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BY Re f(z) FOR ANALYTIC FUNCTIONS
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Abstract. For angular regions of the plane, the integral of |f(z)| − Re f(z) , where f(z)
is analytic and L1 , can be estimated from below in terms of the L1 norm of |f(z)| . We obtain
necessary and sufficient conditions on the shape of a type of region of infinite area for which a
natural generalization of the foregoing exists, and examine the consequences.

1. Introduction

Let Ω be a region of the complex plane. We denote by L1
a(Ω) the class of

functions f(z) analytic in Ω and belonging to L1(Ω) and set

(1.1) δΩ[f ] =

∫∫

Ω

[|f(z)| − Re f(z)] dx dy, f ∈ L1
a(Ω).

Of course, δΩ[f ] ≥ 0. Also, obviously, if Ω has finite area, and f(z) is identi-
cally 1 (or any non-negative constant) in Ω, then δΩ[f ] = 0. When Ω has infinite
area, non-zero constants no longer belong to L1

a(Ω). In that case we consider the
sequence,

(1.2) δΩ[fn] =

∫∫

Ω

[|fn(z)| − Re fn(z)] dx dy, fn ∈ L1
a(Ω), n = 1, 2, . . . ,

where

(1.3) lim
n→∞

fn(z) = 1 uniformly on every compact subset of Ω.

We will see that, depending on the size of the “opening” of Ω at infinity, as
measured by comparison to a class of standard openings when a comparison in
the sense to be described below is possible, there are only two alternatives: Either
there exists a sequence fn ∈ L1

a(Ω) satisfying (1.3) for which lim δΩ[fn] = 0, or
lim δΩ[fn] = +∞ for every sequence fn ∈ L1

a(Ω) satisfying (1.3).
The standard openings are defined in terms of the family of parabolic-shaped

regions, Ωβ , 0 ≤ β ≤ 1, starting with the limiting case of a half-strip Ω0 , and
ending with the limiting case of an angular region, Ω1 ,

(1.4)
Ω0 = {z = x+ iy : |x| < 1, y > 0},
Ωβ = {z = x+ iy : |x| < yβ , y > 0}, (0 < β ≤ 1).

The result is as follows:
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Theorem 1.1. With the conditions and notations (1.2), (1.3), (1.4),
(i) if Ω ⊃ Ωβ , ( 1

3 < β ≤ 1) , then lim δΩ[fn] = +∞ for every choice of {fn} ;
(ii) if Ω ⊂ Ωβ , (0 ≤ β ≤ 1

3 ) , there exist {fn} , such that lim δΩ[fn] = 0 .

Since Ωβ2 contains a translated copy of Ωβ1 when 0 ≤ β1 ≤ β2 ≤ 1, it
is sufficient to restrict consideration to values of β to any interval of the form,
1
3 < β < βo , in proving (i). However, since the situation when β < 1 is much
subtler than when β = 1, we obtain a better appreciation of it if we first consider
the case separately when Ω is an angular region. This will be done in Section 2.
The case, 1

3 < β < 1, follows in Section 3. The method used in Section 3 differs
radically from that used in Section 2. It would be difficult to anticipate the key
result, (3.1)–(3.2), of Section 3 from the key result (2.2) of Section 2, but once
they are compared, they are seen to fit together well.

Except for the special value, β = 1
3 , the proof of (ii) is very easy: A simple

computation shows that it is enough to set fn(z) = eiz/n . Namely,

(1.5)

δΩβ [eiz/n] =

∫∫

Ωβ

e−y/n
(

1− cos
x

n

)
dx dy ≤ 2

n2

∫∫

Ωβ

x2e−y/n dx dy

=
4

3n2

∫ ∞

0

y3βe−y/n dy =
4

3
n3β−1Γ(3β + 1).

So, if 0 ≤ β < 1
3 , then limn→∞ δΩβ [eiz/n] = 0. For β = 1

3 , {δΩβ [eiz/n]} is
bounded, but does not go to zero as n → ∞ . The problem is handled in a
roundabout manner in Section 4.

As may be gathered from the list of references, there is a strong relationship of
our problem with certain results of the theory of extremal planar quasiconformal
mappings. The material in Section 2 and a part of the construction of Section 3 ac-
tually duplicate work in some of these references but, as far as I am aware, Part (i)
of Theorem 1.1 is stronger than anything that has up to now been established in
quasiconformal mapping theory. On the other hand, Part (ii) of Theorem 1.1 is
equivalent to known facts in [5], [4], and [1]. Except for Section 4, however, it has
been possible to keep the reasoning here completely elementary and the exposition
self-contained.

It should be noted that for the case of arbitrary regions Ω, even if we consid-
ered only simply-connected regions with infinite area, a comparison of Ω with a
region of type Ωβ in the sense of Theorem 1.1 is of course, in general, not possible.
Whether other alternatives for lim δΩ[fn] can occur in the general case is an open
problem.

2. Angular regions and the case β = 1

Let Rα be the angular region

Rα = {z : 0 < arg z < α}, (0 < α < 2π).
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Theorem 2.1. For every f ∈ L1
a(Rα) we have

(2.1) δRα [f ] ≥
(

1− |sinα|
α

)∫∫

Rα

|f(z)| dx dy.

Proof. ([2, p. 124]) Let Σ = {w = u+ iv : 0 < v < α} . Then

A =

∫∫

Rα

f(z) dx dy =

∫∫

Σ

e−2ivg(w) du dv, g(w) = e2wf(ew),

and

B =

∫∫

Rα

|f(z)| dx dy =

∫∫

Σ

|g(w)| du dv =

∫ α

0

dv

∫ ∞

−∞
|g(u+ iv)| du.

Since B <∞ ,
∫∞
−∞ g(u+ iv) du exists for almost all v , and since g(w) is analytic

in Σ, ∫ ∞

−∞
g(u+ iv) du = κ = const for a.a. v, (0 < v < α).

Hence,

A = κ

∫ α

0

e−2iv dv = κe−iα sinα, B ≥ |κ|α.

It follows that
|A|
B
≤ | sinα|

α
.

This implies (2.1). Therefore, since Rπ/2 is congruent to Ω1 ,

(2.2) δΩ1 [f ] ≥
(

1− 2

π

)∫∫

Ω1

|f(z)| dx dy, f ∈ L1
a(Ω1).

This proves Part (i) of Theorem 1.1 for the case β = 1. When 0 ≤ β < 1,
no inequality like (2.2) holds; that is, it is not possible to replace the coefficient
(1 − 2/π) on the right side by any positive constant, even if that constant were
allowed to depend on β . This can be seen by trying, fn(z) = eiz/n , n→∞ . But
we will see in Section 3, following, that the matter can be handled by means of a
different type of relationship. 1

1 It is not difficult to show that the constant (1− 2/π) in (2.2) is best possible.
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3. The case 1
3 < β < 1

We will see that (2.2) can be generalized as follows:

Theorem 3.1. When 1
3 < β < 1 , there exists a non-negative function Pβ(z) ,

measurable as a function of z , z ∈ Ωβ , such that

(3.1) δΩβ [f ] ≥
∫∫

Ωβ

Pβ(z)|f(z)| dx dy, f ∈ L1
a(Ωβ).

The function Pβ(z) has infinite L1 norm,

(3.2)

∫∫

Ωβ

Pβ(z) dx dy = +∞.

When 0 ≤ β ≤ 1
3 , no such function Pβ exists.

The proof will consist in an explicit construction of P β(z) , and will take up
the remainder of this section. It is clear that Part (i) of Theorem 1.1 will then
follow immediately.

We start with some preliminaries.

Pavlović’s inequality.2 If ζ1, ζ2, w are complex numbers with

|ζ1|2 + |ζ2|2 ≤ 2,

then

(3.3) |ζ1 − ζ2|2|w| ≤ 4
[
|w| − Re(ζ1w)

]
+ 4
[
|w| − Re(ζ2w)

]
.

Suppose τ ∈ L∞(Ω) , ‖τ‖∞ ≤ 1 , f ∈ L1(Ω) ,
∫∫

Ω
f(z) =

∫∫
Ω
τ(z)f(z) . Then

(3.4) δΩ[f ] ≥ 1

8

∫∫

Ω

|1− τ(z)|2|f(z)| dx dy.

Proof. The right-hand side of (3.3) minus the left-hand side of (3.3) equals
2Q1 + 4Q2 +Q3 , where

Q1 = (2− |ζ1|2 − |ζ|2)|w| ≥ 0,

Q2 = |(ζ1 + ζ2)w| − Re
[
(ζ1 + ζ2)w

]
≥ 0,

Q3 = (|ζ1 + ζ2| − 2)2|w| ≥ 0.

Relation (3.4) follows from (3.3) on setting ζ1 = 1, ζ2 = τ , w = f , and integrating
over Ω.

2 Miroslov Pavlović, personal communication.
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In outline, the procedure to be used to take advantage of (3.4) is the follow-
ing. We look for a complex-valued function H on Ω ∪ ∂Ω, vanishing on ∂Ω and
sufficiently regular so that Hz̄(z) is bounded in Ω and so that Green’s formula,

0 =
1

2i

∫

∂Ω

H(z)f(z) dz =

∫∫

Ω

Hz̄f(z) dx dy,

holds whenever, say, f belongs to L1
a(Ω) and is continuous on Ω∪∂Ω. It is crucial

to be able to determine H in such a manner that, in addition,

(3.5) ess sup{ReHz̄ : z ∈ Ω} < 0.

By (3.5), and the boundedness of Hz̄ , there will then exist a constant c > 0, such
that |1 + cHz̄| ≤ 1. Set τ(z) = 1 + cHz̄ . Then, by (3.4),

(3.6) δΩ[f ] ≥ c2

8

∫∫

Ω

|Hz̄|2|f(z)| dx dy

for all f ∈ L1
a(Ω) that are continuous on Ω ∪ ∂Ω. By means of an approximation

argument one establishes that (3.6) holds for all f ∈ L1
a(Ω).

It so happens that a function H that allows us to carry out the above in
slightly modified form for Ω = Ωβ , 1

3 < β < 1, has already been determined [3]
in connection with a question of Hahn–Banach extensions. One starts with the
disjoint decomposition,

Ωβ = E ∪ Ω11 ∪ Ω12 ∪ Ω22 ∪ Ω21,

where
Ωmn = {z ∈ Ωβ : (−1)m Re z < 0, (−1)n Im z > (−1)n},
E = {z ∈ Ωβ : Re z = 0 or Im z = 1},

and defines H by

(3.7) H(x+ iy) =

{
(yβ − x)

(
− 1

2 (1− β)xy + iy1−β), z ∈ Ω11,

(yβ − x)
(
− 1

2 (1− β
)
xyβ−2 + iyβ−1

)
, z ∈ Ω12,

(3.8) H(z) = −H(−z̄), z ∈ Ω21 ∪ Ω22.

This H is continuous in Ωβ , vanishes on ∂Ωβ , and is in C∞ in the separate
regions Ωmn . The resulting function Hz̄ is well defined and bounded in all Ωmn ,
that is, in Ωβ outside a set of two-dimensional measure zero. One applies Green’s
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formula to the portion of Ωβ between parallel horizontals. In the limit, as Ωβ is
exhausted, the conclusion is that

∫∫

Ωβ

Hz̄f(z) dx dy = 0, f ∈ L1
a(Ωβ).

By (3.7), (3.8),

(3.9) ReHz̄ =

{
− 1

2 + 1
4 (1− β)(2xy + 2xy−β − yβ+1), z ∈ Ω11,

1
4 (1− 3β)y2β−2, z ∈ Ω12,

(3.10) ImHz̄ =

{
− 1

2y
1−β + 1

4 (1− β)
[
x− (1 + β)yβ

]
x, z ∈ Ω11,

− 1
2y
β−1 + 1

4 (1− β)
[
2(1− β)yβ − (2− β)x

]
xyβ−3, z ∈ Ω12,

(3.11) Hz̄(−x+ iy) = Hz̄(x+ iy), z ∈ Ω21 ∪ Ω22.

Evidently, ReHz̄ < 0 in Ω12 ∪ Ω22 . For z ∈ Ω11 , we note that ReHz̄ is
a linear function of x for every fixed y , (0 < x < yβ) , whose maximum occurs
at x = yβ . Thus, ReHz̄ ≤ 1

4 (1 − 3β) < 0 in Ω11 ∪ Ω21 . We therefore conclude
that (3.1) holds with Pβ(z) = 1

8c
2|Hz̄|2 . As Pβ(x + iy) is bounded and an even

function of x , it suffices to consider its behavior in Ω12 , as y → +∞ , in order to
prove (3.2). By (3.9), (3.10),

∫ yβ

0

[
ReHz̄(x+ iy)

]2
dx =

(
1− 3β

4

)2

y5β−4,

∫ yβ

0

[
ImHz̄(x+ iy)

]2
dx =

1

4
y3β−2 +

(2β − 1)(1− β)

12
y5β−4

+
(1− β)2(2− 7β + 8β2)

240
y7β−6,

for y > 1. Thus, for y > 1,

(3.12)

∫ yβ

−yβ
Pβ(x+ iy) dx = Cy3β−2 +O(y5β−4), as y → +∞, ( 1

3 < β < 1),

where C is a positive constant depending on β . Assertion (3.2) follows.

Remark. In the case 1
3 < β < 1 , the exponent of the term y3β−2 in (3.12)

is best possible as y →∞ .

Proof. By (3.1), (3.12), δΩβ [eiz/n] has as lower bound 1
2C
∫∞

1
y3β−2e−y/n dy ,

when n is sufficiently large. But this term has the same order of magnitude, as
n→∞ , as the upper bound (1.5), namely n3β−1 .
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4. The case β = 1
3

Let G = {z = x + iy : y > |x|3} = Ω1/3 . Our object is to prove Part (i) of
Theorem 1.1, that is, to show that there exists a sequence ϕn ∈ L1

a(G ) , such that
limn→∞ δG [ϕn] = 0. Although {ϕn} will not be explicitly determined, we will
point out that the conclusion follows from results of [5] and [1] about quasiconfor-
mal mappings of G . Let F denote the horizontal stretch of G onto G ′ = F (G )
by the factor K > 1; i.e.

F (x+ iy) = Kx+ iy, z = x+ iy ∈ G .

In line with standard terminology, F is called extremal if the maximal dilatation
M of any arbitrary quasiconformal mapping ζ of G onto G ′ which agrees with
F on ∂G satisfies M ≥ K . The mapping ζ: G → G ′ is called uniquely extremal
if M = K implies ζ(z) ≡ F (z) . We refer to the following result, first proved in
[5] 3 :

Theorem 4.1 ([5, Sections 1–3]). The horizontal stretch mapping F : G → G ′

is uniquely extremal.

Since the mapping F has complex dilatation

Fz̄
Fz

=
K − 1

K + 1
= k > 0,

the desired conclusion now follows from the following special case of a fundamental
theorem of Boz̆in, Lakic, Marković, and Mateljević:

Theorem 4.2 ([1, p. 312). Let ϕ be a non-zero function analytic in the
simply connected region R and let F be a quasiconformal mapping of R with
complex dilatation µ(z) = k ϕ(z)/|ϕ(z)| , 0 < k < 1 . Then F is uniquely extremal
if and only if there exists a sequence ϕn ∈ L1

a(R) such that
(i) limϕn(z) = ϕ(z) , uniformly on every compact subset of R , and

(ii) k
∫∫

R |ϕn(z)| dx dy − Re
∫∫

R µ(z)ϕn(z) dx dy → 0 .

In our case, ϕ(z) ≡ 1.
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