easy
to show that if

lim
r→1

B2

log
(
1/(1− r)

)

exists then the equality in (2) holds. Other examples which show that (2) is sharp
come from the theory of Julia sets. The idea for using Julia sets in the theory of
univalent functions is due to Carleson and Jones [2]. They conjectured that the
basin of attraction of infinity for an iteration z2 + c for some c maximizes β0+(1)
in the class Σ.

Let F (z) = zq + aq−1z
q−1 + · · · be a polynomial of degree q ≥ 2 and

Ω = {ζ : F on(ζ)→∞ as n→∞}

be the basin of attraction of ∞ for F .

Theorem 3. Let Ω be a simply connected John domain. Then

σ2(0+) = σ2 = lim sup
r→1

B2

log
(
1/(1− r)

) ,

where B2 =
∑ |ak|2rk ; ak are the coefficients of log f ′ and f is the conformal

mapping from D− = {|ζ| > 1} onto Ω .

Proof. Our main idea is an approximation of the function log f ′ by lacunary
series. Let

ψ(ζ) = log
F ′
(
f(ζ)

)

qζq−1
=

q−1∑

k=1

log
f(ζ)− ζk

ζ
=
∞∑

j=0

bjζ
−j .

It is known [7] that

log f ′(ζ) = −
∞∑

k=0

ψ(ζq
k

) = ϕ(ζ) + g(ζ),

where g(ζ) =
∑∞
j=N+1

∑∞
k=0 bjζ

−jqk and ϕ(ζ) =
∑N
j=0

∑∞
k=0 bjζ

−jqk . Fixing

ε > 0, we will show that there exists N = N(ε) such that |ζg′(ζ)| ≤ ε/(|ζ|2 − 1).
From Pommerenke’s result [8, p. 100] it follows that

∑∞
j=0 |bjk|2j1+α < +∞ for

John domains, where bjk are the Taylor coefficients of log(f(ζ) − ζk)/ζ . This
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implies that
∑∞
j=0 |bj |2j1+α < +∞ for John domains. Therefore, we have

|ζg′(ζ)| = |
∞∑

k=0

∞∑

j=N+1

jqkbjζ
−jqk | ≤

∞∑

k=0

∞∑

j=N+1

jqk|bj |R−jq
k

≤
∞∑

k=0

qk

√√√√
∞∑

j=N+1

j1+α|bj |2
√√√√

∞∑

j=N+1

j1−αR−2jqk

≤ εN,α
∞∑

k=0

qkR−q
k

(1−R−qk)α/2
= εN,α

∞∑

k=0

qkrq
k

(1− rqk)α/2

≤ εN,α
∞∑

k=0

qkrq
k

(1− r)α/2qαk/2rαqk/2

=
εN,α

(1− r)α/2
∞∑

k=0

q(1−α/2)kr(1−α/2)qk ≤ C εN,α
1− r , where r =

1

R
< 1.

So, there exists N = N(α, ε) such that |ζg′(ζ)| ≤ ε/(|ζ|2 − 1). Consider now
∫
|f ′(Reiθ)|t dθ =

∫
|eϕ|t|eg|t dθ ≤

(∫
|eϕ|pt dθ

)1/p(∫
|eg|st dθ

)1/s

,

where s = 1/ε , p = 1/(1− ε) .
Since |ζg′(ζ)| ≤ ε/(|ζ|2 − 1) then it follows from the result of Clunie and

Pommerenke [3] that
∫
|eg|st dθ ≤ C

(
1

R− 1

)t2/4
.

It is easy to see that ϕ is a lacunary series with Hadamard gaps. Applying
Theorem 2 to this series we see that

∫
|eϕ|pt dθ ³

(
1

R− 1

)t2p2σ2
ϕ+ON (t2+1/5)

,

where

σ2
ϕ =

1

2π
lim sup
R→1

∫
|ϕ|2 dθ

log
(
1/(R− 1)

)

Thus,
∫
|f ′(Reiθ)|t dθ ≤ C

(
1

R− 1

)t2(σ2
ϕ+O(ε))+ON (t2+1/5)

.

Arguing as above, we obtain
∫
|f ′(Reiθ)|t dθ ≥ C

(
1

R− 1

)t2(σϕ
2+O(ε))+ON (t2+1/5)

.

Obviously, σϕ → σ as ε→ 0. Hence, σ(0+)2 = σ2 .
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Corollary. Let Ω be a simply connected John domain. Then

lim
R→1

| log f ′(Rζ)|√
log
(
1/(R− 1)

)
log log log

(
1/(R− 1)

) =
√
σ2(0+)

for almost all ζ on |ζ| = 1 .

Proof. This formula immediately follows from Theorem 3 and the well-known
law of the iterated logarithm for Julia sets [9]:

lim
R→1

| log f ′(Rζ)|√
log
(
1/(R− 1)

)
log log log

(
1/(R− 1)

) =
√
σ2 .

Note also that this equality follows from the classical law of the iterated logarithm
for lacunary series [10]. Therefore, we see again that (2) is sharp.

Acknowledgements. I want to thank Professors Christian Pommerenke, Step-
han Ruscheweyh and Richard Furnier for their useful remarks, and Professor Farit
Avkhadiev for helpful discussions.

This work was supported by the German Academic Exchange Service (DAAD,
University of Würzburg) and by Russian Fund of Basic Research (Grants N 99-
01-00366, 99-01-00173).

References

[1] Abramowitz, M., and I. Stegun: Handbook of Mathematical Functions. - Dover, New
York, 1972.

[2] Carleson, L., and P.W. Jones: On coefficient problems for univalent functions and
conformal dimension. - Duke Math. J. 66, 1992, 169–206.

[3] Clunie, J., and Ch. Pommerenke: On the coefficients of univalent functions. - Michigan
Math. J. 14, 1967, 71–78.

[4] Kayumov, I.R.: The integral means spectrum for lacunary series. - Ann. Acad. Sci. Fenn.
Math. 26, 2001, 447–453.

[5] Makarov, N.G.: On the distortion of boundary sets under conformal mappings. - Proc.
London Math. Soc. 51, 1985, 369–384.

[6] Makarov, N.G.: A note on integral means of the derivative in conformal mapping. -
Proc. Amer. Math. Soc. 96, 1986, 233–235.

[7] Makarov, N.G.: Fine structure of harmonic measure. - St. Petersburg Math. J. 10, 1999,
217–268.

[8] Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. - Springer-Verlag, Berlin,
1992.

[9] Przytycki, F., M. Urbanski, and A. Zdunik: Harmonic, Gibbs, and Hausdorff mea-
sures on repellers for holomorphic maps. I. - Ann. of Math. 2, 1989, 1–40; II, Studia
Math. 97, 1991, 189–225.

[10] Weiss, M.: On the law of the iterated logarithm for lacunary trigonometric series. - Trans.
Amer. Math. Soc. 91, 1959, 444–469.

Received 10 September 2001


