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Abstract. Let f be a harmonic homeomorphism of the unit disk onto itself. The following
conditions are equivalent: (a) f is quasiconformal; (b) f is bi-Lipschitz in the Euclidean metric;
(c) the boundary function is bi-Lipschitz and the Hilbert transformation of its derivative is in L∞ .

1. Introduction

Throughout the paper we denote by ϕ a continuous increasing function on
R such that ϕ(t+ 2π)− ϕ(t) ≡ 2π , so that the function

γ(t) = eiϕ(t)

is 2π -periodic and continuous, and of bounded variation on [0, 2π] . We consider
the harmonic mapping f defined on D = {z : |z| < 1} by

(1.1) f(z) =
1

2π

∫ 2π

0

P (r, θ − t)γ(t) dt (z = reiθ),

where P is the Poisson kernel,

P (r, t) =
1− r2

1 + r2 − 2r cos t
.

By the fundamental result of Choquet [2], f is a homeomorphism of D onto D.
Conversely, every orientation-preserving homeomorhism f : D 7→ D, harmonic in
D , can be represented in the form (1.1). A consequence of the Choquet theorem
and a result of Lewy [8] is that the Jacobian of f is strictly positive in D , i.e.,

(1.2) Jf (z) = |∂f(z)|2 − |∂̄f(z)|2 > 0 (z ∈ D).

Being harmonic, the mapping f can be represented as

f(z) = h(z) + g(z), g(0) = 0,
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where h and g are analytic in D and uniquely determined by f . We can rewrite
(1.2) as

(1.3)

∣∣∣∣
g′(z)
h′(z)

∣∣∣∣ < 1 (z ∈ D).

In this paper we characterize those ϕ for which f is quasiconformal, i.e., for
which (1.3) can be improved to

(1.4) k = sup
z∈D

∣∣∣∣
g′(z)
h′(z)

∣∣∣∣ < 1.

Martio [9] was the first who posed and studied this question. He proved that,
if ϕ ∈ C1(R) , the following two conditions are sufficient for quasiconformality
of f : minϕ′ > 0 and

(1.5)

∫ π

0

ω(t)

t
dt <∞,

where ω is the modulus of continuity of ϕ′ ,

ω(t) = sup
{
|ϕ′(x)− ϕ′(y)| : |x− y| < t

}
.

Condition (1.5), known as the Dini condition (applied to ϕ′ ), is sufficient, but not
necessary, for the Hilbert transformation Hϕ′ of ϕ′ to belong to L∞ . Our idea
is to replace the Dini condition by Hϕ′ ∈ L∞ .

Theorem 1.1. The mapping f is quasiconformal if and only if the function
ϕ is bi-Lipschitz and the Hilbert transformation of ϕ′ is essentially bounded on R .
In other words, f is quasiconformal if and only if ϕ is absolutely continuous and
satisfies the conditions:

ess inf ϕ′ > 0,(1.6)

ess supϕ′ <∞,(1.7)

ess sup
θ∈R

∣∣∣∣
∫ π

+0

ϕ′(θ + t)− ϕ′(θ − t)
t

dt

∣∣∣∣ <∞.(1.8)

The proof that these three conditions are sufficient is short; we simply compute
the radial limits of the modulus of the bounded analytic function g′/h′ and apply
the maximum modulus principle (see the end of Section 2).

The necessity proof, given in Section 3, is more intriguing and depends on
Mori’s theorem in the theory of quasiconformal mappings (cf. Ahlfors [1]):
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If Φ is a quasiconformal homeomorphism of D , then

(1.9) |Φ(z1)− Φ(z2)| ≤ C|z1 − z2|α, α =
1− k
1 + k

(z1, z2 ∈ D),

where

k = sup
z∈D

∣∣∣∣
∂̄Φ(z)

∂Φ(z)

∣∣∣∣

and C depends only on f(0) . (Note that C = 16 if Φ(0) = 0.)

The mapping |z|α(z/|z|) shows that the exponent α is optimal in the class of
arbitrary k -quasiconformal homeomorphisms. However, it follows from our proof
(see (3.5)) that if Φ is harmonic, then it satisfies the ordinary Lipschitz condition
(with Lipschitz constant depending on k ). On the other hand, from (1.4) and the
inequality

|h′(z)|2 + |g′(z)|2 ≥ 1/π2 (z ∈ D),

due to Heinz [7], it follows that infz∈D(|∂f(z)| − |∂̄f(z)|) > 0, which implies that
the inverse mapping, f−1 , satisfies a Lipschitz condition. Therefore we have the
following.

Theorem 1.2. If the mapping f is quasiconformal, then it is bi-Lipschitz,
i.e., there is a constant L <∞ such that

1

L
≤
∣∣∣∣
f(z1)− f(z2)

z1 − z2

∣∣∣∣ ≤ L (z1, z2 ∈ D)

and consequently
1

L
≤ 1− |f(z)|

1− |z| ≤ L (z ∈ D).

Note that an arbitrary bi-Lipschitz homeomorphism is quasiconformal.

2. Boundary values of the derivatives

We recall that the (periodic) Hilbert transformation of a 2π -periodic function
ψ ∈ L1 is defined by

(2.1)

(Hψ)(θ) = − 1

π

∫ π

+0

ψ(θ + t)− ψ(θ − t)
2 tan(t/2)

dt

= − 1

π

∫ π

+0

Ψ(θ + t) + Ψ(θ − t)− 2Ψ(θ)

4 sin2(t/2)
dt,

where Ψ is the indefinite integral of ψ . The integrals are improper and converge
for almost all θ ∈ R ; this and other facts concerning the operator H used in our
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paper can be found in Zygmund [11, Chapter VII]. We note the connection of H
with harmonic conjugates.

If a function u , harmonic in D , is given by

u(reiθ) =
∞∑

n=−∞
cnr
|n|einθ,

then its harmonic conjugate v is defined by

v(reiθ) =
∞∑

n=−∞
mncnr

|n|einθ,

where mn = −i signn ; in particular v(0) = 0. If u is the Poisson integral of ψ ,
then v has radial limits almost everywhere and there holds the relation

v(eiθ) := lim
r→1−

v(reiθ) = (Hψ)(θ) (a.e.).

In calculating the boundary values of the analytic functions h′ and g′ we use
the formulae

(2.2) h′(z) = ∂f(z) =
1

2
e−iθ

(
fr(z)− i

fθ(z)

r

)

and

(2.3) g′(z) = ∂̄f(z) =
1

2
eiθ
(
fr(z) + i

fθ(z)

r

)
,

where

fθ =
∂f

∂θ
, fr =

∂f

∂r
.

The derivatives fr and fθ are connected by the simple but fundamental fact
that

the function rfr is equal to the harmonic conjugate of fθ .

It follows from (1.1) that fθ equals the Poisson–Stieltjes integral of γ = eiϕ :

fθ(re
iθ) =

1

2π

∫ 2π

0

P (r, θ − t) dγ(t).

Hence, by Fatou’s theorem, the radial limits of fθ exist almost everywhere and
limr→1− fθ(re

iθ) = γ′0(θ) a.e., where γ0 is the absolutely continuous part of γ .
It turns out that if γ is absolutely continuous, then

lim
r→1−

fr(re
iθ) = H(γ′)(θ) (a.e.).

The function γ , of course, need not be absolutely continuous. However:
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If

(2.4) sup
ρ<1

1

2π

∫ 2π

0

∣∣fr(ρeiθ)
∣∣ dθ <∞,

then γ is absolutely continuous and, moreover, the functions h(eiθ) and g(eiθ)
are absolutely continuous.

This is one of possible formulations of a classical theorem of Riesz (cf. Zyg-
mund [11, Chapter VII, Section (8.3)]). Usually this theorem is stated in the
following way (cf. [4]):

If the derivative of an analytic function φ belongs to the Hardy space H1 ,
then φ(eiθ) is absolutely continuous.

In view of the formulae (2.2) and (2.3) condition (2.4) implies that h′ and g′

are in H1 .
Using these formulae one can easily show that (1.4) implies

(2.5)
1− k
1 + k

≤
∣∣∣∣
rfr(z)

fθ(z)

∣∣∣∣ ≤
1 + k

1− k (z ∈ D).

Thus:

If f is quasiconformal, then ϕ is absolutely continuous.

From now on we will suppose that ϕ is absolutely continuous. Then there
hold the formulae

(2.6) fθ(e
iθ) = γ′(θ) = iϕ′(θ)eiϕ(θ)

and

(2.7) fr(e
iθ) = H(γ′)(θ) = − 1

π

∫ π

+0

γ(θ + t) + γ(θ − t)− 2γ(θ)

4 sin2(t/2)
dt.

By straightforward computation we find that

(2.8) e−iϕ(θ)fr(e
iθ) = A(θ) + iB(θ),

where

(2.9)

A(θ) =
1

π

∫ π

+0

2− cos
(
ϕ(θ + t)− ϕ(θ)

)
− cos

(
ϕ(θ − t)− ϕ(θ)

)

4 sin2(t/2)
dt

=
1

2π

∫ 2π

0

(
sin
(
ϕ(θ + t)/2− ϕ(θ)/2

)

sin(t/2)

)2

dt
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and

(2.10) B(θ) = − 1

π

∫ π

+0

sin
(
ϕ(θ + t)− ϕ(θ)

)
+ sin

(
ϕ(θ − t)− ϕ(θ)

)

4 sin2(t/2)
dt.

Then using (2.2) and (2.3) we get

(2.11) |h′(eiθ)|2 = 1
2

(
(A(θ) + ϕ′(θ))2 +B(θ)2

)

and

(2.12) |g′(eiθ)|2 = 1
2

(
(A(θ)− ϕ′(θ))2 +B(θ)2

)
.

Since the function g′/h′ is analytic and bounded, by (1.3), we find that

k2 = sup
z∈D

∣∣∣∣
g′(z)
h′(z)

∣∣∣∣
2

= ess sup
θ

ϕ′(θ)2 +A(θ)2 +B(θ)2 − 2ϕ′(θ)A(θ)

ϕ′(θ)2 +A(θ)2 +B(θ)2 + 2ϕ′(θ)A(θ)
.

Hence:

The mapping f is quasiconformal if and only if

(2.13) K := ess sup
θ∈R

ϕ′(θ)2 +A(θ)2 +B(θ)2

2ϕ′(θ)A(θ)
<∞.

There holds the formula

k =

(
K − 1

K + 1

)1/2

.

Now it is easy to show that conditions (1.6), (1.7) and (1.8) imply that f is
quasiconformal. We have only to note that condition (1.7) implies

(2.14) ‖B −Hϕ′‖∞ ≤ C‖ϕ′‖2∞,

where C is an absolute constant; this inequality is deduced from (2.1) by using
the relation x− sinx = O(x3) .
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3. The necessity proof

Let f be quasiconformal. Then K <∞ (see (2.13), i.e.,

(3.1) ϕ′(θ)2 +A(θ)2 +B(θ)2 ≤ 2Kϕ′(θ)A(θ).

It follows that A(θ)2 ≤ 2Kϕ′(θ)A(θ) and therefore

(3.2) ϕ′(θ) ≥ 1

2K
A(θ).

Since

A(θ) ≥ 1

4π

∫ π

−π

(
1− cos(ϕ(θ + t)− ϕ(θ))

)
dt

= 1
2

(
1− Re

(
e−iϕ(θ)f(0)

))
≥ 1

2 (1− |f(0)|),
we get ess inf ϕ′(θ) > 0. Thus condition (1.6) is satisfied.

In order to verify (1.7) we use the inequality

(3.3) ϕ′(θ) ≤ C
∫ π

−π

(
ϕ(θ + t)− ϕ(θ)

t

)2

dt

(C is an absolute constant) which is obtained from (3.1). Assume first that ϕ is
of class C2 and choose θ so that ϕ′(θ) = maxϕ′ =: M . Let 0 < β < 1. It follows
from (3.3) that

M ≤ C
∫ π

−π

(
ϕ(θ + t)− ϕ(θ)

t

)2−β
Mβ dt,

whence

M1−β ≤ C
∫ π

−π

(
ϕ(θ + t)− ϕ(θ)

t

)2−β
dt.

Now we apply Mori’s inequality (1.9) to deduce that

M1−β ≤ C1

∫ π

0

(tα−1)2−β dt, α =
1− k
1 + k

.

Choose β so that (α−1)(2−β) > −1, which is possible because (α−1)(2−β)→
α− 1 > −1 as β → 1− , to get

(3.4) maxϕ′ ≤ C2,

where C2 depends only on K . From this and (3.2) we get A(θ) ≤ 2KC2 and
hence, by (3.1) and (2.11), |h′(eiθ)| ≤ C3 . The function h′(z) is continuous on
the closed disk because the function γ = eiϕ is C2 , so we have

(3.5) |h′(z)| ≤ C3 (z ∈ D),
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and the constant C3 depends only on K .
In the general case we proceed as in [3]: we consider the mappings fn , of D

onto D , defined by

fn(z) = f
(
wn(z)

)
/rn = hn(z) + gn(z) (rn = 1− 1/n, n ≥ 2),

where wn is the conformal mapping of D onto Gn = f−1(rnD) , wn(0) = 0,
w′n(0) > 0. Since the boundary of Gn , for n large enough, is an analytic Jordan
curve, the mapping wn can be continued analytically across ∂D , which implies
that fn has a harmonic extension across ∂D . Since also

∣∣∣∣
g′n
h′n

∣∣∣∣ =

∣∣∣∣
(g′ ◦ wn)w′n
(h′ ◦ wn)w′n

∣∣∣∣ ≤ k,

we can appeal to the preceding special case to conclude that
∣∣h′
(
wn(z)

)∣∣ |w′n(z)|/rn
≤ C3 , where C3 is independent of n and z . And since Gn ⊂ Gn+1 and ∪Gn = D ,
we can apply the Carathéodory convergence theorem (cf. [5]): wn(z) tends to z ,
uniformly on compacts, whence w′n(z)→ 1 (n→∞). Thus inequality (3.5) holds
in the general case. Using this and (2.11) we get ϕ′(θ) + |B(θ)| ≤ C4 . Finally, it
remains to apply (2.14).
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conforme et définie au moyen fonctions harmoniques. - Bull. Sci. Math. (2) 69, 1945,
156–165.

[3] Clunie, J., and T. Sheil-Small: Harmonic univalent functions. - Ann. Acad. Sci. Fenn.
Math. 9, 1984, 3–25.

[4] Duren, P.L.: Theory of Hp Spaces. - Academic Press, 1970.

[5] Duren, P.L.: Univalent Functions. - Springer-Verlag, 1983.

[6] Garnett, J.B.: Bounded Analytic Functions. - Academic Press, 1981.

[7] Heinz, E.: One-to-one harmonic mappings. - Pacific J. Math. 9, 1959, 101–105.

[8] Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. - Bull.
Amer. Math. Soc. 42, 1936, 689–692.

[9] Martio, O.: On harmonic quasiconformal mappings. - Ann. Acad. Sci. Fenn. Math. 1968,
3–10.

[10] Partyka, D., and K. Sakan: A note on non-quasiconformal harmonic extensions. - Bull.
Soc. Sci. Lettres Lodz 47, 1997, 51–63.

[11] Zygmund, A.: Trigonometric Series I. - Cambridge University Press, 1958.

Received 19 September 2001


